- 1. Зарубицкий О.Г. Очистка металлов в расплавленных щелочах. -М.: Металлургия, 1981.
- Зарубицкий О.Г., Захарченко Н.Ф., Дмитрук Б.Ф. // Ионные расплавы и твердые электролиты. -1990. -Вып. 5. -С. 16—29.
- 3. Дмитрук Б.Ф., Зарубицкий О.Г., Бабич Н.Н. // Укр. хим. журн. -1983. -49, № 7. -С. 690—693.
- 4. Зарубицкий О.Г., Скриптун И.Н. // Там же. -2001. -67, № 7. -С. 19—24.
- 5. Бильченко М.Н., Дмитрук Б.Ф., Зарубицкий О.Г. // Там же. -1997. -63, № 8. -С. 85—88.

Сумской государственный педагогический университет им. А.С. Макаренко

Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев

- Марченко 3. Фотометрическое определение элементов. - М.: Мир, 1971.
- 7. Скриптун И.Н., Бильченко М.Н., Зарубицкий О.Г. // Расплавы. -2001. -№ 3. -С. 68—74.
- 8. *Rhamel A., Kruger H.* // Werkstoffe und Korrosion. -1967. -18, № 3. -S. 193—205.
- 9. Паюсов С.А., Вильнянский Н.Е. // Журн. неорган. химии. -1966. -11, № 6. -С. 1245—1250.
- Делимарский Ю.К., Дмитрук Б.Ф., Зарубицкий О.Г. // Ионные расплавы. -Киев: Наук. думка, 1976. -Вып. 4. -С. 56—65.

Поступила 30.03.2004

УДК 546.185

В.В. Лісняк, Н.В. Стусь, М.С. Слободяник

ІНТЕРКАЛЯЦІЯ ТАЛІЮ В МОНОФОСФАТНУ ВОЛЬФРАМОВУ БРОНЗУ З ПЕНТАГОНАЛЬНИМИ КАНАЛАМИ (PO₂)₄(WO₃)₁₄*

Досліджено процеси інтеркаляції талію в монофосфатну вольфрамову бронзу $(PO_2)_4(WO_3)_{14}$ при взаємодії з розплавленими солями. Синтезовано монофосфатну вольфрамову бронзу $Tl_x(PO_2)_4(WO_3)_{14}$ ($0.6 \le x \le 1.53$). Склад кристалів встановлено методом рентгено-спектрального мікроаналізу. За даними рентгенівського фазового аналізу розраховано параметри кристалічної гратки. Визначено, що температури аномалій опору при 82—174 та 200—278 К залежать від концентрації талію. Валентний стан атомів талію в кристалах монофосфатних вольфрамових бронз досліджено методом рентгенівської фотоелектронної спектроскопії.

Фосфатні вольфрамові бронзи (ФВБ) містять перовскітоподібні шари з октаедрів WO_6 , з'єднані прошарками з тетраедрів PO_4 або дифосфатних груп P_2O_7 [1, 2] Дві родини монофосфатних вольфрамових бронз (МФВБ) відрізняються взаємною орієнтацією шарів (паралельна та антипаралельна), а також формою "вікон", що з'єднують великі порожнини, утворені вісімнадцятьма атомами оксигену (гексагональні) складу $A_x(WO_3)_{2m}(PO_2)_4$ (А — Na, Pb, K) [1] та МФВБп (пентагональні), більшість з яких мають склад (WO_3)_{2m}(PO₂)₄ [2].

Для фосфатних вольфрамових бронз характерні низьковимірні електричні властивості, електронна нестабільність, хвилі зарядової густини [1—4], тому ці об'єкти інтенсивно досліджуються впродовж останніх двадцяти років за підтримки європейских та українських науково-дослідних програм, наприклад, Human Capital & Mobility, DMR-03-04003, JNICT-CNRS (STRDAC/CEN/431/92), теми "Оксидні матеріали з особливими електрофізичними властивостями" (0101U002160).

Тривалий час вважалося, що інтеркаляція катіонів у матрицю МФВБп взагалі неможлива, а в присутності додаткових катіонів завжди кристалізуються МФВБг.

Електрофізичні властивості МФВБ залежать від товщини перовскітоподібного шару з октаедрів [1—3], для МФВБг $A_x(WO_3)_{2m}(PO_2)_4$ (А — Na, Pb та K) та МФВБп $Na_{0.1}(WO_3)_6(PO_2)_4$ також встановлено залежність властивостей від типу та концентрації позакаркасних катіонів [4—6].

Хоча відомості про талійвмісні МФВБ на сьогодняшній день у літературі відсутні, близь-

^{*} Роботу підтримано Фондом фундаментальних досліджень (грант № 0101U002160).

[©] В.В. Лісняк, Н.В. Стусь, М.С. Слободяник, 2005

кість радіусів йонів К та Tl свідчить про можливість одержання таких сполук. Мета даної роботи — створення нових талійвмісних представників родини МФВБп та визначення впливу вмісту талію на електропровідність.

Талійвмісні монофосфатні вольфрамові бронзи складу $Tl_x(PO_2)_4(WO_3)_{14}$ одержано шляхом взаємодії монофосфатної вольфрамової бронзи $(PO_2)_4(WO_3)_{14}$ з талійвмісними сольовими розплавами.

Порожню матрицю (PO₂)₄(WO₃)₁₄ синтезували шляхом спікання стехіометричних сумішей компонентів: W(A2, ч.), WO₃ (Peaxim, ч.д.а.), NH₄H₂PO₄ (Реахім, х.ч.). Порошки вихідних речовин гомогенізували в шаровому млині (контролюючи розмір гранул на лазерному спектрофотометрі SEISHI LMS-30), пресували (прес Dalmer-7500, навантаження 1 т). Отримані таблетки, загорнуті у вольфрамову фольгу для запобігання взаємодії зразків з матеріалом контейнера високотемпературної вакуумної установки, вакуумували (10⁻³ Па) та 10 днів прожарювали при 1253 ± 3 К. Синтезовані кристали відмивали гарячою (353 К) дистильованою водою. Отримані кристали Р₄W₁₄O₅₀ перетирали в ступці, тестували методом порошкової рентгенівської дифракції на вміст домішкових фаз та використовували для проведення взаємодії з розплавами солей талію.

Талійвмісні сполуки отримували за наступних умов: час взаємодії з розплавами TII становив 8—10 г, температура 765—1113 ± 3 К. Враховуючи високу реакційну здатність талію, синтези проводили у вакуумованих кварцевих ам-

пулах (вигнуті S-подібні ампули). Використання градієнту температур дозволяло вирощувати невеликі пластинчаті кристали на границі між гарячою та холодною зонами ампули за методом хімічних транспортних реакції, запропонованим раніше в роботі [7].

Склад отриманих кристалів визначали, використовуючи електронний мікроскоп фірми Jeol, на базі якого змонтовано рентгеноспектральний мікроаналізатор, що працює на основі методу енергетичних дисперсій (EDX) та мікроелектрон-дифракційна камера (SAED); фазовий склад кристалів встановлено методом рентгенівської порошкової дифрактометрії (Дрон-2, CuK_{α}); валентний стан талію в сполуках визначали методом рентгенівської фотоелектронної спектроскопії (РФЕС) на приладі марки ESCA-LAB5.

Одержання МФВБп та процес інтеркаляції можна схематично представити наступними реакціями:

$$2W + 12NH_4H_2PO_4 + 40WO_3 =$$

= 3(PO_2)_4(WO_3)_{14} + 12NH_3 + 18H_2O;
xTII + (PO_2)_4(WO_3)_{14} =
= Tl_x(PO_4)_2(WO_3)_{14} + 0.5xI_2.

Згідно з розробленим нами методом отримано ряд сполук, склад та кристалографічні параметри яких наведено в табл. 1. Порожня матриця ($P_4W_{14}O_{50}$) кристалізується в моноклінній сингонії, за даними роботи [8] просторова група $P2_1/n$, площина двійникування [001]. Сполуки, що одержані в результаті взаємодії з талійвмісними розплавами, являють собою обмежений ряд твердих розчинів на базі МФВБп складу Tl_x(PO₄)₂(WO₃)₁₄ (x=0.6—1.53).

Внаслідок інтеркаляції талію спостерігається збільшення об'єму кристалічної гратки (табл. 1). В каркасі $(PO_2)_4(WO_3)_{14}$ (рисунок) присутні два типи порожнин — утворені вісімнадцятьма атомами оксигену, з'єднані пентагональними вікнами (O_{18}) та перовскітні порожнини (O_{12}), з'єднані тетрагональними вікнами. Всі проведені на сьгодні рентгеноструктурні дослідження МФВБ свідчать про те, що одно- чи двовалентні йони займають позиції в значно більших порожнинах (O_{18}), в той час як позиції в порожнинах (O_{12}) залишаються вільними. Враховуючи схожість кар-

Таблиця 1

Склад, рентгенографічні параметри та температури максимумів аномалій опору для ряду твердих розчинів $Tl_x(PO_2)_4(WO_3)_{14}$

Divior	Кристалографічні параметри							
ылст талію,	а	b	с	<u>с</u> β, град. V, Å ³		IП	и _П , к	
x		Å				$T_{\Pi 1}$	$T_{\Pi 2}$	
0.0	5.292(3)	6.561(1)	26.652(3)	90.19(1)	925.29	60(±1)*	188(± 1)*	
0.63(2)	5.31(4)	6.668(1)	26.92(7)	97.68(8)	944.78	82(±1)	200(± 1)	
0.85(1)	5.32(2)	6.668(4)	26.89(2)	97.75(7)	945.17	102(± 1)	217(± 1)	
1.02(5)	10.65(4)	6.668(5)	26.95(7)	97.80(5)	948.06	120(± 1)	236(± 3)	
1.53(7)	5.32(2)	6.668(2)	27.09(5)	97.82(8)	952.05	174(± 1)	278(± 2)	
* Дані роботи [8].								

Кристалографічна проекція (PO₂)₄(WO₃)₁₄ на площину [100], тетраедри — PO₄-, октаедри — WO₆-групи; пунктиром відмічено порожнину O₁₈, стрілкою пентагональний канал.

касів МФВБ та розміри йонів талію, слід очікувати заповнення ним порожнин О₁₈ у МФВБп.

Інтеркаляція талію в матрицю (PO₂)₄(WO₃)₁₄ супроводжується зниженням середнього ступеня окиснення вольфраму в перовскітоподібних шарах та виділенням йоду, який може взаємодіяти з розплавом, окиснюючи йони Tl⁺ до Tl⁺³. За даними PФЕ-спектроскопії в сполуках ряду Tl_xP₄W₁₄O₅₀ атоми талію знаходяться у валентних станах Tl⁺ та Tl⁺³ (табл. 2). Тестування зразків цим методом не виявило смуг, притаманних TII: $\Delta E(Tl4f_{7/2}) = 118.7$ еВ та $\Delta E(Tl4d_{5/2})$ = 385.6 еВ [9, 10].

Як відомо [9], інтенсивність характеристичних смуг у РФЕ-спектрі пропорційна концентрації, тому, використовуючи класичне рівняння, яке зв'язує інтенсивність характеристичної смуги в РФЕ-спектрі з концентрацією елементу в приповерхневому (20 Å) шарі кристалу: $I_1/I_2 = (c_1/c_2)^{1/2}$, нами проаналізовано співвідношен-

Таблиця 2

Енергія РФЕ-переходів Tl $4f_{7/2}$ та Tl $4d_{5/2}$ (eB) для стандартів та представників ряду Tl_xP₄W₁₄O₅₀

Склад сполуки	Tl 4f _{7/2}	T1 4d _{5/2}
Tl ₂ O	118.2	385.3
Tl ₂ O ₃ [11]	117.7	384.9
$Tl_{1.53}P_4W_{14}O_{50}$	117.6; 118.2	384.8; 385.0
$Tl_{1.02}P_4W_{14}O_{50}$	117.6; 118.0	384.6; 385.1
$Tl_{0.85}P_4W_{14}O_{50}$	117.6; 118.0	384.7; 385.2
${\rm Tl}_{0.63}{\rm P}_4{\rm W}_{14}{\rm O}_{50}$	117.6; 118.0	384.7; 385.2

ISSN 0	041-6045.	УКР.	ХИМ.	ЖУРН.	2005.	Τ.	71,	N⁰	6
--------	-----------	------	------	-------	-------	----	-----	----	---

Таблиця З Відносний вміст талію (III) в твердих розчинах Tl_xP₄W₁₄O₅₀

x	Вміст Tl (III), % *
1.53	7
1.02	12
0.85	16
0.63	20

* Від загального вмісту талію (х).

ня Tl^+ та Tl^{+3} в отриманих сполуках. Встановлено, що вміст талію (+3) в досліджених твердих розчинах є незначним (табл. 3).

Для всіх досліджених зразків зареєстровано по дві аномалії на кривих температурної залежності питомого опору. Зростання вмісту талію в МФВБ супроводжується монотонним зростанням температур аномалій опору (табл. 1), на відміну від одержаної для $K_x(WO_3)_8(PO_2)_4$ залежності з максимумом при x=1.3 [4].

Таким чином, нами вперше одержані талійвмісні представники ряду МФВБп. Методом РФЕспектроскопії досліджено фотоелектронні переходи Tl $4f_{7/2}$ та Tl $4d_{5/2}$, встановлено, що синтезовані МФВБп містять переважно Tl (I), вміст Tl (III) досягає 20 % від загального вмісту талію. Подальше вивчення впливу модифікування талієм на електрофізичні властивості фосфатних вольфрамових бронз є перспективним напрямком керованого створення матеріалів з особливими електрофізичними властивостями.

Автори вдячні співробітникам ІНМ НАНУ (Київ) та університету Тюбінген (Германія) за можливість використання устаткування зазначених інституцій для виконання даної роботи.

РЕЗЮМЕ. Исследованы процессы интеркалляции таллия в монофосфатную вольфрамовую бронзу $(PO_2)_4(WO_3)_{14}$ при взаимодействии с расплавленными солями. Получены монофосфатные вольфрамовые бронзы состава $Tl_x(PO_2)_4(WO_3)_{14}$ ($0.6 \le x \le 1.53$). Состав кристаллов определен методом рентгено-спектрального микроанализа. По данным рентгеновского фазового анализа рассчитаны параметры кристаллической решетки. Определено, что температуры аномалий проводимости при 82—174 и 200—278 К зависят от концентрации таллия. Валентное состояние атомов таллия в кристаллах монофосфатных вольфрамовых бронз исследовано методом рентгеновской фотоэлектронной спектроскопии.

SUMMARY. An intercalation of thallium into monophosphate tungsten bronze $(PO_2)_4(WO_3)_{14}$ at interaction with molten salts has been studied. The monophosphate tungsten bronze of composition $Tl_x(PO_2)_4(WO_3)_{14}$ ($0.6 \le x \le 1.53$) has been synthesised. Composition of the crystals was determined by roentgen-spectral microanalysis. Unit cell lattice parameters were determined basing on powder X-ray diffraction data. It has been determined that temperatures of resistivity anomalies at 82—174 and 200—278 K depend on thallium concentration. The valent states of the thallium atoms in monophosphate tungsten bronzes crystals have been defined using roentgen-photoelectron spectroscopy.

- 1. Roussel P., Perez O., Labbe Ph. // Acta Crystallographica B. -2001. -57. - P. 603-632.
- 2. Roussel P., Labbe Ph., Groult D. // Ibid. -2000. -56. -P. 377-390.

Київський національний університет ім. Тараса Шевченка

- 3. Ottolenghi A., Pouget J.-P. // J. Phys. (I) France. -1996. -6. -P. 1059—1083.
- Roussel P., Groult D., Hess C. et al. // J. Phys. Condensed Matter. -1997. -9. -P. 7081—7089.
- Roussel P., Groult D., Maignan A., Labbe Ph. // Chem. Mater. -1999. -11. -P. 2049—2056.
- Wang E., Greenblatt M. // J. Solid State Chem. -1989.
 -81. -P. 173—178.
- 7. Roussel P., Masset A. C., Domenges B. et al. // Ibid. -1998. -139. -P. 362-372.
- 8. *Gruehn R., Glaum R. //* Angew. Chem. Int. Ed. -2000. -112. -P. 706—745.
- Domenges B., Roussel P., Labbe Ph., Groult D. // J. Solid State Chem. -1996. -127. -P. 302—307.
- Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. -М.: Химия, 1984.
- 11. McGuire G. E., Schweitzer G. K., Carlson T. A. // Inorg. Chem. -1973. -12, № 10. -P. 2450—2453.

Надійшла 27.02.2004

УДК 546.541.12.017+54.04:681

Д.М. Фреїк, В.М. Бойчук, Л.Й. Межиловська

ЗАРЯДОВИЙ СТАН ГАЛІЮ І МЕХАНІЗМИ УТВОРЕННЯ АТОМНИХ ДЕФЕКТІВ У КРИСТАЛАХ РЬТе: Ga

З позиції спонтанної дисоціації домішки галію $2Ga^{2+} \rightarrow Ga^{1+} + Ga^{3+}$ у телуриді свинцю запропоновано кристалоквазіхімічні рівняння, які описують утворення атомних дефектів. Показано, що на початкових етапах легування реалізується механізм заміщення галієм вакансій свинцю Ga_{Pb}^{3+} . Глибоке легування обумовлює утворення міжвузлового галію Ga_i^{3+} у тетрапорожнинах підгратки телуру з наступним утворенням нової фази Ga_2Te_3 . Стабілізація рівня Фермі і, відповідно, концентрації електронів пов'язана з утворенням Ga_{Pb}^{1+} на обидвох етапах легування.

Телурид свинцю є базовим матеріалом для створення термоелектричних перетворювачів енергії, фотоприймальних пристроїв, а також випромінювальних структур середнього і далекого інфрачервоного діапазону оптичного спектру [1, 2]. РbTе кристалізується у гратці типу NaCl (a=6.452 Å) і характеризується наявністю двосторонньої області гомогенності [2]. Аналіз його властивостей, а також розрахунок хвильових функцій валентних електронів дає можливість зробити висновок про переважання йонного хімічного зв'язку в сполуці (Pb²⁺Te^{2–}) [3].

Антиструктурою телуриду свинцю є галеніт $V_{Pb}^{\prime\prime\prime}V_{Te}^{**}$, де $V_{Pb}^{\prime\prime\prime}$ і V_{Te}^{**} — двократнозаряджені негативна і позитивна вакансії свинцю і телуру, а $^{\prime\prime\prime}$ і ** — негативний і позитивний заряди

відповідно. Вакансія свинцю $V_{Pb}^{/\prime}$ є акцепторним центром з надлишком негативного заряду, рівному двом зарядам електрона, а вакансія телуру V_{Te}^{**} — ефективним донорним центром.

В основу кристалоквазіхімічного аналізу дефектної підсистеми покладено суперпозицію кристалоквазіхімічних кластерів основної матриці і легуючого елемента, утворених на основі антиструктури цих сполук [4]. Кристалоквазі-хімічний запис *n*-PbTe (надстехіометрія свинцю) буде наступним:

$$V_{Pb}^{//} V_{Te}^{**} + Pb^{o} \rightarrow V_{Pb}^{//} V_{Te}^{**} + (Pb^{**} + 2e') \rightarrow$$

$$\rightarrow (V_{Pb}^{//} + Pb^{**}) V_{Te}^{**} + 2e' \rightarrow Pb_{Pb} V_{Te}^{**} + 2e'. (1)$$

Тут ^о — нульовий заряд, Рb_{Pb} — свинець у вузлі

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2005. Т. 71, № 6

[©] Д.М. Фреїк, В.М. Бойчук, Л.Й. Межиловська, 2005