С. Б. Мешкова, Н. В. Русакова, Д. В. Большой

ВЛИЯНИЕ СОЛЬВАТИРУЮЩЕЙ СПОСОБНОСТИ РАСТВОРИТЕЛЕЙ НА ИНТЕНСИВНОСТЬ ЛЮМИНЕСЦЕНЦИИ ТРЕХВАЛЕНТНЫХ ИОНОВ НЕОДИМА И ИТТЕРБИЯ

Изучена зависимость интенсивности ИК люминесценции I_n комплексов Nd и Yb с окрашенными лигандами от сольватирующей способности ряда органических растворителей (OP), смешивающихся с водой. Показано наличие корреляции между значениями I_n и относительного увеличения ее в присутствии OP от различных параметров, характеризующих донорно-акцепторную способность последних. Комплексообразование ионов Yb с ксиленоловым оранжевым в водно-диметил-сульфоксидной среде использовано для селективного и высокочувствительного определения его в соединениях Sm.

Исследованию роли растворителей в процессах излучательных и безызлучательных переходов в трехвалентных ионах лантанидов (Ln) и влияния их в конечном счете на интенсивность люминесценции (I_n) последних посвящено большое количество работ [1—3]. Изучена связь спектрально-люминесцентных свойств ионов Ln(Sm, Eu, Tb и Dy) с такими характеристиками растворителей, как диэлектрическая проницаемость и донорное число. Наибольший вклад в безызлучательный перенос энергии электронного возбуждения комплексов Ln в растворах вносят растворители, содержащие OH- и CH-группировки, что может быть устранено заменой их дейтеро- или фторсодержащими аналогами.

Ранее было показано, что ионы Nd в растворах комплексов с трифенилметановыми красителями [4], а ионы Yb и с рядом других окрашенных реагентов [5] проявляют интенсивную люминесценцию в ИК-области спектра. В присутствии органических растворителей или тяжелой воды, так же как и поверхностно-активных веществ, наблюдается значительное увеличение интенсивности ИК-люминесценции Nd и Yb.

Чтобы изучить влияние сольватирующей способности растворителей на интенсивность люминесценции ионов Ln, нам казалось целесообразным выяснить наличие связи между люминесцентными характеристиками их комплексов и различными параметрами, характеризующими донорно-акцепторную способность растворителей. В исследовании использованы комплексы Nd и Yb с ксиленоловым оранжевым (КО), в которых оба лантанида обнаруживают интенсивную ИК-люминесценцию. Основным условием выбора органических растворителей (ОР) была их способность смешиваться с водой, что, за исключением процессов экстракции, может быть использовано для аналитических целей.

Исходные растворы хлоридов Nd и Yb (1·10-3 M) готовили растворением их оксидов (99,99%) в соляной кислоте. Стандартизацию их проводили раствором ЭДТА (ГСО 2960-84) с индикатором арсеназо І. Растворы меньшей концентрации получали разбавлением исходных. Использовали приготовленный из точной навески 1·10-3 М водный раствор КО («Сhemapol»), очистку которого проводили экстракцией бутанолом. Условия приготовления комплексов Nb и Yb с KO описаны в работах [4, 5]. Органические растворители — диметилсульфоксид (ДМСО), диметилформамид (ДМФА), метанол (Ме), этанол (Эт), пропанол (Пр), ацетон (АЦ), ацетонитрил (АН), тетрагидрофуран (ТГФ) и диоксан (ДО) — дополнительно очищали перегонкой. Для создания необходимого рН растворов использовали ацетатный буферный раствор, значения рН измеряли на приборе рН-ОР211/1 (ВНР). Так как используемые комплексные соединения поглощают в видимой области спектра, люминесценцию их возбуждали излучением ртутной лампы ДРШ-250, выделяя светофильтром излучение с длиной волны 546 нм. Люминесценцию комплексов Nd регистрировали в области

850—1120 нм ($\lambda_{\text{макс}}$ — 903 и 1060 нм, переходы с ${}^4F_{3/2}$ на ${}^4I_{9/2}$ и ${}^4I_{11/2}$ соответственно), а Yb — в области 960—1000 нм ($\lambda_{\text{макс}}$ = 980 нм, переход ${}^2F_{5/2}$ \rightarrow ${}^2F_{7/2}$).

Поскольку большинство реакций комплексообразования Ln выполняется в водных или водно-органических средах, молекулу комплекса можно представить следующим образом

$$\left\{ \left[\begin{array}{c|c} I & II \\ & (Lig)_{1-3} \\ & (H_2\theta)_n \end{array}\right] \left|\begin{array}{c} (H_2\theta)_{m-X} \\ (\partial P)_X \end{array}\right\} \right.,$$

где наряду с лигандом (Lig) в I (внутренней) координационной сфере находится n молекул воды, а во II (внешней) — m. При добавлении органического растворителя часть молекул воды замещается x-молекулами растворителя, который вытесняет воду сначала из внешней, а затем и из внутренней координационной сферы комплекса [6]. Известно, что наибольшее влияние на интенсивность и время жизни люминесценции ионов Ln оказывают молекулы воды, находящиеся во внутренней координационной сфере комплекса [1, 7]. Кроме того, как отмечается в работе [8], существует дополнительный механизм тушения люминесценции, связанный с переносом энергии на обертоны колебаний ОН- с СН-групп молекул растворителя во внешней координационной сфере, однако его влияние на люминесцентные характеристики комплексов значительно меньше. Поэтому наблюдаемые в опытах из-

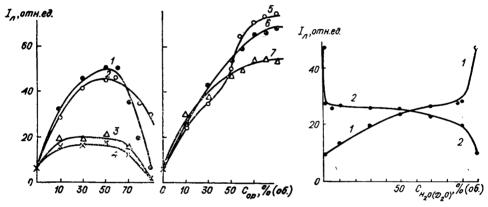


Рис. 1. Зависимость между интенсивностью люминесценции комплекса Nd c KO и содержанием в растворе органических растворителей, % (об.): I-AH; 2-AII; $3-T\Gamma\Phi$; 4-IIO; 5-IIMCO; 6-IIMPA; $7-\Theta$ T. $C_{Nd}=1\cdot 10^{-5}$ M; $C_{KO}=5\cdot 10^{-5}$ M.

Рис. 2. Изменение интенсивности люминесценции комплекса Nd-KO с увеличением содержания в растворе D_2O (1) или H_2O (2).

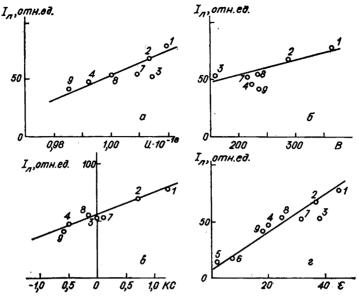
менения I_n комплексов Nd(Yb) в присутствии органических растворителей можно рассматривать как следствие перестройки главным образом внутренней координационной сферы комплекса.

Из приведенной на рис. 1 зависимости (кривые 1-4) видно, что такие органические растворители, как ацетон, ацетонитрил и диоксан, увеличивают I_n комплекса Nd с KO до концентрации 60 % (об.), однако дальнейшее повышение их содержания в растворе приводит к уменьшению I_n и ослаблению (в случае ацетона) или полному исчезновению окраски раствора комплекса (остальные растворители), что может быть обусловлено вытеснением лиганда из внутренней координационной сферы комплекса с образованием при этом сольватированных гидроксокомплексов. Прибавление к водному раствору комплекса Nd — KO диметилсульфоксида, диметилформамида, метанола, этанола и пропанола до их концентрации 70—90 % (об.) приводит к непре-

рывному увеличению I_{π} (см. рис. 1, кривые 6, 7). Согласно данныму работы [9], изменение сольватного окружения иона Ln в случае таких диполярных апротонных растворителей, как ДМСО и ДМФА, начинается с координации во внутренней сфере 1—2 молекул ОР.

При содержании их выше 30—35 % (об.) происходит образование внутрисферных сольватов с сохранением в ряде случаев молекул. растворителя и во внешней сфере. Изучение сольватации иона Рг [10] в водно-диметилсульфоксидных растворах ($C_{\rm ДMCO}\!=\!0\!-\!100~\%$ показало, что при содержании ДМСО около 50 % (мол.) происходит практически полное вытеснение воды диметилсульфоксидом во внутренней сфере иона-комплексообразователя. Это согласуется с данными работы [11] о полном замещении воды на ДМСО в координационном окружении иона Nd при мольной доле ДМСО в растворе около 0,7-0,5. Благодаря наличию кислорода, действующего как льюисовское основание, ДМСО обладает свойствами лиганда, у которого донорное число намного выше, чем у воды. Дипольный момент молекулы ДМСО более чем вдвое превышает дипольный момент молекулы воды, что также усиливает взаимодействие ДМСО через отрицательно заряженный кислород с центральным ионом Ln. Более слабая координация ионов с азотом проявляется в меньшем по сравнению с ДМСО влиянии ДМФА. Введение спирта, также приводящее к пересольватации комплексов Nd(Yb) с образованием смешанных водно-спиртовых сольватов, вызывает меньшее по сравнению с апротонными растворителями увеличение интенсивности люминесценции комплексов, что может бытьобусловлено безызлучательными потерями энергии на

С целью выяснения возможности снижения безызлучательных потерь энергии была предпринята попытка проследить изменение I_{π} комплекса $\mathrm{Nd}-\mathrm{KO}$ при введении дейтерированных растворителей— тяжелой воды и $\mathrm{ДM}\Phi\mathrm{A}-\mathrm{D}_{7}.$ В этих опытах использованы растворы хло-


рида Nd и KO в D₂O.

Как видно из рис. 2 (кривая 1), с увеличением содержания D_2O^* в растворе I_{π} комплекса Nd непрерывно возрастает: плавно — до содержания D_2O 90 % (об.) и резко — к полностью дейтерированной среде. Обратный ход зависимости (кривая 2) наблюдается при добавлении H_2O к раствору комплекса Nd-KO в D_2O . Резкое снижение I_{m} при добавлении уже 1 % Н₂О свидетельствует о преимущественном вхождении в координационную сферу центрального иона молекул воды: и более прочном их удерживании. Полная замена H₂O на D₂O приводит к возрастанию I_{π} комплекса почти на полпорядка величины. Однако введение дейтерированного ДМФА в раствор комплекса Nd — KO в $D_2 O$ приводит к дальнейшему увеличению I_n вплоть до содержания ДМФА — D_7 90 % (об.), при котором I_n превышает значение ее в отсутствие $ДМ\Phi A - D_7$ в 4,7 раза. Это свидетельствует о том, что безызлучательные потери энергии ионов Ln обусловлены колебаниями нетолько OH- ($v = 3600 \text{ см}^{-1}$), но и OD-групп ($v = 2700 \text{ см}^{-1}$), окружающих центральный ион молекул, однако в последнем случае в меньшей степени.

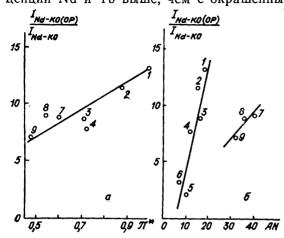
Таким образом, органические растворители по-разному, но в значительной степени влияют на люминесцентные свойства комплексов Ln, что обусловлено, по-видимому, различиями в их сольватирующей способности. Поэтому представляло интерес проследить связь между интенсивностью люминесценции и различными параметрами растворителей, характеризующими их донорно-акцепторную способность. В качестве таковых были выбраны энергия сольватации, рассчитанная с помощью уравнения Борна [12], относительная координационная сила [13], акцепторное число [14], параметр общей основности (нуклеофильность) [15], диэлектрическая проницаемость и вычисленные на ее основании модифицированные π^* -константы Гаммета — Тафта, характеризующие полярность растворителей [16]. На рис. 3 и 4 соответственно приведены графики зависимости I_{π} раствора комплекса Nd —

КО при оптимальном содержании органического растворителя и относительное ее увеличение (отношение I_{π} комплекса в присутствии растворителя к I_{π} комплекса в его отсутствие).

Как видно из рис. 3, наблюдается достаточно хорошая корреляция I_{π} с указанными характеристиками растворителей, и почти во всех случаях по степени влияния на I_{π} комплекса Nd — KO растворители располагаются в следующий ряд: ДМСО>ДМФА>Эт \approx Me \approx AH \approx AL

>Пр>ТГ $\Phi>$ DO. Этот же порядок сохраняется в случае зависимости от π^* -констант Гаммета — Тафта относительного увеличения I_π комплекса (рис. 4, a). Зависимость последней величины от значений акцепторных чисел (AN) растворителей (рис. 4, δ) отличается от предыдущих тем, что точки для спиртов, характеризующихся наибольшими значениями AN, укладываются на отдельную прямую. Это может быть связано как со значительным оттягиванием электронной плотности от

Результаты определения иттербия в образцах оксида самария $(P=0.95;\ t_p=2.57)$ *


Образец	Найдено Уь		
	$(C\pm\delta)\cdot 10^{-4}$, $\frac{MK\Gamma}{MJI}$	C·10-4. %	Sr
I	0,97±0,12	3,23	0,12
II	$1,05 \pm 0,05$	3,50	0,05
III	0.97 ± 0.07	3,23	0,07

^{*} Введено Yb 1·10-4 мкг/мл.

лиганда и дестабилизацией системы центральный ион — лиганд, так изначительно большими безызлучательными потерями энергии, вызванными колебаниями ОН-групп, по сравнению с СН- и NH-группами других растворителей.

Сравнивая влияние органических растворителей на I_{π} комплексов с ксиленоловым оранжевым ионов Nd и Yb, следует отметить, что в

присутствии ДМСО и ДМФА она возрастает более чем на порядок величины, что сопоставимо со значениями I_{π} их в растворах поверхностно-активных веществ и может быть использовано в анализе. Так, в работе [17] комплексообразование Nd с KO в среде ДМСО использовано для разработки селективного и высокочувствительного метода определения Nd в оксиде самария. Хотя в разнолигандных комплексах с β -дикетонами и органическими основаниями интенсивность люминесценции Nd и Yb выше, чем с окрашенными реагентами, использование

их в данном случае невозможно, так как в идентичных условиях в ИК-области спектра интенсивную люминесценцию проявляют также ионы Sm-линии с мак-

Рис. 4. Корреляционная зависимость относительного увеличения интенсивности люминесценции комплекса Nd с KO $(I_{Nd-KO}(o_P)/I_{Nd-KO})$ от значений π^* -констант Гаммета—Тафта (a) и величин акцепторных чисел (AN) растворителей (b). Числа у точек соответствуют нумерации растворителей на рис. 3. $C_{Nd} = 1 \cdot 10^{-5} M$; $C_{KO} = 5 \cdot 10^{-5} M$.

симумами при 905, 932 и 950 нм. Наиболее интенсивная линия Sm 950 нм при его больших содержаниях будет накладываться в спектре на единственную линию Yb 980 нм, препятствуя определению последнего. Использование окрашенных реагентов с более низким, чем у β -дикетонов, триплетным уровнем, с которого принципиально возможен перенос энергии только к определяемому элементу (Nd или Yb), открывает возможность селективного определения как Nd, так и Yb в соединениях Sm, а комплексообразование в среде органических растворителей с большой сольватирующей способностью (ДМСО, ДМФА) обеспечивает увеличение их I_{π} на порядок величины по сравнению с водным раствором. Определение Yb, как и Nd, в различных образцах оксида Sm проводили с использованием его комплекса с KO в среде ДМСО (70 % (об.)). Полученные результаты приведены в таблице.

Предел обнаружения Yb в соединениях Sm этим методом составляет $3 \cdot 10^{-4}$ %, в то время как при использовании разнолигандного комплекса с теноилтрифторацетоном и 1,10-фенантролином он не ниже $1 \cdot 10^{-1}$ %.

Таким образом, изучение изменения интенсивности ИК-люминесценции комплексов Nb(Yb) в присутствии различных растворителей показало наличие корреляции спектрально-люминесцентных характеристик комплексов с рядом параметров растворителей, характеризующих их донорно-акцепторную способность. Использование тяжелой воды не приводит к полному устранению безызлучательных потерь энергии, которое достигается лишь при вытеснении молекулами апротонных растворителей (ДМСО, ДМФА) воды из внутренней координационной сферы иона Ln.

РЕЗЮМЕ. Вивчена залежність інтенсивності ІЧ люмінесценції (I_n) комплексів Nd та Yb з барвниками від сольватуючої здатності ряду органічних розчинників (OP), які змішуються з водою. Покавана наявність кореляції між величинами I_n і відносного зростання її у присутності OP від різних параметрів, характеризуючих донорно-акцепторну здатність останніх. Коплексоутворення іонів Yb з ксиленоловим оранжевим у водно-диметилсульфоксидному середовищі використано для селективного та високочутливого визначення його у сполуках Sm.

- 1. Спектрофотометрические и люминесцентные методы определения лантанидов / Н. С. Полуэктов, Л. И. Кононенко, Н. П. Ефрюшина, С. В. Бельтюкова.— Кнев:
- Наук. думка, 1989.— 254 с.

 2. Kropp J. L., Windsor M. W. Enhancement of fluorescence yield of rare-earth ions by heavy water // J. Chem. Phys.—1963.—39, N 4.— P. 2769—2770.

 3. Heller A. Formation of hot OH bonds in the radiationless relaxations of excited
- гаге-еагth aqueous solutions // J. Amer. Chem. Soc.—1966.—88, N 9.— Р. 2058—2059. 4. Русакова Н. В., Мешкова С. Б., Полуэктов Н. С. Возбуждение люминесценции иона неодима в растворах его комплексов путем внутримолекулярного переноса энергии // Докл. АН СССР.—1984.—279, № 2.— С. 404—407. 5. Полуэктов Н. С., Мешкова С. Б., Коровин Ю. В. Возбуждение люминесценции иона натербия путем внутримо переноса энергии // Также Внутримо переноса за предоставление променесценции иона натербия путем. Внутримо переноса за предоставления по предоставления предоставления
- иттербия путем внутримолекулярного переноса энергии // Там же.— 1983.— 273, № 6.— С. 1422—1424.
- 6. Tanaka Fujio, Kawasaki Yoshiko. Preferential solvation of the europium (III) ion in water-non- aqueous solvent mixtures. A luminescence lifetime study // J. Chem. Soc. Faraday Trans.— 1988.— Pt I.—84, N 4.— P. 1083—1090.

 7. Haas Y., Stein G. Pathways of radiative and radiaationless transitions in europium (III) // J. Phys. Chem.—1971.—75, N 24.— P. 3677—3681.

- (111) // J. Phys. Chell.— 1971.— 75, № 24.— Р. 3077—3001.

 8, Chrysochoos J. Secondary fluorescence quenching of Eu³⁺ in organic solvents // Chem. Phys. Lett.— 1972.— 14, № 2.— Р. 270—273.

 9. Термодинамические аспекты сольватации ионов лантанондов иттриевой группы в водно-органических средах / В. Ф. Сафина, Ф. В. Девятов, Ю. И. Сальников, С. Г. Вульфсон // Тез. докл. XVII Всесоюз. Чугаев. совещ. по химии комплекс. соедичества минут 1000. И. С. 202 нений. — Минск, 1990. — Ч. 2. — С. 223.
- Борина А. Ф. Сольватация празеодима (III) в водно-диметилсульфоксидных растворах // Журн. неорган. химии.— 1988.— 33, № 7.— С. 1696—1701.
 Лугина Л. Н., Давиденко Л. К., Яцимирский К. Б. Исследование сольватации нона
- неодима в водно-диметилсульфоксидных и водно-диметилформамидных растворах
- пеодима в водно-диметильульфоксидных и водно-диметилформамидных растворах спектральным методом // Там же.— 1973.—18, № 10.— С. 2735—2740.

 12. Химический энциклопедический словарь.— М: Сов. энциклопедия, 1983.— С. 533.

 13. Munakata M., Kitagawa S., Miyazima M. Classification of solvents based on their coordination power to nickel (II) ion. A new measure for solvent donor ability // Inorg. Chem.—1985.—24, N 11.— Р. 1638—1643.
- 14. Vavruch I. Lösemitteleffekte und Lösemittelauswahl // Chem. Lab. und Betr.— 1984.—
- 14. Vavruch 1. Losemittelettekte und Losemittelauswam // Спеть. Lab. und Bett.—1904.—35, N 11.— S. 536—538, 541—543.

 15. Коппель И. А., Паю А. И. Реакционная способность орг. соединений.—Тарту: Изд-во Тарт. ун-та, 1974.—11, № 1(39).—С. 121

 16. Stolarová M., Buchtová M., Bekarék V. Solvent polarity parameters and their mutual interrelations // Acta Univ. palack. alomuc. Fac. rerum natur. Chem.—1984.—79, N 23.— Р. 77—88.

 17. Русакова Н. В., Мешкова С. Б. Селективное люминесцентное определение неодима в комплексах с окрашенными реагентами // Журн. аналит. химин.—1990.—45.
- комплексах с окращенными реагентами // Журн. аналит. химии. 1990. 45, в комплексах с ок № 10.— С. 1914—1921.

Физико-хим. ин-т АН Украины, Киев

Поступила 23.04 91

УДК 541.49+54-143:546.31

В. Д. Присяжный, А. Н. Дорошенко, И. М. Петрушина

ЭЛЕКТРОПРОВОДНОСТЬ РАСПЛАВОВ БИНАРНЫХ СИСТЕМ ТИОЦИАНАТ ЩЕЛОЧНОГО МЕТАЛЛА — КРАУН-ЭФИР

Измерена температурная и концентрационная зависимости удельной электропроводности расплавов бинарных систем тиоцианат щелочного металла - краунэфир (дибензо-18-краун-6, 18-краун-6, бензо-15-краун-5) в области составов 0,5—1,0 мол. доли краун-эфира. Изотерма электропроводности расплавов тиоцианат калия — 18К6 линейная, а для других систем (18К6 — тиоцианат натрия, рубидия и дезия) наблюдается область постоянных значений (0,5—0,7 мол. доли краун-эфира) и последующее уменьшение проводимости. При заданной температуре и составе электропроводность убывает в ряду 18К6, Б15К5 и ДБ18К6.

Свойства и строение комплексных соединений краун-эфир — соль описаны достаточно подробно [1, 2], однако основное число работ посвящено свойствам и строению растворов комплексных соединений или структуре их кристаллов. Сведения о свойствах и строении расплавов

С В. Д. Присяжный, А. Н. Дорошенко, И. М. Петрушина, 1992