пористость углей, ПОЛУЧАЕМЫХ ИЗ ФЕНОЛФОРМАЛЬДЕГИДНЫХ ПОЛИМЕРОВ РАЗЛИЧНОЙ ПРИРОДЫ

Л. С. Иванова, С. Л. Грабчак, И. В. Яковлева, Н. В. Васильченко, В. А. Струпинский

С целью получения углеродных адсорбентов с направленно регулируемой пористой структурой для сорбции крупных органических молекул необходимо изучить влияние состава исходных сырьевых материалов, используемых в синтезе угля, и процесс формирования пористой структуры углей на стадии высокотемпературной активации.

Известно [1], что фенолформальдегидные смолы используются для получения активных углей различной пористости. Однако влияние природы фенолформальдегидных полимеров на особенности формирования микро- и особенно мезопористой структуры полученных на их основе

углеродных адсорбентов не изучалось.

В зависимости от соотношения фенола и формальдегида, используемых катализаторов и рН среды образуются два типа продуктов поликонденсации фенола с формальдегидом: новолачные и резольные смолы [2]. Новолачные смолы можно рассматривать как смесь линейных полимеров, содержащих не более шести фенольных ядер [2]:

В случае резольных смол образуются макромолекулы пространственного строения [3]:

Чтобы выяснить влияние природы исходных фенолформальдегидных полимеров на сорбционную способность угля, в работе были использованы два образца промышленных фенолформальдегидных смол: новолачная смола СФ-011 (отношение фенола к формальдегиду 1:1; катализатор — щавелевая кислота); резольная смола К-6 (отношение фенола к формальдегиду 1:1,3; катализатор — гидроксид натрия).

Для получения угля-сырца фенолформальдегидную смолу обугливали при ограниченном доступе воздуха, а после карбонизации измельчали, рассеивали и отбирали для работы фракцию 0,25—0,5 мм. Приготовленные образцы угля-сырца подвергали высокотемпературной активации при 750-950° с одновременным воздействием газо- или парообразным активирующим агентом — углекислым газом или смесью углекислого газа и водяного пара, как в работе [4].

Основные параметры пористой структуры полученных образцов углей определяли из изотерм адсорбции и десорбции паров метилового спирта, снятых на пружинных кварцевых весах при температуре 20° (табл. 1, 2). Согласно полученным данным, промышленные фенолформальдегидные полимеры могут быть использованы для получения угле-

Таблица 1 Условия получения и структурные характеристики активированных углей, синтезированных из фенолформальдегидных полимеров

Условия активации			Структурные константы		Объем пор, см³/г		S _{уд} , м²/г	
<i>t</i> , °C	Активи- рующий реагент	τ,ч	$W_{\mathfrak{g}}$, см $^{\mathfrak{s}}$ /г	B · 10€	Микро	Мезо	По метилено- вому спирту	По метилено- вому голубому
				Полимер	СФ-011			
	_		0,11	1,61	0,12	0,03	280	
750	CO_2	9	0,15	0,40	0,14	0,02	320	55
850	CO_2	9	0,17	0,68	0,15	0,03	360	77
850 950	CO ₂	$\frac{5}{4}$	0,22	0,92	0,22	0,08	570	116
950	CO ₂	9	0,32	1,14	0,28	0,07	810	335
750	$\frac{\text{CO}_2}{\text{вод} \cdot \text{пар}}$	$\frac{5}{2,5}$	0,19	0,84	0,18	0,01	430	76
850	<u>СО₂</u> вод • пар	$\frac{5}{2,\overline{5}}$	0,48	2,13	0,42	0,05	730	574
	•			Полиме	p K-6			
_		_	0,09	1,10	0,09	0,04	250	104
750	CO_2	9	0,16	0,70	0,17	0,02	410	98
850	CO_2	9	0,16	1,30	0,19	0,02	400	_
850 950	CO_2	$\frac{5}{4}$	0,19	2,42	0,21	0,07	480	
950	CO_2	8	0,19	1,83	0,15	0,05	800	572
750	$\frac{\mathrm{CO_2}}{\mathrm{вод.\ пар}}$	$\frac{5}{2,5}$	0,34	2,11	0,28	0,12	830	566
850	СО ₂ вод. пар	$\frac{5}{2}$	0,48	2,00	0,36	0,15	1190	562

Таблица 2 Сорбция органических молекул на активированных углях из фенолформальдегидных полимеров

Сор	бция красителей,	Mr/r	Адсорбция органических кислот, ммоль/г					
Конго красный	Метиленовый голубой	<i>п-</i> Нитрозоди- фениланилин	Мочевая	Глутаминовая	Молочная	Масляная		
		По	лимер СФ	-011				
2,5	_	0,00	0,03	0,03	0,25	0,30		
4,4	22,5	0,00	0,02	0,04	0,40	0,30		
4,5	31,5	2,00	0,02	0,09	0,23	0,35		
	47,5	14,50	0,09	0,36	0,50	1,70		
6,5	137,0	14,50	0,34	0,52	0,93	1,95		
3,0	31,0	9,80	0,04	0,15	0,33	0,83		
11,5	234,0	15,80	0,66	0,49	1,00	1,97		
		Π	Голимер К	-6				
3,8	42,5	0,00	0,05	0,05	0,23	0,25		
3,8	40,0	13,00	0,10	0,22	_	1,55		
5,3	190,0	11,80	0,32	0,24	0,65	1,93		
15,0		20,60	0,32	0,24	0,48	1,90		
-	233,5	20,00	0,57	0,20	0,50	<u>.</u>		
6,5	231,0	17,90	0,57	0,42	0,63	2,20		
13,0	230,5	17,90	0,57	0,39	1,00	1,97		

Примечание. Порядок образцов углей в табл. 1 соответствует приведенному в табл. 2.

родных адсорбентов с достаточно широким диапазоном изменения пористости и удельных поверхностей ($W_{\rm o}$ — от 0,09 до 0,48 см³/г и $S_{\rm yg}$ — от 250 до 1190 м²/г). Увеличение степени активирования приводит к росту объема микропор, которые изменяются от 0,09 до 0,42 см³/г. Константа B, характеризующая косвенным образом размеры микропор угля, возрастает с увеличением температуры активирования от 0,40× $\times 10^{-6}$ до 2,13·10⁻⁶, то есть в процессе активирования образуются микро- и супермикропоры. При температуре активации 850—950° увеличивается объем мезопор, а для полимера K-6 развитие мезопористой структуры наблюдается при смешанной активации углекислым газом, а затем водяным паром. Скорость реакции взаимодействия углерода с водяным паром примерно на 30—35 % выше скорости реакции взаимодействия углерода с углекислым газом [5], поэтому для создания идентичных условий активацию водяным паром вели меньшее время.

Состав исходного полимера существенно влияет на пористую структуру активированных углей. Так, использование полимера с макромолекулой пространственного строения (полимер К-6) позволяет получать активированные угли, при прочих равных условиях, с более развитой пористостью и большей удельной поверхностью. Более того, при активировании смесью углекислого газа и водяного пара в сорбенте обнаруживается заметный объем мезопор.

В табл. 1, 2 приведены сравнительные данные измерения удельных поверхностей синтезированных адсорбентов по метиловому спирту и красителю метиленовому голубому (кинетические диаметры соответственно 4,6 и 17,6 Å [6, 7]). Доступность поверхности углей для большого органического иона (метиленовый голубой) значительно больше у адсорбентов, полученных на основе пространственного полимера K-6, чем линейного СФ-011.

На синтезированных образцах активированных углей была изучена также сорбция органических молекул с различной молекулярной массой (красителей — конго красного 697 М, метиленового голубого 374 М, *п*-нитрозодифениланилина 274 М), поскольку сорбционная очистка сточных вод бумажных фабрик от красителей является весьма важной научно-технической задачей [7]. Не менее важно поглощение молекул с биологической активностью — мочевой кислоты — 168 М, глутаминовой 147, молочной 90, масляной 88 М (табл. 2).

Из табл. 2 видно, что по мере прогрессирующего активирования, роста сорбционного пространства (структурной константы W_0 , табл. 1) увеличивается сорбция практически всех изученных органических молекул. Наиболее отчетливо это проявляется в случае углей из полимера K-6. Анализируя свойства активных углей на основе полимеров K-6, можно видеть, что величина сорбции больших молекул красителей изменяется симбатно структурной константы B, характеризующей размеры микропор угля. Величины сорбции органических кислот лучше коррелируют с константой W_0 .

Полученные данные свидетельствуют о том, что использование для синтеза углеродных адсорбентов фенолформальдегидных полимеров с макромолекулой пространственного строения (К-6) позволяет получить на их основе активированные угли, наиболее пригодные для сорбции больших органических молекул. Углеродные адсорбенты, полученные при высокотемпературной активации углекислым газом (850—950°) или активацией углекислым газом, а затем водяным паром, по большинству показателей превосходят промышленные адсорбенты.

^{1.} Исследование пористой структуры неактивированных углеродных адсорбентов из промышленных типов фенолформальдегидных смол / Т. Г. Плаченов, Л. Б. Севрюгов, М. Я. Пулеревич, В. Ф. Карельская.— Журн. прикл. химии, 1970, 43, № 1, с. 97—101.

^{2.} Петров Г. С., Рутовский Б. Н., Лосев И. П. Технология синтетических смол и пластических масс.— М.; Л.: Госхимиздат, 1946.—547 с.

^{3.} Барг Э. И. Технология синтетических пластических масс.— Л.: Ленгосхимиздат, 1954.—655 с.

- 4. Дрожалина Н. Д., Булгакова Н. О. Пористая структура торфяных активированных углей, полученных методом активирования парогазовой смесью.— Журн. прикл. химни, 1974, 47, № 1, с. 162—166.
- 5. Федосеев С. Д. Кинетика параллельно-последовательных реакций процесса взаимодействия углерода с водяным паром и двуокисью углерода.— Химия твердого топлива, 1972, № 5, с. 70—76.
- 6. Справочник химика.— М.; Л.: Химия, 1964.— Т. 2. 1100 с.

Институт физической химии им. Л. В. Писаржевского АН УССР, Киев

Поступила 09.03.83

УДК 541.183.5

ВЗАИМОДЕЙСТВИЕ Со-ФОРМЫ РАЗЛИЧНЫХ СУЛЬФОКАТИОНИТОВ С ПАРАМИ ВОДЫ

Н. В. Гороховатская, И. Д. Атаманенко, Е. Г. Сивалов

Одной из важных задач при изучении связи между ионообменными и сорбционными свойствами ионитов является выяснение характера взаимодействия их с молекулами растворителя. Количественной мерой его поглощения служат изотермы сорбции. Использование спектроскопических и радиоспектроскопических методов при изучении сорбционных процессов дает возможность установить природу взаимодействия сорбирующихся молекул с сорбентом.

В настоящей работе при исследовании взаимодействия паров воды с ионообменными смолами помимо сорбционного были использованы методы колебательной и электронной спектроскопии.

Объектами исследования были кобальтовые формы гелевых сульфокатионитов с 4 и 20 % дивинилбензола (ДВБ) (КУ-2-4, КУ-2-20) и макропористых КУ-23 (20/50) и КУ-23 (15/100), содержащих соответственно 20 и 15 % ДВБ и синтезируемых в присутствии 50 и 100 % *н*-гептана от веса стирола. Исследуемые солевые формы готовили исходя из водородных, способ получения которых описан в [1]. Изотермы сорбции снимали при 293 К на весовой сорбционной установке по методике, описанной в [2, 3]. Вакуумирование образцов перед началом сорбции проводили при температуре 373 К в течение 45—50 ч до установления постоянства их массы. Для всех образцов была определена удельная поверхность в сухом состоянии по тепловой десорбции азота [4], значения которой для Со-формы КУ-2-4, КУ-2-20, КУ-23 (20/50) и КУ-23 (15/100) соответственно равны 0,2, 0,3, 0,5 и 37,0 м²/г.

На рис. 1 приведены изотермы сорбции паров воды Со-формой сульфокатионитов, вид которых указывает на полимолекулярный характер сорбции. Наиболее крутой подъем изотермы при низких относительных давлениях наблюдается для образца KУ-23 (15/100). Величина сорбции на гелевом катионите KV-2-4 и макропористом KV-23 (20/50) до $P/P_S \approx 0,2$ практически одинакова. С повышением давления величина сорбции на слабосшитом гелевом катионите KV-2-4 возрастает сильнее, чем на KV-23 (20/50).

По количеству поглощенных паров воды изотермы при различных относительных давлениях располагаются в следующем порядке:

$$\begin{split} P/P_S &< 0.2 - \text{KY-}23 \text{ } (15/100) > \text{KY-}2\text{-}4 \approx \text{KY-}23 \text{ } (20/50) > \text{KY-}2\text{-}20; \\ P/P_S &= 0.2 - 0.55 - \text{KY-}23 \text{ } (15/100) > \text{KY-}2\text{-}4 > \text{KY-}23 \text{ } (20/50) > \text{KY-}2\text{-}20; \\ P/P_S &> 0.55 - \text{KY-}2\text{-}4 > \text{KY-}23 \text{ } (15/100) > \text{KY-}23 \text{ } (20/50) > \text{KY-}2\text{-}20. \end{split}$$

Максимальное количество воды, поглощенной катионитами КУ-23 (15/100), КУ-2-4, КУ-23 (20/50) и КУ-2-20 при давлении насыщения, соответственно равно 65,98; 63,73; 49,81 и 20,99 ммоль/г или 16,61; 14,87; 12,42 и 5,59 Γ -моль/ Γ -экв.