УДК 546.72+620.193

ТИТАНИРОВАНИЕ СТАЛЕЙ В РАСПЛАВЛЕННЫХ ГАЛОГЕНИДНЫХ СМЕСЯХ

В. И. Шаповал, Л. И. Зарубицкая, В. В. Нерубащенко, Г. П. Довгая

Ранее нами было проведено сравнительное изучение стационарных потенциалов и потенциалов анодного растворения сталей и титана в расплавах КС1—NaCl с различной концентрацией хлоридов титана и фторидов [1]. Измерения показали, что потенциалы анодного растворения и стационарные потенциалы сталей сдвигаются в положительную сторону при введении в расплав хлоридов титана и небольших количеств фторидов. Очевидно, это свидетельствует о пассивации стальных образцов, об образовании на их поверхности защитной пленки. Для проверки этого предположения нами исследована коррозия образцов сталей марок Сталь-3 и 12X18Н9Т в галогенидных титансодержащих расплавах.

Образцы из стали одинаковой площади (10 см²) на стальных подвесках погружали в тигель с расплавленной солевой смесью, над которой продувался осушенный и очищенный от кислорода аргон. Тигель помещали в терморегулируемую ячейку. Исследования вели при температуре $700\pm2^\circ$. После выдерживания образцов в солевых смесях различного состава в течение 0,5-6 ч их отмывали от расплава, сушили и взвешивали. В большинстве случаев вес стальных образцов оставался без изменения или возрастал. Визуально поверхность образцов была ровной и блестящей с цветами побежалости. Рентгенофазовым анализом (метод отражения, установка ДРОН-1) с использованием Fe, K_α -излучения установлено, что поверхность стального образца насыщается интерметаллидами титана состава FeTi, Fe₂Ti или смесью FeTi+Fe₂Ti. При исследовании образцов в отраженном свете с помощью металлографического микроскопа MUM-8M(\times 350) было замечено, что покрытия сплошные и равномерные по всей поверхности.

Интерметаллидные соединсния титана с железом образовывались в широком диапазоне концентраций хлоридов титана различной степени окисления (2, 3, 4), растворенных в смеси KCl—NaCl и в таких же расплавах с добавлением фторидов. Расшифровка рентгенограмм показала, что фазовый состав поверхности титанированных стальных образцов из хлоридных и хлоридно-фторидных расплавов различный [2]. Покрытия, полученные из хлоридно-фторидных расплавов, более плотны и мелкокристалличны, чем из чисто хлоридных расплавов. Это объясняется большей комплексообразующей способностью смешанных хлоридно-фторидных расплавов по сравнению с хлоридными.

Нами были определены значения стационарных потенциалов и потенциалов анодного растворения стальных образцов с интерметаллидными покрытиями и без них. Образцы стали в виде проволоки сначала покрывали интерметаллидами, а затем измеряли э. д. с. по отношению к Ag/AgCl электроду сравнения образцов с покрытиями и без них в расплавленных галогенидных солевых смесях. Аналогично были сняты на потенциостате Π -5848 i-v-кривые анодного растворения двух видов образцов. По этим кривым определены потенциалы анодного растворения. Для всех составов электролитов установлена одна и та же закономерность: величины стационарных потенциалов и потенциалов анодно-

го растворения сталей с интерметаллидными покрытиями возрастали на 30—100 мВ по сравнению с таковыми для образцов без покрытия. При выдерживании образца с интерметаллидным покрытием в расплавленной эквимолярной смеси КСІ—NaCl покрытие постепенно растворялось, что проявлялось в уменьшении разности потенциалов пары образец — Ag/AgCl электрод сравнения. Со временем потенциал достигал величины, характерной для необработанного образца. Данные табл. 1

Таблица 1 Изменение стационарных потенциалов образцов из стали во времени в расплаве KCI—NaCI

τ, ч	Э. д. с., В		
	Сталь-3	12×18H9T	Сталь-3 (с пок- рытием)
0,5 1,0 5,0	0,635 0,660 0,680	0,575 0,608 0,670	0,535 0,575 0,650

иллюстрируют изменение э. д. с. во времени для трех видов стали в расплавленной солевой смеси KCl—NaCl при температуре 700°. Стационарный потенциал стали-3, покрытой интерметаллидом, приближается к таковому для стали-3 без покрытия после выдерживания образцов в расплаве KCl—NaCl в течение 5 ч.

Таблица 2 Коррозионная устойчивость образцов из стали 12X18H9T в расплаве KCl—NaCl

<i>T</i> , °C	т, ч	Δ, Γ	τ, г/дм²·сутки
	С покр	ытием	
700 680	2 6	0,135 0,202	16,2 8,08
	Без пок	рытия	
700 680	2 6	0,300 0,820	36,0 32,8
Примечание. коррозии.	∆-—уменьшени	е веса образцог	в; <i>v</i> —скорость

Образцы из стали, покрытые интерметаллидной пленкой, показали более высокую (в 2—3 раза) коррозионную устойчивость в высокотемпературных средах по сравнению с необработанными образцами. Результаты гравиметрических коррозионных испытаний, приведенные в табл. 2, подтверждают защитные антикоррозионные свойства интерметаллидной пленки на сталях. Покрытые интерметаллидом стали могут быть рекомендованы для получения коррозионностойких материалов.

Институт общей и неорганической химии АН УССР, Киев

Поступила 17.03.83

Исследование влияния F- ионов на потенциалы титана и некоторых марок сталей в хлоридных титансодержащих расплавах/В. И. Шаповал, Л. И. Зарубицкая, В. В. Нерубащенко, Г. П. Довгая.— Укр. хим. журн., 1980, 46, № 6, с. 575—579.
Новицкая Г. Н., Зарубицкая Л. И., Шаповал В. И. Исследование фазового состава

Новицкая Г. Н., Зарубицкая Л. И., Шаповал В. И. Исследование фазового состава и микроструктуры поверхностей титанирования сталей.— Хим. технология, 1981, № 5, с. 57—58.