через циклическое переходное состояние (ЦПС):

$$RH + H2SO5 - \begin{bmatrix} R \cdots & H \cdots & 0 \\ 0 & S & 0 \end{bmatrix} - ROSO3H + H2O,$$
 (6)

в котором мостиковым лигандом служит ОН-группа, а образующаяся связь R ... О вносит небольшой вклад в стабилизацию ЦПС. При этом первым продуктом должен быть алкилсульфат.

- 1. Рудаков Е. С. Первая стадия окисления насыщенных углеводородов металлокомплексами и окислителями в растворах.— Изв. СО АН СССР. Сер. хим. наук, 1980,
- вып. 3, с. 161—171. 2. $Py\partial a \kappa o s$ E. C., $Луцы \kappa$ A. M. Окислительная активация насыщенных углеводородов
- в сернокислотных средах под действием металлокомплексов и окислителей.— Нефтехимия, 1980, 20, № 2, с. 163—179.

 3. Рудаков Е. С., Волкова Л. К. Селективность и механизм взаимодействия алканов с окислительными системами (NH₄)₂S₂O₈ и (NH₄)₂S₂O₈ Ag+ в водных растворах. Докл. АН СССР, 1982, 263, № 3, с. 647—649.
- 9ах. Докл. АН СССР, 1962, 205, № 3, с. 647—649.

 4. Кинетика окисления алканов в водных растворах H₂O₂—Fe^{II} Fe^{III} / E. С. Рудаков, Л. К. Волкова, В. П. Третьяков, В. В. Замащиков.— Кинетика и катализ, 1982, 23, № 1, с. 26—33.

 5. Frommer U., Ullrich V. Hydroxylation of aliphatic compound by liver microsomes. III. Model hydroxylation reactions.—Z. Naturforsch., 1971, 268, N 4, p. 322—327.

 6. Olah G. A., Yoneda N., Parker D. C. Oxyfunctionalization of hydrocarbons. 4.
- HSO₃F SbF₅, FSO₃H, H₂SO₄ and HF induced electrophilic oxygenation of alkanes with hydrogen peroxide. J. Amer. Chem. Soc., 1977, 99, N 2, р. 483—488.

 7. Селективность растворения углеводородов в системе вода серная кислота / Е. С. Рудаков, А. И. Луцык, Н. А. Тищенко и др.— Докл. АН УССР. Сер. Б, 1982,
- № 6, c. 46—48.
- 8. Саука Я. Я., Блум А. Я. Образование озона в системе пероксидисульфат калия —
- серная кислота.— Изв. АН ЛатвССР. Сер. хим., 1966, № 6, с. 611—614. 9. *Рудаков Е. С.* Кинетический изотопный эффект, мостиковый лиганд и механизмы окисления алканов в растворах.— Докл. АН СССР, 1982, 263, № 4, с. 942—945.

Институт физико-органической химии и углехимии АН УССР, Донецк

Поступила 27.10.82

УДК 547.789+547.891.1

СИНТЕЗ ТИАЗОЛОВ ПО ГАНЧУ **ИЗ** 11-БРОМ-10,11-ДИГИДРОДИБЕНЗ[b, f]ТИЕПИН-10-ОНОВ

В. А. Ковтуненко, В. В. Ищенко, А. К. Тылтин, Ф. С. Бабичев

Гетероциклическая система 10,11-дигидродибенз[b, f]тиепина (Ia) лежит в основе обширной группы психотропных препаратов, среди которых наиболее известен нейтролептик «октоклотепин» [1]. Относительно малоизученными производными данной системы являются галогенкетоны (Іб и в). С целью синтеза биологически активных соединений нами исследовано поведение α-галогенкетонов Іб, в в условиях реакции Ганча. В качестве модельного соединения для отработки экспериментальных условий реакции использовали α -бром-(4'-хлорфенил) бензилкетон (II):

		Выход, %	<i>Т</i> пл, °С	R_f	Найдено, %	Брутто-формула	Вычислено, %		ИК-спектры, v см ⁻¹		
	Соединение								Тиазол I	Тиазол II	Электронные спектры $\lambda_{ ext{Makc}}$ ($\lg E$)
украинский химический	IIIa	67	101—102	0,37	Cl 12,31 N 5,09	$C_{16}H_{12}CINS$	Cl N	12,40 4,90	1600 (c)	1500 (c)	210 (4,3), 238 (4,2), 285 (3,9)
					S 11,21		S	11,22			
	IIIQ	52	119,5	0,68	Cl 10,23 S 9,18	$C_{21}H_{14}CINS$	Cl S	10,19 9,22	1590 (c)	1490 (cp)	209 (4,4), 250 (4,2), 325 (4,0)
	Шв	74	188—189	0,81	Cl 12,41	$C_{15}H_{11}CIN_2S$	Cl	12,36	1620 (c)	1525 (c)	212 (4,3), 242 (4,2), 320 (3,8)
					N 9,72		N	9,77			
	IIIr	48	239—241	0,77	N 9,72 S 22,90	$C_{15}H_{10}N_2S_2$	N S	9,92 22,71	1630 (cp)	1530 (c)	211 (4,3), 243 (4,4), 278 (3,8)*, 332 (3,6)
1 Журнал,	Шд	54	300—302	0,82	Cl 10,95 N 8,93 S 20,21	$C_{15}H_9CIN_2S_2$	N	11,18 8,84 20,24	1637 (c)	1530 (c)	212 (4,3)*, 221 (4,4), 245 (4,3), 282 (3,8), 341 (3,1)*
19											

I: $a - X = H_2$, $R = R^1 = H$; $\delta - X = O$, R = H, $R^1 = Br$; B - X = O, R = CI, $R^1 = Br$. III: $a - X - \text{нет связи}, R = Cl, R^1 = H, R^2 = Me; б - X - \text{нет}$ связи, R = Cl, $R^1 = H$, $R^2 = Ph$; в — X — нет связи, R = Cl, $R^1 = H$, $R^2 = NH_2$; r - X = S, $R = R^1 = H$, $R^2 = NH_2$; $\pi - X = S$, R = H, $R^1 = C1$, $R^2 = NH_2$.

По предлагаемой ниже методике α-галогенкетон II давал с соответствующими тиоамидами тиазолы Ша-в. В то же время, α-галогенкетоны Іб, в реагировали лишь с тиомочевиной, образуя конденсированные аминотиазолы IIIг, д (см. таблицу).

Попытки ввести в конденсацию с Іб, в тиоацетамид и тиобензамид, варьируя экспериментальные условия, оказались безуспешными. Доказательством того, что при реакции образовались именно тиазолы, служат данные ИК-спектров синтезированных нами веществ. Характеристичные колебания тиазольного кольца проявляются в двух областях $(1634-1570 \text{ и } 1538-1493 \text{ см}^{-1})$, которые называют соответственно: полосы поглощения «тиазол I» и «тиазол II» [2]. В согласии с литературными данными по частотам и по интенсивностям у соединений III а—в имеются соответствующие полосы поглощения (см. таблицу). В случае же препаратов III г, д указанные выше полосы наблюдаются при несколько больших частотах и, кроме того, в их ИК-спектрах можно достоверно идентифицировать деформационные колебания N—H связей при 1660 см-1. В полном соответствии с приписываемой структурой у соединений III в, д валентные колебания N—H связей аминогруппы наблюдаются при 3450 см-1.

Интересную информацию о тонкой структуре соединений III а—д предоставляют их УФ-спектры. Так, спектры препаратов III а-в значительно проще, чем спектры III г, д. Они содержат три полосы, причем средняя (вблизи 240 нм) относится к $\pi \to \pi^*$ -переходу в тиазольном кольце и наблюдается у родоначального соединения [3]. Если у тиазолов III а и в—д при добавлении кислоты наблюдается гипсохромный сдвиг длинноволновых полос поглощения, то спектр III б при этом не указывает на отсутствие основных свойств что последнего. Приведены исправленные значения температур ния. Температуры плавления определены на нагревательном столике «Boëtins» (ГДР).

Индивидуальность синтезированных веществ контролировали с помощью тонкослойной хроматографии (ТСХ) на пластинках с закрепленным гипсом силикагелем UV-254 «Лахема» (ЧССР). Для соединений III а, б элюат — смесь хлороформа и петролейного эфира (1:1), а для препаратов III в-д - смесь спирта с гексаном (95:5). ИК-спектры образцов сняты в таблетках с КВг на приборе «Specord IR-72» $(\Gamma \Pi P)$. Частоты приведены в см $^{-1}$. Для описания интенсивностей пиков приняты следующие сокращения: сл. — слабая, ср. — средняя, с. — сильная. У Φ -спектры образцов зарегистрированы для $5\times10^{-5}\,\mathrm{M}$ растворов в метаноле на приборе «Specord UV-VIS» (ГДР). Значения максимумов поглощения $\lambda_{\text{макс}}$ приведены в нм.

 α -Бром-4-хлорфенил бензилкетон (II). Қ раствору (4^I-хлорфенил)бензилкетона в хлороформе при нагревании и освещении фотолампой прибавляли по каплям эквимолекулярное количество брома. В качестве инициатора галоидирования применяли динитрил 2,2'-бис-азодиизомасляной кислоты. После прикапывания рассчитанного кодинитрия 2,2 -опс-азодиизомасляной кислоты. После прикапывания рассчитанного ко-личества брома реакционную смесь кипятили 30 мин, после охлаждения промывали раствором бисульфита натрия и водой. Хлороформ удаляли при пониженном давле-нии, остаток кристаллизовали из гексана. Выход 78 %; т. пл. 67—68,5° [4]. 11-Бром-10, 11-дигидродибенз [b, f] тиепин-10-он (16). Получен с 90 %-ным выхо-дом по методике, используемой для соединения П. Т. пл. 109—110° (из гептана) [5].

11-Бром-8-хлор-10, 11-дигидродибенз [6], f] тиепин-10-он (1в). Получен аналогично соединению II с 84 %-ным выходом. Т. пл. 167—168° (из пропанола-2) [6]. Общая методика синтеза тиазолов (III а — д). Смесь эквимолекулярных количеств α-бромкетона и соответствующего тиоамида (по 0,001 моля) кипятили с обратным холодильником в 50 мл абсолютного спирта не менее 10 ч. Конец реакции определяли с помощью ТСХ. Спирт удаляли при пониженном давлении, а остаток после прибавления 2N щелочи экстрагировали хлороформом. Органический слой промывали водой, сушили над безводным сульфатом натрия. После отгонки растворителя кристаллизовали соединение IIIa из водного пропанола-2, IIIв — из ацетонитрила, III6 из петролейного эфира, III д, г — из нитрометана.

1. Protiva M. Chemistry of dibenzo [b, f] thiepins and related systems as a basis of synthesis of potent psychotropic agents. — Lectures Heterocycl. Chem., 1978, 4, p. 1— 15.

2. Bassignana P., Cogrossi C., Gandino M. Infrared Spectra of some compounds with thiazole and oxazole rings. The C:N bond.—Spectrochim. Acta, 1963, 19, N11, p. 1885—1897.

 Metzger J. Zur theorie physikalicher und chemischer eigenschften des triazols.— Z. Chem., 1969, 9. N 3, S. 99—104.
 Jenkins S. S. The Grignard reaction in the synthesis of cetones. 4. A new method of preparing isomeric asymmetrical benzoins.—J. Amer. Chem. Soc., 1934, 56, N 3, p. 682—684.

5. Neurotrope und psychotrope substanzen, 17. 10-(4-methylpiperazino)-10, 11-dihydrodibenzo [b, f] thiepin und einige analoga/J. O. Jilek, E. Svatek, J. Metysova.—Collect., 1967, 32, N 9, p. 3186—3212.

6. Sindelar K., Holubek J., Protiva M. Noncataleptic neuroleptics: New approaches to

the synthesis of 2-chloro-10-(4-methylpiperazino) ani -10-[4-(2-hydroxyethyl)piperazino]-10, 11-dihydrodibenzo[b, f] thiepin.— Ibid., 1977, 42, N 12, p. 3605—3627.

Киевский государственный университет им. Т. Г. Шевченко

Поступила 04.01.83

УДК 547.944/945.832.1

ЦИАНИНОВЫЕ КРАСИТЕЛИ ИЗ ПРОИЗВОДНЫХ **ДЕЗОКСИВАЗИЦИНОНА**

С. В. Андрианова, К. Дильманова, Т. В. Ковтун, А. В. Стеценко

Из растения Peganum harmala L. было выделено два новых алкалоида [1]. Они оказались производными хиназолина: 2,3-дигидропирроло (2,1-b) хиназолин-9(1H)-он (дезоксивазицинон) (I) и 1,2,3,9-тетрагидро-пирроло (2,1-b) хиназолин (дезоксипеганин) [2]. Представляло интерес изучить реакционную способность метиленовых групп пирролидинового цикла дезоксивазицинона.

Сплавлением дезоксивазицинона [3] с этиловым эфиром *п*-толуолсульфокислоты приготовлена его четвертичная соль (II), которую использовали в цианиновых конденсациях.

В ИК-спектре дезоксивазицинона имеются интенсивные полосы при 1672 и 1616 см-1, которые были отнесены соответственно к группам C=O и C=N. Валентные колебания C=O-группы в этилперхлорате дезоксивазицинона наблюдаются при 1720 см-1. Такое большое смещение частоты С=О-группы связано с тем, что четвертичная соль в твердом состоянии содержит этильный радикал при N₄-атоме, поскольку в этом случае кратность связи С=О выше, чем в случае нахождения его при N_{10} -атоме. Это дает основание считать, что в цианиновых конденсациях принимает участие метиленовая группа С3-атома. Нами синтезированы симметричный (III) и несимметричные красители (IV—VII), мероцианин (VIII) и краситель-стирил (IX):