На термограмме германата никеля состава $NiO \cdot GeO_2 \cdot nH_2O$ проявляются два небольших экзотермических эффекта при 800 и 910° (рис. 4, a). Прокаленный при температуре ниже 800° этот германат не обнаруживает кристаллической структуры. Прокаливание при 850° приводит к появлению на дифрактограммах линий (рис. 4, б) ортогерманата никеля, а при 950° — дополнительных линий, присущих гексагональной модификации GeO2. Из образцов, прокаленных выше 800°, при их выщелачивании водой извлекается GeO_2 ; этого не происходит, если образец прокален при температуре менее 800°.

С учетом изложенного можно представить схему структурных превращений, происходящих при нагревании германата никеля состава NiO·GeO₂·nH₂O:

$$\begin{split} 2 \left(\text{NiO} \cdot \text{GeO}_2 \cdot n \text{H}_2 \text{O} \right) & \xrightarrow{100 - 700^\circ} 2 \left(\text{NiO} \cdot \text{GeO}_2 \right)_{\text{am}} \xrightarrow{800^\circ} 2 \text{NiO} \cdot \text{GeO}_{2_{\text{Kp}}} + \\ & + \text{GeO}_{2_{\text{am}}} \xrightarrow{910^\circ} 2 \text{NiO} \cdot \text{GeO}_{2_{\text{Kp}}} + \text{GeO}_{2_{\text{rekc}}}. \end{split}$$

Ортогерманат никеля Ni₂GeO₄ был ранее получен прокаливанием смеси оксидов никеля и германия [6]. Метагерманат $\cdot \mathrm{GeO}_2 \cdot n\mathrm{H}_2\mathrm{O}$, получаемый осаждением из водных растворов, описан здесь впервые. Термографические и рентгенографические исследования полученных германатов скандия $Sc_2O_3 \cdot 2GeO_2$ и титана $3TiO_2 \cdot$ ·2GeO2 подтвердили химическую индивидуальность этих веществ и достаточно высокую термическую устойчивость — при нагреве образцов до 1000° не наблюдается их разложения.

- 1. Лях О. Д., Любивая Р. И., Шека И. А. Определение состава соединений, образующихся при совместном осаждении различных веществ. Укр. хим. жури., 1975, **41**, № 9, c. 991—993.
- Шевченко Ф. Д. Расчет состава и прочности комплексов методом пересечения кривых.— Там же, 1965, 31, № 2, с. 229—232.
 Назаренко В. А., Лебедева Н. В., Равицкая Р. В. Метод отпределения германия в рудах, углях и промышленных отходах.— Завод. лаб., 1958, 24, № 1, с. 9—13.
 Labbe J. P. Préparation et structure des germanates métalliques.— Microchim. Acta,
- 1964, N 2/4, p. 298—316.

 5. Labbe J. P. Préparation et structure des germanates métalliques.— Annal. Chim., 1965, N 7/8, p. 317—344.
- 6. Зурначян А. К., Бабаян С. А., Бабаян Г. Г. Синтез и кинетика образования германатов никеля.— Арм. хим. журн., 1970, 23, № 12, с. 1074—1077.

Одесский политехнический институт Поступила 07.09.82

УДК 621.3.035.546.185

ВЗАИМОДЕЙСТВИЕ И РАСТВОРИМОСТЬ ДИОКСИДА ГЕРМАНИЯ В НЕКОТОРЫХ ФОСФАТО-ГАЛОГЕНИДНЫХ СИСТЕМАХ

Н. С. Слободяник, П. Г. Нагорный, Ф. Ф. Григоренко, Е. С. Луговская

Ранее было установлено, что взаимодействие расплавленного метафосфата натрия с диоксидом германия приводит к образованию сложного двойного фосфата натрия и германия, в то время как взаимодействие КРО3 с GeO2 не характеризуется образованием подобного соединения [1]. Интересно было изучить влияние добавок фторидов натрия и калия на взаимодействие и растворимость GeO_2 в соответствующих метафосфатах, а также их влияние на реакции взаимодействия диоксида германия с ортофосфатами щелочных металлов.

Взаимодействие GeO₂ в фосфато-фторидных системах изучали методом изотермического насыщения при температурах 900—1000° [2]. Насыщение систем диоксидом германия проводили 1,5—5 ч, периодически отбирали пробы жидких фаз и определяли содержание GeO₂ в них согласно методике [3], предварительно удалив из анализируемой пробы фторидные ионы [4]. Закристаллизованные пробы жидких фаз и отмытые твердые фазы подвергали рентгенофазовому анализу на приборе ДРОН-0,5 на медном излучении, скорость вращения образца составляла 4 град/мин. Отмытые твердые фазы анализировали, определяя содержание германия и щелочного металла по соответствующим методикам [3, 5], а также подвергали кристаллооптическому анализу на поляризационном микроскопе МИН-8. Для некоторых составов проводили хроматографические исследования согласно методике [6].

Данные определения содержания диоксида германия в жидкой фазе метафосфато-фторидных систем калия и натрия приведены в табл. 1. Взаимодействие диоксида германия в системах протекает довольно интенсивно, некоторые расплавы при этом как бы кипят, убыль массы в тиглях после окончания взаимодействия незначительна и не превышает 2-3%. Диоксид германия растворяется быстро. Для области составов NaPO₃/NaF = 40/60 мол.% отмечается максимум растворимости $\text{GeO}_2 - 36.8$ мас. %. С течением времени содержание GeO_2 в жидкой фазе уменьшается, а в твердую фазу выпадает тетрагерманат натрия $\text{Na}_2\text{Ge}_4\text{O}_9$.

Таблица 1 Растворимость GeO, в метафосфато-фторидных системах (в мис. %)

Система	т _{нас} , ч	Содержание МРО ₃ , мол. %								
		90	80	70	60	50	40	30	20	10
NaPO ₃ —NaF	1,5	12,9	16,4	23,7	23,8	23,8	36,8	28,8	18,9	
NaPO₃—NaF	5	16,8	19,8	24,8	26,2	28,7	28,8	21,6	25,6	29,9
KPO ₃ —KF	5	_	_	67,2	65,2	52,1	34,4	31,7	42,5	57,6

Для системы $KPO_3-KF-GeO_2$ приблизительно в этой области наблюдается минимум растворимости диоксида германия, а твердая фаза состоит практически полностью из тетрагерманата калия. Различие в растворимости GeO_2 в этих системах объясняется, очевидно, тем, что в системе $NaPO_3-NaF$ максимум растворимости попадает на область существования легкоплавкой эвтектики $[NaPO_3\cdot NaF]-NaF$, в то время как в системе KPO_3-KF в этой области существует соединение $2KF\cdot KPO_3$, плохо растворяющее образующийся $K_2Ge_4O_9$. Поэтому мы наблюдаем максимальное количество тетрагерманата калия в твердой фазе.

Рентгенофазовые и хроматографические исследования закристаллизованных жидких фаз показали, что по мере увеличения содержания фторида щелочного металла в жидкой фазе происходит деполимеризация полиметафосфатных цепочек $(PO_3)_n$ и образуются ди- и ортофосфатные ионы. Так, в жидких фазах смесей с начальным содержанием NaF 30 мол.% образуется $Na_4P_2O_7$, а PO_4^{3-} -ионы появляются при содержании NaF более 40 мол.%. Практически в жидких фазах смесей с содержанием NaF более 50 мол.% полиметафосфатные ионы отсутствуют, а есть смесь фторид-, ди- и ортофосфатных ионов.

Для системы KPO₃—KF—GeO₂ более характерным является стеклообразование. При содержании GeO₂ в жидкой фазе более 67 мас.% для составов с начальным содержанием KPO₃ 70 мол.% и выше, твердая фаза уже не образуется. Система даже при медленном охлаждении застывает в прозрачную стеклоподобную массу.

Таким образом, для метафосфато-фторидных систем натрия и калия, содержащих растворенный диоксид германия, наиболее характерным является образование соответствующих тетрагерманатов. Процесс термогидролиза с извлечением в газовую фазу НF, а также растворенного в расплаве GeO2, как и в системе LiPO3—LiF—GeO2, практически отсутствует [4].

Таблица 2 Растворимость GeO₂ в ортофосфато-галогенидных системах (в мас. %)

Система	t, °C	Количество МГ в системе, мол. %							
		90	80	70	60	50	40	30	20
NaCl—Na ₈ PO ₄	900	0,6	1,8	5,0	10,0	14,8			_
$NaF-Na_{3}PO_{4}$	950	42,5	41,3	50,6	50,9	47,0	48,6	47,4	44,9
Na F —Na $_3$ PO $_4$	1000	75,6	70,6	69,2	67,4	63,3	59,9	47,7	50,2
KF-K ₈ PO ₄	900	60,3	55,6	53,3	50,4	49,3	44,9	42,0	38,7

В ортофосфато-фторидных системах диоксид германия интенсивно взаимодействует с обеими компонентами системы (табл. 2). О взаимодействии с ортофосфатом говорит тот факт, что в системе Na₃PO₄— NaCl содержание GeO₂ в жидкой фазе увеличивается с ростом содержания в ней ортофосфата. Поскольку хлорид натрия является ингибирующим компонентом по отношению к диоксиду германия и практически не растворяет последнего, а в твердой фазе количество Na₂Ge₄O₉ продолжает увеличиваться, можно предположить существование взаимодействия проходящего по схеме

$$2Na_{3}PO_{4} + 4GeO_{2} \rightarrow Na_{4}P_{2}O_{7} + Na_{2}Ge_{4}O_{9}.$$
 (1)

Отсутствие дифосфата натрия в жидких фазах системы объясняется наличием процесса термогидролиза:

$$Na_4P_2O_7 + 2NaCl + H_2O \rightarrow 2Na_3PO_4 + 2HCl\uparrow.$$
 (2)

В ортофосфато-фторидных системах натрия и калия наблюдается взаимодействие GeO_2 с ортофосфатом и фторидом щелочного металла. Фторид щелочного металла, как болес легкоплавкий компонент системы, предпочтительнее для реакции взаимодействия, его химическая активность выше, что и сказывается на растворимости диоксида германия в системах.

Поскольку ортофосфаты щелочных металлов более тугоплавки, чем фториды, то введение их в систему приводит к уменьшению растворимости GeO2 в жидких фазах систем. В твердых фазах образуются соответствующие тетрагерманаты. Кривая растворимости, полученная при температуре ниже температуры плавления фторида щелочного металла, наглядно указывает на зависимость содержания GeO2 в жидкой фазе от температуры плавления данного состава. Для более легкоплавких средних составов системы Na₃PO₄—NaF получена и более высокая растворимость диоксида германия.

Таким образом, фосфато-фторидные системы натрия и калия можно с успехом применять как хорошие растворители диоксида германия, а также как среду для синтеза некоторых полигерманатов.

catchin — Germaniumsaure. — Z. Anal. Chem., 1959, 169, S. 145-153.

^{1.} Нагорный П. Г., Слободяник Н. С., Григоренко Ф. Ф. Изучение растворимости диоксида германия в расплавленных фосфатах щелочных металлов. — Вести. КГУ.

Хим., 1979, вып. 20, с. 22—25.

 2. Воскресенская Н. К., Кащеев Г. Н. Изучение растворимости искоторых оксидов металлов в расплавленных солях.— Изв. СФХА АН СССР, 1956, 27, с. 255—267.

 3. Wunderlich E., Gohring E. Mabanalytishe Bestimnungs des Germaniums des Brenz

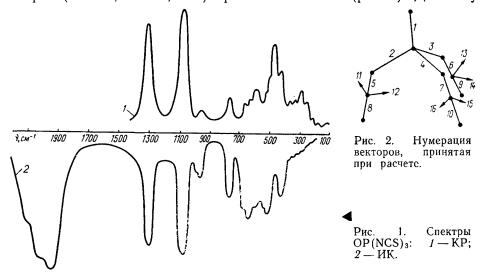
 1050 160 S 145—153

4. Слободяник Н. С., Нагорный П. Г., Скопенко В. В. Взаимодействие в системе _ LiPO₃ — LiF — GeO₂.— Докл. АН УССР. Сер. Б, 1980, № 1, с. 18—19.

5. Практическое руководство по неорганическому анализу/В. Ф. Гиллебранд, Г. Э. Лендсль, Г. А. Брайт и др.— М.: Химия, 1966.—867 с.
6. Хайс И. М., Мацек П. Хроматография на бумаге.— М.: Изд-во иностр. лит., 1962.—

Киевский государственный университет им. Т. Г. Шевченко

Поступила 06.12.82


УДК 535.34

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ ОКСИТРИИЗОТИОЦИАНАТА ФОСФОРА

В. Д. Хаврюченко, А. В. Синкевич, А. И. Брусиловец

При изучении колебательных спектров аддуктов окситриизотиоцианата фосфора с галогенидами некоторых металлов было установлено [1, 2], что эмпирическое отнесение частот колебаний OP(NCS)3, проведенное в работе [3], не всегда корректно. Поэтому нами осуществлен расчет колебательных спектров этого вещества в гармоническом приближении [4] по программе [5].

ИК-спектры OP (NCS)₃ регистрировали на приборах UR-10 и «Perkin—Elmer-325» в кюветах KBr и KRS-5 при 3000—200 см $^{-1}$, а спектры KP — на приборе $\mathcal{L}\Phi C$ -24 с возбуждением от He—Ne- и He—Cdлазеров ($\lambda = 632.8$ и 441.6 нм) при 1400 - 100 см⁻¹ (рис. 1). Для полу-

чения максимальной информации эти спектры были разложены на гауссовские составляющие по программе [6]. Обозначения колебательных координат в молекуле окситриизотиоцианата фосфора приведены в табл. I, а принятая при расчете нумерация связей — на рис. 2. Для каждого линейного участка задавались два перпендикулярных направляющих вектора с целью описания его деформационных колебаний [7].

Геометрические параметры для OP(NCS)₃ выбраны из фрагментов сходных молекул [8, 9]: $r_{\rm PO}$ =1,4599, $r_{\rm PN}$ =1,73, $r_{\rm NC}$ =1,20, $r_{\rm CS}$ =1,61 Å; \angle PNC=153°, углы при атоме фосфора приняты тетраэдрическими. В качестве единицы длины выбрана длина связи С—Н (1,09 Å), массы — спектроскопическая масса атома (1,088 ед.). Силовые постоянные родственных молекул (OPCl₂(NCO),