
a) the "SPRINT" program complex gives stable results for different grid densities and 
can be used for three-dlmenslonal calculation of the stress--strain state of ribbed GTE cas- 

ings; 

b) to obtain results accurate to within about 10%, the minimum grid density should be 
about 1/3 of the circumference in the annular direction and about 1/10 of the diameter of 
the shell in the axial direction; 

c) use of the method developed significantly reduces the amount of work necessary at 
the design stage and produces results with the required degree of accuracy. 

USE OF THE FINITE ELEMENTS METHOD TO CALCULATE THE 

STRENGTH OF CONICAL SHELLS WITH NOTCHES 

V. V. Kabanov and L. P. Zheleznov UDC 539.4 

There are serious mathematical difficulties in determining the stress--strain state of 
conical shells with notches, but these obstacles can be surmounted by using numerical 
methods. Mainly shells with small notches in the case of uniform loading have been examined 
in the well-known solutions of this problem. The stress-strain state has been assumed mo- 

mentless when the notches are large. 

The present study determines the moment stress--strain state of conical shells with 
notches of arbitrary size and form under complex loading. The problem is solved by the 
finite elements method in displacements. As the finite element we chose a curvilinear 
arbitrary tetragonal element of natural curvature (Fig. i) with 24 degrees of freedom. 

We are examining a conical shell of length L and thickness h with a cone angle y and 
radius Ro at x = xo. The shell is weakened by a notch with a radius r ffi r(~) and is loaded 
by a system of surface loads q,(x, y), local forces PZI, and moments Mii(y), as well as 
lineal contour forces PkI(Y) and moments Mkl(Y). The indices I = I, 2, 3 correspond to the 
directions of the axes x, y, z (Fig. i). 

We subdivide the shell into n parts along the boundary of the notch and into m parts 
along a llne connecting the contour of the hole with the outer contour of the shell (Fig. i). 
The shell is thus replaced by a set of mxnarbitrarytetragonal curvilinear elements of 

natural curvature. 

We approximate the displacements of points of a finite element with the polynomials 

+ ~2,n ~ + =2,n + =,, 

We write (I) as follows in matrix form: 

U = P~, (2) 

where P is a coupling matrix of order 3 • 24; u = u, v, w is the column vector of the dis- 
placements of points of the element; u = {ul, ..., us,} is the vector of the unknown coef- 

ficients of the polynomials. 

Using the solutions in [i], for the displacements, strains, and forces of a finite 

element, we obtain the expressions 

u = Pzu; Pz = PB-'; e = Au; T =De, (3) 
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Flg. i. Conical shell and its finite element. 

where 

e = {e., e,, ~., Xl. X,, X,}, 

T = { T , ,  T , ,  Ts ,  M 1 , M ,  Ms}  

are the vectors of the strains and forces of the finlte element; 

u = {u,, v,, w,, ~ , ,  w . ,  t~,~l, us . . . . .  r ~ / ,  uh . . . . .  ~ k  . . . . .  ~.} 

are the vectors of the nodal displacements of the finite element; B is a matrix of order 
24 x 24, the elements of which have the form 

b,s  = PlS, ~bzs = P,s,  b.s = P.s, b4s = (P.j)~, 

hal = (Psi)n,  b,.f ---- (PsJ)r a t  r ---- - -  1; 

"q = - -  1, b u  = Pi t ,  bs.f "~" Ps.f, baj = Pa.f, 

b,,oS = (P3S)~, b,lS = (P.J),,. b,.,s = (P,S)~,, 

at  ~ =  l ,  " q = - - l ;  b t s s = P z j ,  b14s=P~s, 

b,ss = PaS, bz,s = (P .sk ,  b , , s  = (P,S),,, 

O,.j=(pas~n at ~=--I. ~= I; 

b19J = ~lJ)' b2oJ = P2J, 021J = P3J, 

b,,s = (P.s)~, b,.s = (Pss),,. b,4s = (P3s)~,~, 

at ~ = 1 ,  "q=l  

(PlJ are elements of the matrix P; ~ and n in the indices denote differentiation). 

In contrast to the matrix presented in [i], the matrix A has the form 

(4) 

1170 



A =  

( )~ 0 0 

~(  ) ( h, ~.( ) 
X 

( )~  ( )~-~(  ) o 

0 0 --( )= 

o ~,( )~ ]- ( )~- ( h,~ 
X 

o 2~,()~--2~() -2(  )~+~ (  )~ 

k~ = I 
tgy ' 

w h e r e  x i s  t h e  c o o r d i n a t e  o f  a p o i n t  o f  t h e  e l e m e n t  f rom t h e  p o l e  
t h e  i n d i c e s  d e n o t e  d i f f e r e n t i a t i o n .  

We w r i t e  t h e  r e l a t i o n  b e t w e e n  t h e  x .  y c o o r d i n a t e s  and  
and n In the following form (Fig. i): 

x =  x(~,n); y =  y(L~),  

where in accordance with the data in [2] 

(5) 

of the cone; x and y in 

the curvilinear coordinates 

(6) 

(x I and Yl are nodal 

We represent 
follows 

where 

x (~, n) = f ,  (~, n) x ~ + f ,  (~, ~) x~+f~ (~, ~) x. ,+ , I 
+ f, (B, n) x,; y (L ~) = f,. (~, n) y, + I 

I +/:s CB, n) y, +/=~ (~, n) y~ + h (~, ,3) y,; 

I (1__B)(l__ll); ] h (~, ",0 = q -  [ 
I 

f ,  (B, n) = ~ ( ~  + ~) (~ - ~); } 

fs (B, "q) = + (1 --  B) (l -[- ~l); I 
h (B, n) = ~(l + B)(I + ~) I 

I 
coord ina tes ) .  

arbitrary functions f(~, n) with respect to the coordinates E and n as 

t' = GF'; l" = HF", 

f' = {h, / . } ;  r = {h~, h,~, f,~.}; 

r' = ff~. b}, F" = {f=, f~v, &.}; 

G=[x~ ;n=l x ~ 2x~, 
xnY~ x~x~ x ~ n  + ytx~ 

x = 2 ~ y  n r l  

(7) 

(8) 

(9) 

From (8) we flnd 

The elements of the 

F'= G-~f ' ;  F'= H - ~ .  

m a t r i c e s  G -1 a n d  H - x  a r e  e q u a 2  to  

(lo) 

g~1 = y~ /A;  g l s  = - -  y~/A; g l l - =  --x~/A; 

gls---- x~IA; hax = y~IAx; has = ~ 2y~y,/A1; 

As,  = - -  2x~x~lA1; Ass = - -  x~/A1; As 1 = 

= - -  y ,x~ lA1;  h~s = (x~y, + y~x~)lAx; Ax ffi A2; A = x ~ y ~ x n y ~ .  

(11) 
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We 

where 

obtain the devi atives xr and y~ from (6) with allowance for (7) 

xl = a,x, + btx, + ClX ~ "JC d~x~; ] 

xn = a~xl + b,x, + c,x s + d,x,; I 

I Yn = a~a "-}- b,y~ -Jr c~y. + d~y~, 

! 
a ,  = - -  "T" (1 --rl); 

c, = - -  1(1  +'q); 

a ,  = - - +  (l  - -  D; 

~ (l--n); b,= 7- 

d~ = 4/-(1 + ~l); 

(1 + D; b,= -- ~- 

= a, = { -0  + t) .  

Using (10), we obtain the nontr lv ia l  elements of the matrix A in the form: 
I---( ); 

a a , = g n (  ) ~ + g ~ , (  ),~; a , , =  x 

a,, = e,, ( )~ + g,, ( ).; a,, = ~ ( ); 

a,, = g,~ ( )~ + g,,  ( ),1; a,~ = g,1 ( )~ + 

+ e ~ , ( ) ,  - -  ~ ( ); ao, = - -  (h,1 ( )~ + 
X 

+ h , ,  ( )~,~ + h. ( ),m); a .  = ~, (g** ( )~ 

+ g, ,  ( )~); a6~ = - -  (h .  ( )u + h .  ( )~  

+ h,, ( )~ - ~ ( e .  ( )~ + e,, ( )~); ~ = 
x 

= - -  2 (h2, ( )e + h,2 ( )~, + h,s ( ).~.~ + 

+ g , ,  ( ),~-- ~ .  ( ) ) .  

expressions 

+ 

+ 

We write the of strain energy and the work of the external forces 
finite element: 

for the 

1 

where q={q,,q2,qs} is the vector of the external surface load; Rk = {Pk*, Pk a, Pks, 
Mks,}, Rl = {PZx, PZ2, PZa, MZ,, M~2, MZs} are vectors of the contour and local 
on the finite element; uh ---- {u,v,w, wB, w~,~n}; {I z = {u l, v l, wl, w~, wnz,~,it}. 

Introducing the new variables 

ds = I det O I d~d~l; dl -- I det O I dl, 

we obtain an expression for the total potential energy of the finite element 

l-I,---- W--U = +  S~ Tr8 [ det G, dSdll __ .I.I, qru I det O [ d~d~ _ f, ~T u~ I def G [ d/-- R~'" 

With allowance for (3), we _find 

I -::r (B-,)r ~ ~prArDAP l det [G][ d~d-qB-'u -- S S, qr p I det G I d~dTiB-'u-- S:R:PA ldet Ol d / B - l u - -  I1, = Tu 

(12) 

(13) 

(14) 

= aTK  - 

(15) 

Mk,, Mk~, 
forces acting 

(16) 

(17) 

(18) 
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where 

K :-= (B-5 T I Is PrArDAP I det O I d~d'gB-'; 

Q= l; qrp!detGId~dTIB-'; Q,,= I R~P;• 

• IdetOI dlB-~; (P,,hs = Pls; (Pt,),,s =P,s ;  

(P.),.I := P:,s, (P,,),.t = [ g n  ( )~. + g,2 ( )hi P,S; 

(p,,)~s = [g_. ( )~ + g2= ( ) j  p~s; (p,,),,s = 

= [h2z ( )~= + h,.,.., ( )~.,1 -6 h,,s ( ),, l] Pas, 

j = 1 . . . . .  24 

(19) 

((Pk)lj are elements of the matrix Pk ) . 

The nodal displacements u in the system of coordinates r and n are connected with the 
nodal displacements u in the system of coordinates x and y by the relation 

u = Cu, (20) 

where 

C = 

XI 0 0 0 

0 Xs 0 0 

0 0 X~ 0 

0 0 0 ~, 

;~,i = 

1 0 0  

0 1 0  

0 0 1  

! i 

0 

o 

(xE I, yl are derivatives of x and y with respect to ~ at point I of the finite element). 

By means of (20) we obtain 

where 

n ,  = + l ' K * u  - -  O;u - -  O;u. 

K* = CrKC; Q* = QC; Q~, = Q~,C; Q; = Q~C. 

(21) 

(22) 

Summing the potential energies of individual elements, we determine the potential 
energy of the shell. By varying the potential energy of the shell with respect to the 
nodal displacements, in accordance with the principle of possible displacements (6H = 0), 
as in [i] we obtain a system of linear algebraic equations of equilibrium to determine the 

displacements: 

Ku' =~, (23) 

whereK is the elastic stiffness matrix of the shell; u' and Q are vectors of the nodal dis- 
placements and nodal forces of the shell. 

The matrix K has a band structure and can be obtained by summing the elements of mat- 
rices K* with the use of the index matrix in [3]. We obtain the vector Q by summation of 
the vectors Q'=Q*~-Q~*+Q~*. System (23) is solved by the method of expanding the matrix 
into two triangular matrices. Having solved it, we find the vector u" and we use Eq. (3) 
to find all of the components of the stress--strain state of the shell. 

Example. To check the effectiveness of the finite element, we studied the stress-- 
strain state of a circular conical shell (length L = 20 cm, radius Ro = 13.4 cm, thickness 
h = 0.2 cm, cone angle y/2 = 0.647) weakened by a circular notch with a radius r = 2 cm and 
loaded by uniform longitudinal tensile forces N. 

Figure 2 shows the change in the stress concentration factors k, = oOc/O p, k2 = oSB/Op 
(~ OOB are the maximum stresses in the middle surface of the shell and the-bending stresses 
at the contour of the hole on the outside surface of the shell, Op = N/2~Roh) on the contour 
of the hole. The dashed line shows the results of the calculation in [4]. It can be seen 
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Fig. 2. Bending and membrane stress 
concentration factors at the contour 
of the hole. 
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Fig. 3 Fig. 4 

Dependence of the membrane stress concentration factor 
on the coordinate x. 

Fig. 4. Dependence of the error of the stress calculation on the 
number m. 

that there is satisfactory agreement. The concentration of the bending stresses is com- 
parable to the stress concentration in the middle surface of the shell. 

Figure 3 shows the decay of the maximum stress concentration in the middle surface of 
the shell from the contour of the hole (x = y/5r, with the origin of the coordinate y lo- 
cated at the hole contour). 

Figure 4 shows the dependence of the error of the stress calculation on the number of 
finite elements m for y/2 = 0.12. There is sufficiently good convergence with respect to 
the number m. 

The time of solution of the problem on a BESM-6computerwas about 40 min for m = 13, n = 14 
with a number of unknowns N= 1260 and a half-width of the shell stiffness matrix B = 96. 
Thus, the algorithm developed makes it possible to efficiently determine the stress--strain 
state of conical shells with notches. 
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