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UDC 539.3:629.7.036.3 

It is proposed that the finite elements method (FEM) be used in conjunction with the 
"SPRINT" program pack* to design the casings of gas-turbine engines (GTE), which are thin- 
walled shells reinforced by annular stiffening ribs -- rings -- subjected in service to con- 
centrated forces. 

The FEM is an approximate numerical method the accuracy of which depends on the design 
scheme, the density of the grid, and the quality of the finite elements (FE). The denser 
the grid, the more accurate the results obtained. However, such grids increase computer 
operating time and thereby increase machine errors and result in some loss in accuracy. At 
the same time, it is difficult to perform calculations with a large number of elements, and 
a large computer capacity is required. Subdivision into elements is usually done on the 
basis of cumulative experience and is checked in a repeat computation with a denser (or less 
dense) grid. 

The present work reports on numerical experiments conducted with a computer to determine 
the convergence, accuracy, and quality of calculations with different grid densities. For 
the structure shown in Fig. I seven variants of the claculation were performed. 

Planar rectangular elements were used to model the shells and ribs. Half of the shell 
was subdivided into 16 annular elements in the first variant and 48 such elements in the 
seventh variant, there being 16 and 30 elements in these variants in the longitudinal direc- 
tion, respectively (Fig. 2). The number of elements in the seventh variant represented an 
increase in the number of elements compared to the first variant by a factor of 5.4. 

Table i shows the width of the stiffness matrix band, the order of the system, and the 
computing time for all design variants. The computations were performed on an ES 1040 com- 
puter. 

*N. N. Shaposhnikov, V. B. Babaev, G. V. Poltorak, et al., Instructions for the SPRINT Program 
of Calculation of Combined Systems by the M~thod of Finite Elements, TsNllproekt, Moscow 
(1982). 
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Fig. i. Longitudinal section and 
loading scheme of shell. 

Moscow Aviation Institute. Translated from Problemy Prochnosti, No. 7, pp. 109-112, 
July, 1985. Original article submitted October 8, 1984. 

1166 0039-2316/85/1708-1166509.50 �9 1986 Plenum Publishing Corporation 



TABLE I. Main Parameters in the Solution 
of the System of Equations 

INo. of [No. of ITotal No, 
Inodes Inodes [ ~ /about circa] of nodes 

d ~ Icumfer- [along 
> lence laxls  

17 
25 
25 
33 
49 
49 
49 

16 
20 
30 
24 
20 
24 
30 

272 
5O0 
750 
792 
980 

1176 
I470 

Width 
of 
band 

120 
144 
204 
168 
144 
168 
204 

[Order 

OJsteTI 

1632 
3000 
4500 
4752 
5880 
7056 
8820 

Comput- 
Ing ume, 
rain 

12 
40 
67 
46 
60 
75 

120 

TABLE 2. 

No. of No. of 
varl- bode 
ant } 

I 16 
2 
3 
4 24 
5 20 
6 24 
7 30 

Displacement of Shell from the Load Px 

Displace- ~Ditptace-. I ' Displace- !l~isplace- 
~elnt?Jpng m amentlao/_Onffn ~ nNoOdeOf merit along X ment along Y 

4.555 2.595 144 1,547 0 7041 
4,867 2,654 260 1,861 0,6616 
4,952 2,677 390 1,922 0,6383 
4,991 2,676 408 1,978 0,6411 
4,970 2,661 500 1,984 O, 6522 
5,043 2,678 600 2,029 0,6370 
5.049 2.678 750 2.046 O. 6283 

Displace- / . 
meht alonz Z[No, ot  
axis 10-2 ~m I n~ 

0,8886 
0,8707 
0,6738 
0,8786 
0,8786 
0,8735 
0,8701 

272 
500 
750 
792 
980 

1176 
1470 

DtsDlaee- 
meht along 
axts 10"lcm 

8,626 
5,126 
4, 1682 
3,803 
4,0511 
3,0696 
3,0899 

'Displace- 
melat along Z 
axis 10 "~ ern 

I, 8532 
1,679 
1,605 
1,6076 
I. 6433 
1,5933 
1.5692 

TABLE 3. Displacement of Shell from the Load Pz 

'1~o. of [No oflDtsplace- Displace- tN~ ^f  Displace- IDisplaee- Displace- ~Jo. of Displace- Displace- 
vari- [node I "nental~176 " " "  mentalong~mentaiOngYmentalon~7_s mentalong~mentalongZ 
ant I I lxis 10 -1 cm axis. 10 "I err~ n~ axis 10-~ err axis 10"~cm axis 10 -4 cml n~ axqs 10 "s cm axis 10"4 cm 

I (16) 
2 (20) 
3 (3o) 
4 (24) 
5 (20) 
6 (24) 
7 1 (30) 

TABLE 4. 

8.914 
8.486 
8.490 
8.385 
8.288 
8.301 
8.344 

0,542 2 (144) 
o. 528 2 (270) 
o,529 3 (39o) 
O. 523 2 (408) 
0,517 2 (500) 
o,518 2 (Boo) 
0.519 2 (750) 

0.947 
1,571 
,772 
,805 

1,731 
1,875 
I. 93O 

1.785 
1,694 
1,660 
1.668 
1.695 
1,670 
1.658 

I 
I. 592 13 (272) 
i,555 13 (,5o0) 
1,547 13 (7,5o) 
1,541 13 (792) 
1,538 13 (980) 
1,534 13(1176) 
1.530 |3 (1470) 

Displacement of Shell from the Load My 

2.832 
2,168 
1.924 
1,899 
1,996 
1,831 
1.756 

3.918 
3.569 
3.425 
3.424 
3.484 
3.391 
3.340 

No of k, .IDisplace- [Displace- I., .IDisplace- /D i sp lace -  /Displace- . ,  . 
vai l-  [~~ 1 or [ment alon~ Xlment.alon~ ZI ~~ ~ alonR Xlment alonR ~rnent along Z I r~~ or 
_ant pone /axe, 10"lcmlarls  10 -z cml n~ la~|s ]0 -s cmlaxis 10 -s err]axis 10-4cm I n~176 

I 
1 1 (16) I 
2 1 (20) I 
3 1 (30) / 
4 1 (24) / 
5 i (2o) [ 
6 i (24) I 
7 1 (30) / 

2,694 0,882 
2,689 0,837 
2,911 0,835 
2,712 0,825 
2,584 0,811 
2,654 0,813 
2,713 0,808 

22 (144)1 1.294 2 (26o)1 1.211 
2 (390) I O, 936 
2 (408)/ 1.076 
2 (5oo)1 1.211 
2 (600)/ i,07a 

(750)| 0.934 

1,744 
2,148 
2,444 
2,168 
2,006 
2,074 
2,075 

3,613 
3,488 
3. 244 
3,407 
3,887 
3. 432 
3,337 

3 (272) 
3 (500) 
3 (750) 
3 (792) 
3 (980) 
3 (1176) 
3 (1470) i 

Dlsplace- IDisplaee- 
~nent along X~nent along Z 
axis 10 "s cmlaxfs 10 -4 cm 

TABLE 5. Displacement of the Top Generatrix from the Load Px 

No. of ]No. of 
variant inod e 

l l (6) 
2 1 (8) 
3 1 (13) 
4 l (I0) 
5 117> ~ 
6 1 ) 
7 I (131 

Displace- 
meht along X 
axis 10 "I cm 

2,690 
2,845 
2.879 
2.918 
2,954 
2.976 
2.989 

Displace- 
meht along Z 
axis 10 -2 cm 

2.897 
3,006 
3,059 
3,058 
3.030 
3,075 
3,091 

No. of 
node 

2 (9) 
2 (1 [) 
2(16) 
2 (13) 
2 (I l) 
2 (13) 
2 t16) 

Displace- 
ment along ) 
axis 10 "71 cm 

2,845 
3,008 
3,045 
3,085 
3,121 
3,144 
3,159 

IDisplace- I~,^ ^r 
[ment along Z . . . . . .  
axis 10 -2 em [node 

2,767 3 (16) 
2,629 3 (20) 
2,856 3 (30) 
3,855 3 (24) 
2.835 3 (20) 
2,857 3 (24) 
2.870 3 (301 

0,570 
0,616 
0.818 
0.706 
0.589 
0,699 
0,796 

Displace- 
meht along X 
axis 10"1 cm 

4,555 
4,867 
4.952 
4,991 
4.970 
5.043 
5.049 

0,603 
0.576 
0.588 
0.583 
0.567 
0.569 
0.577 

Displace- 
ment along L 
axis 10 -~ cm 

2.595 
2.654 
2.677 
2.676 
2.661 
2,678 
2.678 

The studies were done with the loads Px, Pz, and My (Fig. i). 

Tables 2-4 show calculated data from the seven variants of subdivision of the region 
into finite elements, i.e., values of the displacements at certain characteristic points. 
The numbers i, 2, 3 in the column headed "No. of node" respectively signify the points 
of intersection of the top generatrix of the shell with the ribs and the unfastened base of 
the shell. The numbers in parentheses show the numbers of nodes for different variants. 
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Fig. 2. Shell design scheme (the FE subdivision corresponds to the second variant). 

Fig. 3. Displacement of the top generatrix of the 
shell for variants Nos. i, 2, 4, and 5 as a result 
of the load Px" 

Figure 3 shows displacements of the top generatrix of the shell due to the vertical load 
for different grids. It is evident from Table 5, which shows values of these displacements, 
that the convergence is good with an increase in grid density. 

The following can be concluded from the data obtained: 
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a) the "SPRINT" program complex gives stable results for different grid densities and 
can be used for three-dlmenslonal calculation of the stress--strain state of ribbed GTE cas- 

ings; 

b) to obtain results accurate to within about 10%, the minimum grid density should be 
about 1/3 of the circumference in the annular direction and about 1/10 of the diameter of 
the shell in the axial direction; 

c) use of the method developed significantly reduces the amount of work necessary at 
the design stage and produces results with the required degree of accuracy. 

USE OF THE FINITE ELEMENTS METHOD TO CALCULATE THE 

STRENGTH OF CONICAL SHELLS WITH NOTCHES 

V. V. Kabanov and L. P. Zheleznov UDC 539.4 

There are serious mathematical difficulties in determining the stress--strain state of 
conical shells with notches, but these obstacles can be surmounted by using numerical 
methods. Mainly shells with small notches in the case of uniform loading have been examined 
in the well-known solutions of this problem. The stress-strain state has been assumed mo- 

mentless when the notches are large. 

The present study determines the moment stress--strain state of conical shells with 
notches of arbitrary size and form under complex loading. The problem is solved by the 
finite elements method in displacements. As the finite element we chose a curvilinear 
arbitrary tetragonal element of natural curvature (Fig. i) with 24 degrees of freedom. 

We are examining a conical shell of length L and thickness h with a cone angle y and 
radius Ro at x = xo. The shell is weakened by a notch with a radius r ffi r(~) and is loaded 
by a system of surface loads q,(x, y), local forces PZI, and moments Mii(y), as well as 
lineal contour forces PkI(Y) and moments Mkl(Y). The indices I = I, 2, 3 correspond to the 
directions of the axes x, y, z (Fig. i). 

We subdivide the shell into n parts along the boundary of the notch and into m parts 
along a llne connecting the contour of the hole with the outer contour of the shell (Fig. i). 
The shell is thus replaced by a set of mxnarbitrarytetragonal curvilinear elements of 

natural curvature. 

We approximate the displacements of points of a finite element with the polynomials 

+ ~2,n ~ + =2,n + =,, 

We write (I) as follows in matrix form: 

U = P~, (2) 

where P is a coupling matrix of order 3 • 24; u = u, v, w is the column vector of the dis- 
placements of points of the element; u = {ul, ..., us,} is the vector of the unknown coef- 

ficients of the polynomials. 

Using the solutions in [i], for the displacements, strains, and forces of a finite 

element, we obtain the expressions 

u = Pzu; Pz = PB-'; e = Au; T =De, (3) 

Novosibirsk. Translated from Problemy Prochnosti, No. 8, pp. 112-116, August, 1985. 

Original article submitted July 4, 1983. 

0039-2316/85/1708-1169509.50 �9 1986 Plenum Publishing Corporation 1169 


