- 7. Барвинок М. С., Бухарева И. С. Инфракрасные спектры гидразиновых комплексов с некоторыми солями переходных металлов.— Журн физ. химии, 1967, 41, № 3, с. 525—528.
- 8. Накамото К. Инфракрасные спектры неорганических и координационных соединений. — М.: Мир, 1966.—411 с.

Институт общей и неорганической химии АН УССР, Киев

Поступила 01.11.82

УДК 513.421:546.185.34.657:541.49

ИК-СПЕКТРЫ И СТРОЕНИЕ Двойного полифосфата лития— неодима

М. К. Родионов, Н. П. Евтушенко, И. С. Рез, В. И. Петренко

Кристаллы двойного полифосфата лития — неодима LiNdP₄O₁₂ (LNP) вследствие большой длительности свечения (135 мкс) при высокой концентрации активатора (Nd ~ 4,42 · 10²¹ см⁻³) и низкого порога возбуждения перспективны для создания минилазеров [1—4]. Однако исследованы эти материалы недостаточно полно. Необходимость детального изучения их очевидна, поскольку эксплуатационные характеристики лазерных материалов зависят от природы и симметрии центрального атома, структуры кристаллической решетки, а также наличия примесей и дефектов в ней.

Монокристаллы исследуемого состава LiNdP₄O₁₂ получают вытягиванием по методу Киропулоса из расплава [1, 5] и раствора в расплаве на затравку [6], а также сплавлением смеси соответствующих окислов [7, 8] при высокой температуре (600—950°). Рентгеноструктурным анализом установлено, что кристаллы LNP, полученные вытягиванием из расплава, относятся к орторомбической сингонии с пространственной группой $Imma(D^{28}_{2h})$ [1], а методом сплавления окислов — к моноклинной, пространственная группа $C_{2/c}(C^{6}_{2h})$ [2, 7].

В данной работе представлены результаты исследования ИК-спектров поглощения синтезированного комплекса состава LiNdP₄O₁₂ с целью уточнения локальной симметрии центрального атома, отнесения полос спектра по формам колебаний и выявления примеси молекул воды в решстке кристалла. Исследовали спектры поликристаллических образцов в виде таблеток с KBr, а также суспензии в вазелиновом масле. Монокристаллы LNP синтезировали по методике сплавления окислов лития, неодима, фосфора при высокой температуре [8]. Спектры снимали на спектрофотомстре «Спекорд 75-ИР» в области 4000—350 см⁻¹.

В полученном спектре обнаружено около 50 полос в области 1400—320 см⁻¹ (рис. 1), которые нами отнесены к внутренним колебаниям полифосфатной цепочки [(PO₃)₄]_∞ и оксохромофора [NdO₈]. Полосы спектра классифицировали на основании результатов теорегико-группового анализа спектра полифосфатной цепочки, проведенного в приближении C₁ локальной симметрии тетраэдрической группы [PO₄], и спектра додекаэдрической группы [NdO₈], проведенного в приближении C₂ ее позиционной симметрии.

Применение операций симметрии к додекаэдру $[NdO_8]$, у которого три оси второго порядка C_2 и две плоскости отражения σ_d (рис. 2), приводит к следующим нормальным колебаниям: $\Gamma = 4A_1 + A_2 + +2B_1 + 4B_2 + 5E$. Количество колебаний 3N-6=21 изолированной группы $[NdO_8]$ совпадает с числом колебаний полученного неприводимого представления Γ для додекаэдра D_{2d} . Корреляция колебаний додекаэдрической группы $[NdO_8]$ с ее позиционной симметрией C_2 в кристаллической решетке LNP [2] приводит к снятию вырождения колебаний Е-типа и оптической активности всех колебаний. Спектраль-

ные полосы этой группы идентифицировали по результатам сопоставления исследуемого спектра LiNdP₄O₁₂ со спектрами близких по структуре соединений, в частности: А — модификации окисла неодима Nd₂O₃ (пространственная группа D³_{3d} [9]) и полифосфатов неодима Nd(PO₃)₃ (додекаэдрическая конфигурация неодима [10]) и натрия Na₃(PO₃)₃ [11]. Сравнение ИК-спектров двух последних соединений

Рис. 1. ИК-спектр комплекса двойного полифосфата лития — неодима LiNdP4O12 (таблетки с KBr 0,1 вес.%).

Рис. 2. Додекаэдрическая D_{2h} симметрия оксохромофора [NdO₈].

позволило отнести полосы в области 500—250 см⁻¹ к колебаниям связей Nd—O, поскольку в этой области отсутствует поглощение в спектре соли натрия Na₃(PO₃)₃, для которой типичен ионный тип связи катион — анион. Отнесение экспериментальных полос к оксохромофорной группировке [NdO₈] представлено в таблице.

Позиционная симметрия C₁ каждого тетраэдра [PO₄] в решетке LNP [2] приводит к оптической активности всех его 3N-6=9 колебаний. Корреляционное (давыдовское) расщепление двух полифос-фатных цепей с периодом повторяемости четыре элементарной ячейки imes 9=72. При этом каждый тетраэдр $[PO_4]$ -решетки два атома кислорода отдает на образование структурных мостиков О-Р-О, а два концевых атома кислорода идут на координацию с неодимом **[**2]. Поэтому в каждой из четырех спектральных областей колебаний тетраэдра [РО4] [12] половину полос можно связать с колебаниями концевых связей (Р-О), и половину – с колебаниями мостиковых связей (Р-О)м. Предлагаемая интерпретация спектра полифосфатной цепочки согласуется с данными расчета нормальных колебаний фосфата иттрия [13, 14]. Результаты анализа спектра приведены в таблице.

В связи с тем, что в литературе имеются данные о влиянии примесей воды на величину квантового выхода люминесцентных центров лазерных материалов [15], мы исследовали наличие OH-групп в образцах LNP. Спектры исходных образцов, приготовленных в виде суспензии в вазелиновом масле, а также прокаленных таблеток с KBr в течение 3 ч при температуре 200°, не содержали полос кристаллизационной или сорбированной воды. Был определен также показатель преломления монокристалла LNP. Его величину находили по методу угла Брюстера на длине волны гелий-неонового лазера (6328 Å) с помощью гониометра СГ-5 с механическим модулятором. Полученное значение 1,634 \pm 0,002 несколько отличается от измеренного ранее

^ц асто та, см ^{—1}	Форма колебания
Тетраэдрическая [РО4]-группа	
1080	Валентное асимметричное связи v ₃ (P—O)
970	Валентное симметричное связи v1(P-O)
500	Деформационное асимметричное колебание мостика $v_4(O-P-O)$
360	Деформационное симметричное колебание мостика $v_2(O-P-O)$
Полифосфатная цепочка [(PO ₃)4] ω	
1320; 1280; 1258; 1235; 1220; 1178; 1174; 1135; 1125	Валентные асимметричные концевых связей vas (Р—О)к
1085; 1075; 1050; 1040; 1030; 1020; 1010; 995; 975	Валентные асимметричные мостиковых связей v _{as} (P—O) _м
910; 820; 795	Валентные симметричные концевых связей v _s (P—O) _к
755; 745; 725; 712	Валентные симметричные мостиковых связей vs(P—O)м
680; 665; 640	Деформационные асимметричные мостиков δ _{as} (O—P—O)
600; 575; 550; 540	Смешанные деформации связей (Р-О)к и (Nd-O)
415; 407; 402; 385; 375; 365; 355; 345; 340	Смешанные деформации связей (Р—О)к, (Р—О)м и (Nd—О)
Додекаэдрическая [NdO8]-группа	
505; 475; 455; 430; 415; 402; 385; 375; 365; 355; 345; 340	Валентные колебания связей v(Nd—O)

(1,58) [1, 7] для идентичного по составу монокристалла, что может быть связано с технологией и чистотой исследованных образцов.

Таким образом, теоретико-групповой анализ спектров синтезиро-ванного материала LiNdP₄O₁₂ позволил обосновать присущий этому классу соединений мультиплетный характер колебательных спектров и провести отнесение полос по формам колебаний. Спектральные данные (мультиплетность и контрастность линий) свидетельствуют о наличии в решетке асимметризованных тетраэдров [РО4], плотной их упаковке и ковалентном характере связей катион—анион. Технология синтеза кристаллов LiNdP₄O₁₂ позволяет избежать внедрения в решетку ОН-групп, негативно влияющих на длительность люминесцентного свечения.

- 1. Yamada T., Otsuka K., Nakano J. Fluorescence in lithium neodymium ultraphosphate single crystals. - J. Appl. Phys., 1974, 45, N 11, p. 5096-5097.
- 2. Hong H. Y.-P. Crystal structure of NdLiP₄O₁₂-Mat. Res. Bull., 1975, N 10, p. 635-640.
- Chinn S. R., Hong H. Y.-P., Pierel J. W. Minilaser of neodymium compounds. Laser Focus, 1976, 12, N 5, p. 64—69.
 Hong H. Y.-P., Chinn S. R. Influense of local-site symmetry on fluorescence lifetime
- in high-Nd-concentration laser materials.— Mat. Res. Bull., 1976, N 11, р. 461—468.
 5. Lutz F., Huber G. Crystal for high optical gain В ки.: VI Международная кон-ференция по росту кристаллов. Москва, 1980: Расш. тез., т. З. Рост из расплавов и высокотемпературных растворов. Методы. Материалы. М., 1980.
- Nakano J., Suqiik K. Crystal defects in laser material LiNdP₄O₁₂.— J. Cryst. Growth., 1981, 53, N 2, p. 375—381.
- 7. Spectroscopy and laser oscilation properties of lithium neodymium tetraphosphate, IEEE / K. Otsuka, T. Yamada, M. Saruwatari, T. Kimura.—J. Quantum. Electron., 1975, GE-11, N 7, p. 330-335.
- 8. Спектральнолюминесцентные исследования кристаллов MNd (PO₃)₄ / А. В. Лавров, В. И. Ральченко, Н. И. Павлова, А. Г. Склезнев. — Изв. АН СССР. Неорган. материалы, 1980, 16, № 8, с. 1462—1465.

- 9. Юрченко Э. Н., Кустова Г. Н., Бацанов С. С. Колебательные спектры неорганических соединений. — Новосибирск : Наука, 1981.—140 с.
- 10. Hong H. Y.-P. Crystal structures of neodymium meta-phosphate (NdP₃O₉) and ultraphosphate (NdP₅O₁₄). — Acta Cryst., 1974, **B30**, p. 468—474.
- Физико-химическое исследование двойной системы из метафосфатов натрия и свинца / И. В. Мардиросова, Э. В. Полетаев, В. М. Шпакова, Г. А. Бухалова. — Изв. АН СССР. Неорган. материалы, 1974, 10, № 4, с. 667—669.
- 12. Накамото К. Инфракрасные спектры неорганических и координационных соединений. — М. : Мир, 1966.—410 с.
- 13. Лазарев А. Н., Маженов Н. А., Миргородский А. П. Оптические колебания кристалла YPO4 и его аналогов. Резонансные расшепления колебаний сложных анионов.— Изв. АН СССР. Неорган. материалы, 1978, 14, № 11, с. 2107—2113.
- 14. Ambruster A. Infrared reflection studies on the phosphates arsenates and vanadates of lutetium and itterium. J. Phys. Chem. Solids. 1976, 37, N 3, p. 321—327.
- 15. Влияние воды в стекле па тушение люминесценции редкоземельного активатора / Е. Г. Бондаренко, Е. И. Галант, С. Г. Лунтер, А. К. Пржевуский, М. Н. Толстой. — Оптико-мех. промышленность, 1975, № 6, с. 42—44.

Киевский

политехнический институт

Поступила 11.10.82

УДК 667.044.661.862.241.8

ИК-СПЕКТРЫ И ОСОБЕННОСТИ СТРОЕНИЯ ГИДРОСИЛИКАТОВ КАЛЬЦИЯ, КРИСТАЛЛИЗУЮЩИХСЯ В СИСТЕМЕ Na₂O—CaO—SiO₂—H₂O

В. В. Руденко, В. Ф. Шабанов, А. С. Костенко

Для теоретического обоснования нового гидрохимического способа [1] нами были изучены взаимодействия в системе Na₂O—CaO—SiO₂— —H₂O (температура 320°, молярное отношение CaO:SiO₂=2:1, концентрация щелочи 40—160 г/дм³ по Na₂O). При этом получены осадки, состав которых определяли методами рентгенофазового и химического анализов. Установлено, что осадки представляют смеси гидросиликатов кальция, по рентгенофазовым характеристикам весьма сходные с соединениями, описанными в работах [2—6].

В названных работах отсутствуют полные кристаллохимические сведения об этих соединениях, а рентгеноструктурные данные (сингония, пространственная группа) часто противоречивы. Приведены в основном формулы соединений в виде общего молярного состава, что не отражает структуру кристалла или хотя бы строение аниона и природу кристаллогидратной воды. Это затрудняет проведение кристаллохимической классификации полученных нами гидросиликатов кальция. Поэтому для более глубокого изучения фазового состава осадков в исследуемой системе нами был выполнен анализ их ИК-спектров поглощения в широком интервале частот — от 4000 до 400 см-1. Образцы осадков, обозначенные в порядке возрастания концентрации исходного раствора по Na₂O, готовили прессованием таблеток смеси КВг с 2 % исследуемого вещества. Для проверки воспроизведения спектрограмм из каждого осадка отбирали несколько проб. ИК-спектры пропускания снимали на двухлучевом инфракрасном спектрофотометре ИКС-14А (рис. 1). Рентгенограммы всех исследуемых осадков были получены на дифрактометре ДРОН-0,5 (рис. 2). Частоты полос поглощения идентифицированных соединений и их отнесение к типам колебаний приведены в таблице. Наличие полос поглощения СО32обусловлено адсорбцией некоторого количества атмосферной углекислоты в процессе приготовления исходных растворов. По характеру качественных изменений спектральных и рентгенофазовых данных, а следовательно, по появлению тех или иных фаз в осадках, всю серию исследуемых образцов можно условно разбить на три группы.