Рассчитанная нами энергия активации несколько выше энергии для полимеризации кремневой кислоты — 16—17 ккал/моль [9] и близка к энергии активации роста граней (0001) кварца — 22 ккал/моль [10]. Это является еще одним подтверждением представлений [6] о природе полисиликатов натрия как промежуточных продуктов превращения аморфного кремнезема в плотное кристаллическое состояние — кварц, кристобалит.

Согласно [11], в основе гидротермальных фазовых превращений кремнезема лежит один и тот же молекулярный процесс — гидроксилирования — дегидроксилирования кремнезема. Его скорость и энергия активации зависят от реакционной среды, в частности от наличия активирующих агентов — гидроксильных ионов, катализирующих растворение, полимеризацию, поликонденсацию и фазовые превращения.

Применительно к структурообразованию в целом и образованию, в особенности, метастабильных кристаллических фаз силикатов и алюмосиликатов (цеолитов) в щелочных гидротермальных средах следует учитывать также важную кристаллохимическую роль катионов металлов, их специфическое сорбционное взаимодействие с кремнеземом (алюмокремнеземом).

- 1. Breck D. W., Flanigen E. M. Synthesis and properties of union carbide zeolites L, X
- and Y.— In: Molecular sieves. London, 1968, p. 47—61.
 2. Пирожков В. В., Мирский Я. В. Кинстические закономерности изотермической кристаллизации цеолитов. В кн.: Цеолиты и цеолитсодержащие катализаторы. Грозный, 1974, ч. 1, с. 16—22.
- 3. Жданов С. П., Самулевич Н. Н. Проблемы синтеза и кристаллизации цеолитов.-
- В кн.: Адсорбенты, их получение, свойства и применение. Л.: Наука, 1978, с. 10—15. 4. Колмогоров А. Н. Кинетика роста кристаллов в расплавах.— Изв. АН СССР. Сер.
- мат., 1937, № 3, с. 355—359.

 5. Еремин Е. Н. Основы химической кинстики.— М.: Высш. школа, 1976.—541 с.

 6. Ильин В. Г., Турутина Н. В. О кристаллических фазах, предшествующих образованию кварца в системе Na₂O SiO₂ H₂O.— Геохимия, 1974, № 4, с. 644—647.

 7. Киреев В. А. Краткий курс физической химии.— М.: Химия, 1974.—624 с.
- 8. Сакович Г. В. Кинетика разложения твердых веществ. Учеб. зап. Томск. ун-та, 1955, № 26, c. 103-108.
- 9. Iler R. K. Polymerisation of silicic acid: catalytic effect of fluoride. J. Phys. Chem.,
- 1952, 56, N 5, р. 680—683. 10. *Кузнецов В. А.* Кинетика кристаллизации корунда, кварца, цинкита.— В ки.: Гидротермальный синтез кристаллов. М.: Наука, 1968, с. 77—92.
- 11. Мицюк Б. М., Горогоцкая Л. И. Физико-химические превращения кремнезема в условиях метаморфизма. — Киев: Наук. думка, 1980. — 235 с.

Институт физической химии им. Л. В. Писаржевского АН УССР, Киев Поступила 24.10.82

УДК 541.183

ГИДРОТЕРМАЛЬНОЕ МОДИФИЦИРОВАНИЕ АЛЮМОТИТАНОВЫХ АДСОРБЕНТОВ РАЗНОГО СОСТАВА

В. М. Чертов, Т. Ф. Маковская

Бинарные окисные адсорбенты весьма перспективны для различных адсорбционных и каталитических процессов, поэтому разработка методов их синтеза, в частности изыскание способов воздействия на их пористую структуру, фазовый и химический состав [1-3], имеет важное значение. В пастоящей работе изучены закономерности гидротермального модифицирования алюмотитановых адсорбентов разного состава [4-6].

Исходные образцы Al₂O₃ — TiO₂ синтезировали методом соосаждения. К раствору, полученному смешением соответствующих объемов 1 М раствора азотнокислого алюминия и 0,5 М раствора четыреххлористого титана, медленно приливали при комнатной температуре и интенсивном перемешивании 3 M раствор аммиака. pH суспензии в конце осаждения для образцов, содержащих 75, 90, 95 и 100 мол. % TiO_2 , составлял 5, для остальных — 9. Более низкое значение pH осаждения образцов с большим количеством TiO_2 связано с тем, что гидроксид титана при pH < 5 сильно сорбирует ионы NH_4^+ , от которых она трудно отмывается [6]. Образовавшийся осадок тщательно промывали дистиллированной водой, отжимали на вакуум-фильтре, формовали и сушили

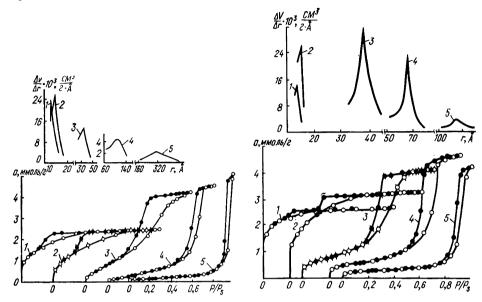


Рис. 1. Изотермы адсорбции паров бензола и кривые распределения объема пор по радиусам на образцах Al_2O_3 : TiO_2 =90:10, исходном (/) и гидротермально модифицированных в течение 6 ч при 100 (2), 200 (3), 300 (4) и 400° (5).

Рис. 2. Изотермы адсорбции паров бензола и кривые распределения объема пор по радиусам на образцах $A1_2O_3$: $TiO_2=10:90$, исходном (1) и гидротермально модифицированых в течение 6 ч при 100 (2), 200 (3), 300 (4) и 400° (5).

при комнатной температуре. Полученный таким способом ксерогель $TiO_2 - Al_2O_3$ подвергали гидротермальной обработке в автоклаве насыщенным водяным паром.

Величину удельной поверхности образцов S рассчитывали по методу БЭТ из изотерм адсорбции метанола, принимая его молекулярную площадку $\omega_{\text{СН}_3\text{OH}}=25$ Ų. Независимо от состава и текстуры изученных образцов величине сорбции, равной емкости монослоя, рассчитанной по БЭТ, соответствовало практически одно и то же равновесное давление пара метанола (p=4 тор). Это позволило провести сравнительное изучение образцов по величинам их поверхности, как широкопористых, так и микропористых, для которых S имеет формальный характер. Суммарный объем пор V_{Σ} рассчитывали по поглощению воды при пропитке ксерогеля, сорбционный объем V_s — по величине сорбции метанола при $p/p_s=1$. Эквивалентный диаметр пор d вычисляли по формуле $d=\frac{4V_s}{S}$.

Истинную плотность γ определяли пикнометрически по воде. Количество структурной (гидроксильной) воды n рассчитывали по потере веса при 4-часовом прокаливании при $900-950^{\circ}$ образцов, предварительно откачанных в течение 2-4 ч при 100° и давлении 10^{-3} тор (таблица,

рис. 1, 2).

Как видно из приведенных данных, гидротермальная обработка образцов с различным соотношением компонентов приводит к резкому и в общем монотонному уменьшению удельной поверхности с ростом температуры модифицирования. Величина S сокращается здесь при 400° на порядок. Для образцов всех составов в процессе обработки объем пор увеличивается в 1,5 раза, диаметр — более чем на порядок. Для

Al ₂ O ₃ . мол. %	<i>T</i> •, °C	S*, м²/Γ	V_{Σ} , cm ³ /Γ	V _S , см ³ /г	d, Å	γ, г/см³	$n, \frac{\mathrm{H_{2}O}}{\mathrm{\Sigma MeO}}$
100	20	371	0,26	0,27	29	2,51	2,14
	100	274	0,25	0,26	38	2,53	2,15
	150	3 06		0,36	47	_	
	200	199	0,38	0,39	78	2,90	0,85
	250	164	<u> </u>	0,34	95	_	_
	300	90	0,39	0,38	169		
	400	36	0,44	0,45	500	2,94	0,87
95	20	410 (373)	0,27	0,27	26	2,64	1,75
	100	343 (270)		0,27	31	2,82	1,55
	150	317 (300)		0,39	49	2,90	1,45
	200	223 (195)	0,39	0,39	70	3,16	1,00
	300	102 (90)	0,37	0,36	145	3,25	0,96
	400	50 (36)	0,39	0,39	312	3,23	0,87
90	20	442	0,27	0,28	24	2,82	1,72
	100	365		0,29	3 2	2,86	1,47
	150	241	_	0,39	65	3,11	1,14
	200	231	0,44	0,44	76	3,16	0,91
	300	91	0,43	0,42	189	3,27	0,91
	400	40	0,45	0,45	450	3,29	0,87
75	20	415	0,28	0,29	28	2,85	1,48
	100	337	<u></u>	0,29	34	2,93	1,40
	150	296		0,41	55	3,12	0,98
	200	209	0,44	0,45	86	3,24	0,72
	300	81	0,45	0,45	222	3,24	0,72 $0,72$
	400	42	0,45	0,43	448	3,35	0,72
50	20	557 (397)	0,36	0,37	27	2,75	0,77
00	100	555 (2 ⁶)	0,42	0,43	31	2,82	0,70
	150	401 (241)		0,48	48	2,94	0,65
	200	215 (156)	0,5?	0,52	98	3,16	0,45
	300	100 (91)	0,52	0,52	208	3,25	0,40
	400	56 (27)	0,52	0,52	364	3,23	0,44
25	20	559	0,32	0,34	24	3,15	0,44
	100	560		0,38	27	3,33	0,44
	150	48 3	0,38	0,39	34		
	200	186	0,38	0,39		3,37	0,37
					77	3,68	0,32
	300 400	102 61	0,35 0,35	0,34 0,35	137 23 0	3,78 3,86	0,21 0,19
10	20	497	0,29	0,29	23	3,47	0,36
	100	496	0,23	0,38	31	3,50	
	150		0,39	0,30			0,30
		233			69	3,69	0,21
	200	163	0,38	0,38	93	3,84	0,20
	300	89	0,37	0,35	162	3,83	0,14
	400	51	0,38	0,37	298	3,92	0,07
5	20	480 (426)	0,35	0,35	29	3,57	0,30
	100	324 (193)		0,41	51	3,54	0,24
	150	193 (166)		0,40	83	3,67	0,16
	200	136 (108)	0,43	0,41	124	3,81	0,15
	300	89 (92)	0,42	0,41	189	3,81	0,10
	400	47 (27)	0,44	0,43	374	3,96	0,07

Al ₂ O ₃ , мол. %	<i>T</i> ₀, °C	S*, м²/г	V_{Σ} , cm ⁸ /r	V_S , cm ⁸ /r	d, Å	ү, г/см ³	$n, \frac{H_2O}{\Sigma MeO}$
0**	20	430	0,36	0,36	3 4	3,61	0,22
	100	188	0,31	0,31	66	3,64	0,17
	150	157	0,3 3	0,30	84	3,71	0,16
	200	102	0,34	0,32	133	3,84	0,12
	300	92	0,39	0,39	170	3,85	0,05
	400	26	0,40	0,41	631	4,02	0,01

^{*} В скобках указаны аддитивные значения S; ** 100 мол. % TiO₂.

всех образцов суммарный объем пор совпадает с предельным сорбционным. С повышением температуры растет истинная плотность образцов, происходит их дегидратация (дегидроксилирование).

Анализ данных таблицы показал, что адсорбционно-структурные свойства алюмотитановых адсорбентов, например величина удельной поверхности, не являются аддитивной функцией соответствующих свойств индивидуальных компонентов. Эта неаддитивность увеличивалась с ростом температуры гидротермальной обработки T_0 . Так, для исходного и гидротермально модифицированного при 400° образцов $Al_2O_3 \cdot TiO_2$ величины S составляют соответственно 557 и 56 м²/г, а рассчитанные аддитивные значения $S_{\rm ag}$ — соответственно 397 и 27 ${\rm M}^2/{\rm r}$. Отклонение от аддитивности свойств бинарной системы в ходе ее гидротермальной обработки наряду с изменением плотности может указывать на химическое взаимодействие компонентов в гидротермальных условиях или их кристаллизацию [1]. Особенность алюмотитановой системы заключается в том, что по сравнению с индивидуальным компонентом TiO₂ уже малые добавки Al(OH)₃ к TiO₂ при 100° в гидротермальных условиях существенно замедляют сокращение величины S системы. Так, для адсорбента с 10 мол. % $\mathrm{Al_2O_3}$ удельная поверхность исходного и модифицированного при 100° образцов равна 497 и 496 м 2 /г, в то время как для TiO_2 — соответственно 430 и 188 м 2 /г. Это еще раз подтверждает отсутствие аддитивности свойств соосажденной системы.

Гидротермальная обработка обусловливает изменение формы изотерм адсорбции образцов от характерной для исходных микропористых к изотермам, присущим широкопористым сорбентам (из рис. 1 и 2). Как следует из кривых распределения объема пор по радиусам, синтезированные образцы отличаются однороднопористой структурой.

Таким образом, гидротермальное модифицирование алюмотитановых адсорбентов разного состава позволяет в широких пределах регулировать их пористую структуру. Синтезированы алюмотитановые образцы разного состава с удельной поверхностью 550—40 м²/г, объемом пор 0,3-0,5 см3/г и диаметром пор 24-450 Å.

- 1. Дзисько В. А., Карнаухов А. П., Тарасова Д. В. Физико-химические основы синтеза
- окисных катализаторов.— Новосибирск: Наука, 1978.— 384 с.
 2. Комаров В. С., Дубницкая И. Б. Физико-химические основы регулирования пористой структуры адсорбентов и катализаторов.— Минск: Наука и техника, 1981.— 336 с.
 3. Ермоленко Н. Ф., Эфрос М. Д. Регулирование пористой структуры окисных адсорбентов и катализаторов.— Там же, 1971.— 288 с.
- Маковская Т. Ф., Чертов В. М. Гидротермальное модифицирование бинарных окисных адсорбентов.— Докл. АН УССР. Сер. Б, 1979, № 9, с. 736—740.
 Чертов В. М., Зеленцов В. И. Гидротермальное модифицирование текстуры ксерогеля
- Al(OH)₃.— Укр. хим. журн., 1972, 38, № 5, с. 413—418. 6. Окопная Н. Т., Чертов В. М. Гидротермальное модифицирование двуокиси титана.—
- Коллоид. журн., 1976, 38, № 6, с. 1185—1187.

Институт физической химии им. Л. В. Писаржевского АН УССР, Киев Поступила 30.02.82