- 8. Добровольский В. Д., Каральник С. М. Изучение тонкой структуры К-спектра поглощения меди в медно-алюминиевых сплавах. В кн.: Металлофизика : Электронные свойства металлов и сплавов. Киев: Наук. думка, 1966, с. 97—105.
- тронные своиства металлов и сплавов. Киев: Наук. думка, 1966, с. 97-105.
 9. Caracterisation par spectroscopic infrarouse et Raman, de N-alkyl imidazolidines et des methylthio-2Δ2-imidazolines correspondantes/G. Mille, M. Guiliano G. Assef, J. Kister.— C. R. Acad. Sci., 1978, AB286, N 10, p. 105-108.
 10. Devillanova F. A., Verani G. Investigation spectroscopic infrarouse imidazolidin-2-thion and-2-selon.— J. Chem. Soc. Perkin Trans., 1977, pt 2, N 12, p. 1529-1531.
 11. libert T. Morgan Besearches on residual affinity and coordination. Dart XXX Comp.
- 11. Jilbert T. Morgan. Researches on residual affinity and coordination. Part XXX. Complex ethylenethio - carbamido - salts of univalent and bivalent metals. - J. Chem. Soc., 1928, N 1, p. 143-148.

Киевский технологический институт пищевой промышленности

Поступила 18 мая 1982 г.

УДК 548.312.3

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ СЛОЖНЫХ ОКСИДНЫХ ФАЗ СО СЛОИСТОЙ ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ

А. М. Сыч, Ю. А. Титов

Колебательные спектры соединений A₂B₂O₇ со слоистой перовскитоподобной структурой (СЛПС) исследовались в ряде работ [1-4]. Теоретико-групповой анализ колебаний кристалла A2B2O7 в представлениях фактор-группы пространственной группы C22-P21 выполнен в работе [2], однако в ней не описаны спектры. Спектроскопический расчет частот колебаний кристаллов Ca2Nb2O7 с использованием модели, включающей все структурно неэквивалентные октаэдры в элементарной ячейке, а также два атома кальция, проведен в [4]. Близость кристаллического строения и колебательных спектров известных соединений с СЛПС позволяет распространить результаты расчета на всю группу слоистых перовскитоподобных соединений.

Нагреванием шихты совместноосажденных компонентов были синтезированы новые сложные фазы с СЛПС: CaLaTiNbO7, SrLnTiNbO7 $(Ln=La, Pr), SrLnTiTaO_7 (Ln=La, Pr, Nd)$ [5], $La_4Ti_2B^{III}B^{V}O_{14}$ $(B^{III}=Ga, Cr, Fe, Sc; B^{V}=Nb, Ta), Pr_4Ti_2CrB^{V}O_{14}$ (B^V=Nb, Ta), $\dot{P}r_4Ti_2FeNbO_{14}$, $Nd_4Ti_2CrNbO_{14}$ [6], $La_4Ti_2B_{2/3}^{11}B_{4/3}^VO_{14}$ $(B^{II}=Mg, Zn;$ В^v=Nb, Ta) [7]. Рентгенограммы всех новых фаз с СЛПС индицируются в моноклинной и ромбической установках, однако данные иммерсионного анализа указывают на ромбическую сингонию. Наблюдаемый закон погасания приводит к одной из пространственных групп $Pna2_1 = C_{2v}^9$ либо $Pnam = D_{2h}^{16}$. Исследовав колебательные спектры сложных оксидных фаз с СЛПС, можно определить их некоторые структурные особенности.

ИК-спектры поликристаллических образцов в области 400-1000 см⁻¹ снимали на приборе UR-10 в таблетках из KBr, в области 200-400 см-1 на приборе «Perkin-Elmer-325» в таблетках из Csl, ИК-спектры при температуре жидкого азота сняты на приборе UR-20 с низкотемпературной приставкой. Спектры комбинационного рассеивания снимали на приборе ДФС-24 с возбуждением от He—Ne ОКГ $(\lambda = 632,82 \text{ нм})$ и He—Cd ОКГ ($\lambda = 441,60 \text{ нм}$).

ИК-спектры поглощения основных типов синтезированных фаз с СЛПС приведены на рис. 1. Инфракрасные спектры сложных оксидных фаз с СЛПС характеризуются меньшим числом наблюдаемых полос по сравнению со спектрами бинарных соединений с СЛПС, однако общая картина спектра сохраняется (см. рис. 1, табл. 1). Упрощение ИК-спектров можно объяснить в основном статистическим распределением вводимых заместителей в В- и в А-положениях СЛПС. Это подтверждается фактом увеличения степени упрощения спектра при увеличении степени замещения.

Спектры комбинационного рассеивания основных типов сложных оксидных фаз с СЛПС приведены на рис. 2, а значения частот в табл. 2. Они также аналогичны спектрам КР бинарных соединений с СЛПС, но содержат ряд дополнительных линий. При сопоставлении значений частот полос ИК- и КР-спектров сложных оксидных фаз с СЛПС наблюдается совпадение значений ряда частот спектров. Невыполнение правила альтернативного запрета, что ранее отмечалось

Рис. 1. ИК-спектры оксидных фаз с СЛПС: $1 - La_2 Ti_2 O_7$; $2 - Sr_2 Nb_2 O_7$; $3 - Sr_2 Ta_2 O_7$; $4 - SrLaTiNbO_7$; $5 - SrLaTiTaO_7$; $6 - La_4 Ti_2 GaNbO_{14}$; $7 - La_4 Ti_2 ScTaO_{14}$; $8 - La_4 Ti_2 \cdot Zn_{2/3} Ta_{4/3} O_{14}$.

Рис. 2. Спектры КР оксидных фаз с СЛПС: $1 - La_2Ti_2O_7$; $2 - La_4Ti_2GaTaO_{14}$; $3 - La_4 \cdot Ti_2GaNbO_{14}$; $4 - La_4Ti_2Zn_{2/3}Nb_{4/3}O_{14}$; $5 - La_4Ti_2Zn_{2/3}Ta_{4/3}O_{14}$; $6 - La_4Ti_2Mg_{2/3}Nb_{4/3}O_{14}$; $7 - La_4Ti_2Mg_{2/3}Ta_{4/3}O_{14}$; $8 - SrPrTiTaO_7$.

и для бинарных соединений с СЛПС [4], указывает на принадлежность сложных оксидных фаз с СЛПС к нецентросимметричной группе симметрии Pna2₁=C⁹_{2n}.

При анализе внутренних колебаний октаэдров BO_6 в сложных оксидных фазах с СЛПС использовали модель изолированных октаэдров с учетом резонансного взаимодействия трансляционно неэквивалентных октаэдров в элементарной ячейке. Схема корреляции между неприводимыми представлениями точечной группы симметрии свободных октаэдров (O_h), группой их локальной симметрии (C_s) и факторгруппой кристаллов полярной пространственной группы симметрии $C_{2}^9 v$ приведена в табл. 3. При фактор-групповом расщеплении в области внутренних колебаний октаэдров BO_6 должно наблюдаться 24 ИК- и 30 КР-активных полос поглощения, из них в области валентных колебаний — 10 ИК-активных и соответственно 12 КР-активных колебаний.

Сравнение результатов фактор-группового анализа с экспериментальными данными показывает, что число наблюдаемых полос в области внутренних колебаний октаэдров ВО₆ (900—200 см⁻¹) в 2— 3 раза меньше, чем возможных. Указаннос уменьшение числа полос в спектрах оксидных фаз с СЛПС вызвано значительным уширением полос, слабым фактор-групповым расщеплением, а также малой их интенсивностью, особенно в длинноволновой области спектра. В спектрах полученных фаз и соединений с СЛПС можно выделит: высокочастотную (900—500 см⁻¹), среднечастотную (500—200) и низ кочастотную (200—50) группы полос. Колебательные частоты в області 500—830 см⁻¹ в основном не зависят от характеристик атомов типа Aи могут быть отнесены к валентным колебаниям октаэдров ВО₆, чтс подтверждается спектроскопическим расчетом модели СЛПС [4]. Вы сокочастотная область ИК-спектров сложных оксидных фаз с СЛПС характеризуется наличием сильной широкой полосы при 600—700 см⁻¹ обусловленной в основном асимметричным валентным колебанием v_i октаэдров ВО₆. Высокочастотные компоненты этой полосы (790— 835 см⁻¹), характерные для простых соединений состава Ln₂Ti₂O (Ln=La—Nd), Ca₂(Sr₂)Nb₂O₇, Sr₂Ta₂O₇ (см. рис. 1), для сложных оксидных фаз практически не проявляются. Интенсивность полосы обусловленной асимметричным колебанием v_3 , при гетеровалентном замещении атомов титана в соединениях Ln₂Ti₂O₇ с СЛПС практически не изменяется.

Таблица 1

Колебательные частоты ИК-спектров основных типов оксидных фаз с СЛПС, см-1

La₂Ti₃O7	Sr ₂ Nb ₂ O7	SrsTa2O7	SrLaTiNbO,
810 сл. 760 ср. 625—630 с. ш. 550—560 с. ш. 493 сл. 465 ср. 400 ср. 380 сл. 350—370 сл. ш. 330 пл. 275 с. 255 сл. 235 о. сл. 225 ср. 212 о. сл.	860 о. сл. 852 о. сл. 830 с. 695—700 с. ш. 635—650 сл. ш. 575—590 с. ш. 525 ср. 475 сл. 445 ср. 420 ср. 350 с. 310 с. 265 сл. 245 с. ш.	855 о. сл. 835 ср. 700 пл. 625—630 с. ш. 575 ср. 450 ср. 420 сл. 355 с. 320 ср. 300 ср. 270 сл. 250 с.	750—800 п.л. 585—600 с. ш. 560 п.л. 370 ср. 340 п.л. 270 ср.
SrLaTiTaO,	La ₄ Ti ₂ GaNbO ₁₄	La,Ti2ScTaO14	La ₄ Ti ₂ Zn _{2/3} Ta <mark>4/3</mark> O14
750—800 пл. 600—620 с. ш. 500 сл. 365 ср. 250—280 сл. ш.	795 пл. 590—610 с. ш. 455 сл. 380—390 ср. ш. 340 пл. 225 сл. ш.	795 сл. 580—600 с. ш. 452 ср. 395 ср. 345—370 пл. 210—230 сл. ш.	790 пл. 730—750 пл. 595—620 с. ш. 455 ср. 375 ср. ш. 330—350 пл. 210—230 сл. ш.

Наиболее характерной чертой высокочастотной области спектров КР сложных оксидных фаз с гетеровалентным замещением атомов Ті в $Ln_2Ti_2O_7$ типа $La_4Ti_2B^{III}B^VO_{14}$ и $La_4Ti_2B^{II}B^VO_{14}$ является наличие вместо одной сильной полосы при ~ 800 см⁻¹ (v_1BO_8) дублета в области 700—850 см⁻¹. Следует отметить аномальное положение низкочастотной полосы дублета. Для Nb-содержащих фаз она лежит ниже по частоте, чем для Ta-содержащих фаз (рис. 2).

Указанные факты говорят об отличии в строении октаэдров ВО₆ Nbи Та-содержащих фаз с СЛПС состава $La_4 Ti_2 B^{ul} B^{v} O_{14}$ и $La_4 Ti_2 B^{u}_{2/3} B^{v}_{4/3} O_{14}$.

Колебател	льные част	оты спект	ров КР	основных	типов оксидн	ых фаз с	СЛПС, см ⁻¹
LagTisO,	Sr _s Ta _s O ₇	SrPrTiTaO,	La,TI,GaTaO,,	La,TI _s GaNbO ₁₄	La,TI,2Mg2/3Nb4/3O14	LatTI2Zn2/3Nb4/3014	La,T!,Zn2/3Ta4/3014
800	873	810	782	802	804	798	787
587	832	580	727	739	718	707	719
543	627	342	443	710	66 2	384	384
433	574	245	392	435	625	340	344
390	437	142	344	394	443	325	236
360	428	9 9	268	345	422	233	136
331	352	65	238	328	387	222	101
275	322	43	154	268	338	175	6 8
261	295		104	231	323	143	59
238	277		99	151	268	135	52
225	246		72		247	106	
212	207		63		220	98	
178	136		5 2		175	72	
145	115				145	56	
127	55				135		
109					109		
105					98		
87					72		
77					56		
63							
50							

Таблица 2 Колебательные частоты спектров КР основных типов оксидных фаз с СЛПС, см-

Таблица З

Фактор-групповой анализ внутренних колебаний октаэдров BO_6 в кристаллах типа $A_2B_2O_7$ ромбической сингонии с СЛПС

№ колебания		Группы симметрии ВО _в			
	Тип колебания	точечная О _ћ	локальная С _s	Фактор-группа С ₂₀	
v ₁	vs [KP]	A _{1g}	А' [ИК, КР]	А ₁ [ИК, КР]; В ₁ [ИК, КР]	
v_2	vas [KP]	Eg	А' [ИК, КР]	А ₁ [ИК, КР]; В ₁ [ИК, КР]	
			А" [ИК, КР]	А₂[КР]; В₂[ИК, КР]	
v_3	vas [ИК]	F_{1u}	2А′ [ИК, КР]	2A ₁ [ИК, КР] ; 2B ₁ [ИК, КР]	
			А″ [ИК, ҚР]	$A_2[KP]; B_2[UK, KP]$	
V4	δαs [ИК]	F_{1u}	2А′ [ИК, КР]	2A1 [ИК, КР]; 2B1 [ИК, КР]	
			А″ [ИК, КР]	$A_2[KP]; B_2[ИК, KP]$	
v_5	δ, [KP]	F_{2g}	2А' [ИК, КР]	2A1[ИК, КР]; 2B1[ИК, КР]	
			А" [ИК, КР]	$A_2[KP]; B_2[UK, KP]$	
V ₆	δая [н. а.]	F _{2u}	А' [ИК, КР]	Аı [ИК, КР]; Вı [ИК, КР]	
			2А" [ИК, КР]	2A2[KP]; 2B2[ИК, КР]	

Аномальное положение полосы дублета Nb-содержащих фаз по сравнению с аналогичными Та-содержащими фазами можно объяснить наличием аномальных длин связей Nb—O в октаэдрах NbO₆, то есть более сильным искажением октаэдров BO₆, чем у Та-содержащих фаз. Высокочастотная область спектра KP фаз состава A^IA^{II}TiB^VO₇ (A^I=Ca, Sr; A^{II}=La—Nd; B^V=Nb, Ta) с СЛПС характеризуется наличием одной сильной полосы в области 810—835 см⁻¹.

УКРАИНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ, 1983, т. 49, № 6

В среднечастотной области спектра КР фаз типа La₄Ti₂B^{II}B^VO₁₄ и La₄Ti₂B^{II}_{2/3}B^V_{4/3}O₁₄ в интервале частот 315—345 см⁻¹ для Nb-содержащих фаз, аналогично La₂Ti₂O₇, наблюдается дублет, низкочастотная полоса которого не проявляется в Та-содержащих фазах, что подтверждает вывод об отличии деталей СЛПС для Nb- и Та-содержащих оксидных фаз. В низкочастотной области спектра КР наблюдается большое количество полос, обусловленных в основном колебаниями решетки. В этой части спектра, согласно [4], должна находиться «мягкая мода» -коллективное нехарактеристическое колебание, соответствующее сегнетоэлектрическому фазовому переходу. Нами не выявлено заметных отличий в колебательных спектрах Sr₂Ta₂O₇, снятых при -196° (нецентросимметричная группа симметрии), от соответствующих спектров Sr₂Ta₂O₇ при комнатной температуре (центросимметричная группа симметрии). Это указывает на малые изменения в структуре соединений с СЛПС при переходе сегнетоэлектрик апараэлектрик, что согласуется с данными исследований других характеристик соединений с СЛПС [8].

Таким образом, колебательные спектры сложных оксидных фаз с СЛПС указывают на нецентросимметричную группу симметрии этих фаз аналогично простым соединениям типа A₂B₂O₇ с СЛПС. Гетеровалентное замещение A и B позиций в СЛПС приводит к статистическому распределению гетероатомов. Из анализа колебательных спектров также можно сделать вывод о большей степени искажения октаэдров NbO₆ в СЛПС сложных оксидных фаз по сравнению с аналогичными Ta-содержащими фазами.

- 1. *Klee W. E., Weitz G.* Infrared spectra of ordered and disordered pyrochlore-type compounds in the series Re₂Ti₂O₇, Re₂Zr₂O₇, Re₂Hf₂O₇.— J. Inorg. Nucl. Chem., 1969, 31, p. 2367—2372.
- 31, p. 2367-2372. 2. Ross S. D. The vibrational spectrum of monoclinic calcium pyroniobate.— Spectrochim. acta, 1976, 32A, N 6, p. 1331-1334.
- 3. Исследование структуры соединений Ln₂Ti₂O₇ (Ln=La, Pr, Nd) и фазы высокого давления Sm₂Ti₂O₇ методами колебательной спектроскопии/В. Н. Агафонов, В. А. Давыдов, Н. В. Поротников, К. И. Петров.— Журн. неорган. химии, 1979, 24, № 6, с. 1473—1477.
- 4. Колебания кристаллической решетки сегнетоэлектриков A₂B₂O₇ со слоистой структурой / С. Ю. Стефанович, Н. А. Захаров, Ф. Х. Чибирова, Р. Р. Шифрина.— В кн.: Физика и химия неорганических материалов. М.: НИФХИ им. Л. Я. Карпова, 1981, с. 23—43.
- 5. Сыч А. М., Титов Ю. А., Недилько С. А. Синтез и исследование соединений со слоистой перовскитоподобной структурой.— Журн. пеорган. химии, 1980, 25, № 8, с. 2056—2061.
- с. 2056—2061. 6. Сыч А. М., Титов Ю. А. Синтез новых слоистых перовскитоподобных сосдинений состава Ln₄Ti₂B^{III}B^VO₁₄ (Ln=La—Nd; B^{III}=Ga, Cr, Fe, Sc; B^V=Nb, Ta). — Там же, 1981, 26, № 4, с. 871—876.
- 7. Сыч А. М., Титов Ю. А. Синтез La₄Ti₂B¹¹_{2/3} B^V_{4/3} O₁₄ (B¹¹=Mg, Zn; B^V=Nb, Ta).-Там же. № 8. с. 1995—1999.
- Там же, № 8, с. 1995—1999. 8. Стефанович С. Ю., Захаров Н. А., Веневцев Ю. Н. Ссгнетоэлектрики А₂В₂О₇ со слоистой перовскитоподобной структурой.— М.: НИИТЭХИМ, 1978.—52 с. (Сер. «Научно-технические прогнозы в области физико-химических исследований»).

Киевский государственный университет им. Т. Г. Шевченко Поступила 21 сентября 1982 г.