ИССЛЕДОВАНИЕ ТЕРМИЧЕСКИХ СВОЙСТВ КРЕМНИЙОРГАНИЧЕСКИХ ПОЛИЭФИРУРЕТАНОВ

К. В. Запунная, В. П. Кузнецова, С. И. Омельченко

Модификация полиэфируретановых композиционных материалов кремнийорганическими полиолами позволила получить новые полимеры с хорошим комплексом физико-механических и защитных свойств [1].

В настоящей работе изучены термические свойства сшитых полиэфируретанов, модифицированных кремнийорганическим полиолом (ОФСД), с целью выявить влияние на них соотношения гидроксилсодержащих компонентов, избытка изоцианата и условий формирования. Исследовали полиэфируретаны, полученные на основе сополимера тетрагидрофурана и оксида пропилена (лапрол-1000) — м. м. 980, $n_D^{20} =$ =1,4602, 3 % ОН, олигофенилдиэтиленгликоксисилоксана (ОФСД) м. м. 800, $n_D^{20} = 1,5150$, 11,9 % ОН, аддукта триметилолпропана и смесн 2,4- и 2,6-толуилендиизоцианатов (65:35) — м. м. 900, 13,4 % NCO. Полиуретаны получали по методике, описанной в [1]. Состав, структурные характеристики и некоторые их свойства приведены в табл. 1.

Для спектральных исследований образцы готовили следующим образом. На поверхность пластинки из NaCl наносили разбавленные растворы композиций в смеси растворителей циклогексанона, этилацетата, ксилола и толуола в соотношении 3:3:2:2, которые отверждали при комнатной температуре в течение 15 сут до исчезновения NCO-групп. Полученные пленки вакуумировали до полного удаления растворителя. Затем образец помещали в обогреваемую ячейку, температуру равномерно повышали со скоростью 2—3 град/мин от 20 до 200°. Спектры снимали через каждые 20° на ИК-спектрофотометре UR-20. Перед сканированием температуру выдерживали постоянной в течение 15-20 мин. Скорость записи спектров составляла 160 см-1/мин в области 700-3700 см⁻¹ и 64 см⁻¹/мин в области 1600—1800 см⁻¹. Термогравиметрические измерения проводили на дериватографе системы «Ф. Паулик, И. Паулик, И. Эрдеи» в интервале температур 20-700° на воздухе при скорости повышения температуры 7 град/мин, используя навески 70--80 мг. Расчет кинетических параметров процесса разложения выполняли по методикам [2, 3].

Термическая стойкость полиуретанов, как и других полимеров, зависит от изменения физико-химических свойств, происходящего под влиянием температуры, в период, предшествующий разложению. Изменение структурных характеристик также необходимо знать для оценки температурной области работоспособности материала. С помощью метода ИК-спектроскопии сделана попытка качественно оценить изменения, происходящие в структуре полиуретанов при нагревании от 20 до 200°, когда еще не обнаруживаются потери массы.

ИК-спектры исходных полиэфируретанов с разным соотношением гидроксилсодержащих компонентов, отвержденных при 20°, приведены на рис. 1. Все спектры содержат полосы поглощения, характерные для уретановых (1540, 1710, 3320, 3440 см⁻¹), а также Si—O—Si, Si—O—C, C—O—C связей (1090—1020 см⁻¹). Поглощение карбонильных групп определяется широкой полосой с двумя максимумами при 1710 и 1730 см⁻¹, относящимися к связанным водородными связями и свободным С=O-группам в уретане соответственно. Область поглощения NH-групп характеризуется широкой полосой с максимумом 3320 см⁻¹, что соответствует поглощению NH-групп, связанных водородными связями, и плечом 3440 см⁻¹ — колебания свободных NH-групп [4]. В спектре полиуретана, полученного при эквивалентном соотношении гидроксилсодержащих компонентов, поглощение неассоциированных NH-групп определяется широкой интенсивной полосой в области 3440 см⁻¹ (см. рис. 1, кривая 2).

Таблица 1 Свойства полиуретанов, модифицированных ОФСД

Индекс полимера	Состав компози- ции ОФСД:лапрол	Температура отверждения, °С	Соотношение NCO:OH	М _{срасч}	к	онцентрация гр	упп, 10 ^{—3} моль	Относитель-	σ _p , κη (ε, %)		
					Уретановых	мочевинных	простых эфирных	метиленовых	ная твердость	20°	60°
I III IV V VI VII VII IX	50/50 50/50 50/50 25/75 25/75 75/25 75/25 100/0	100 100 20 100 20 20 20 100 100	1,75 1,5 1,25 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,25	2770 3020 3260 3634 3634 2737 2737 1480	3,0 3,32 3,2 3,32 2,8 2,8 3,6 3,6 3,6 2,7	0,42 0,32 0,18 0,32 0,29 0,29 0,29 0,36 0,36 2,30	2,4 2,2 3,2 2,2 4,0 4,0 1,6 1,6	20 23 26 23 29 29 29 16 16	0,74 0,60 0,55 0,60 0,63 0,60 0,60 0,60 0,60 0,98	428 (13) 360 (18) 313 (20) 370 (13) 203 (30) 167 (57) 450 (10) 350 (16) 666 (16)	248 (75) 150 (60) 145 (87) 133 (98) 107 (109) 107 (140) 143 (62) 291 (52)

•

Таблица 2

Результаты дериватографического исследования полиуретанов

Индекс полимера	Стадии разложения															
	1					2			3				4			
	Интервал темпера- тур, °С	Потеря массы, %	Е, кДж моль	n	Интервал темпера- тур, °С	Потеря массы, %	Е, кДж моль	n	Интервал темпера- тур, °С	Потеря массы, %	Е, кДж моль	n	Интервал темпера- тур, °С	Потеря массы, %	Е, кДж моль	n
I III IV V VI VII VIII IX	$\begin{array}{c} 240 - 365\\ 250 - 350\\ 260 - 340\\ 235 - 350\\ 250 - 380\\ 240 - 365\\ 120 - 240\\ 215 - 330\\ 140 - 250\\ \end{array}$	47 55 55 43 53,8 40 7 57,5 7	95,3 79,8 83,0 84,0 76,9 97,4 28,4 85,2 22 ,0	1,1 1,5 1,6 1,1 1,2 1,2 1,0 1,0 1,1	356-480 350-420 340-390 350-470 380-465 365-460 240-360 330-440 250-360	29 17,5 8,5 35 28,7 40 34 22,5 40	52,6 32,2 38,0 53,9 41,8 52,6 52,6 23,0 54,0	1,1 1,2 1,1 1,1 1,5 0,9 1,0 1,5 1,0	$\begin{array}{r} 480 - 640 \\ 420 - 580 \\ 390 - 465 \\ 470 - 660 \\ 465 - 600 \\ 460 - 640 \\ 360 - 480 \\ 440 - 600 \\ 360 - 560 \end{array}$	22 21,2 8,8 20 17,5 12 31 16,2 24	46,8 17,6 13,4 39,8 46,8 38.0 51,0 17,5 24,0	1,0 1,3 1,2 1,0 1,0 1,0 1,1 1,0 1,1	465600 480660 	 26,3 24 	41,4 	 1,1 1,1

4

На рис. 2 показана зависимость изменения отношения интенсивности поглощения уретановых связей при различной температуре (I_t) к интенсивности поглощения при 20° (I_{20}) от температуры. Известно, что на интенсивность поглощения при разных температурах накладывается эффект изменения коэффициента экстинкции с температурой: $\varepsilon = \varepsilon_0 + \alpha (T - T_0)$, где α в основном величина отрицательная. Поэтому понижение интенсивности поглощения уретановых связей с температу-

рой закономерно. Однако для каждого из испытуемых образцов зависимость I_l/I_{20} — температура носит индивидуальный характер, что повидимому, обусловлено особенностями структуры полиуретанов.

Рис. 1. ИК-спектры полиуретанов при соотношении ОФСД : лапрол, равном 75 : 25 (1), 50 : 50 (2), 25 : 75 (3).

Различная тенденция к изменению наклона кривых I_t/I_{20} — температура для поглощения связанных водородными связями (1710 см⁻¹) и свободных (1733 см⁻¹) карбонильных групп прослеживается на рис.

Рис. 2. Зависимость I_t/I_{20} от температуры при полосах поглощения 1710 (*a*), 1730 (*b*), 3320 (*b*) и 3440 см⁻¹ (*c*) в спектрах полиуретанов: $I - O\Phi C \Pi$: лапрол=0,25:0,75; 2-0,50:0,50; 3-0,75:0,25.

2, а и б. С ростом температуры заметно снижается интенсивность поглощения полосы 1710 см⁻¹ особенно для образца, содержащего 50 % ОФСД. Кривые, характеризующие эту же зависимость для свободных С=О-групп, имеют перегибы в области 100—120°, и далее наблюдается рост интенсивности поглощения этих связей с повышением температуры. Это свидетельствует об увеличении концентрации свободных С=О-групп в результате разрыва водородных связей, а также, по-видимому, за счет окислительных процессов в полиуретане. Наиболее ярко выражен излом кривой для полиуретана, содержащего 0,5 г.экв ОФСД.

Снижение поглощения ассоциированных связей — NH (см. рис. 2, в) носит линейный характер, в то время как кривые I_t/I_{20} — температура свободных NH-групп имеют минимум в области температур 100—120°. Далее наблюдается увеличение концентрации свободных NH-групп вследствие диссоциации водородных связей. Поскольку коэффициенты экстинкции связанных и свободных NH-групп относятся как 3,5 : 1 [5], повышение интенсивности поглощения последних менее заметно по сравнению с падением интенсивности поглощения связанных NH. Для образца, содержащего 0,75 г.экв ОФСД, при 60° наблюдается некоторое повышение концентрации связанных NH-групп, а затем монотонное снижение интенсивности поглощения.

При 200° в полиуретанах сохраняется свыше 50 % исходного количества связанных водородными связями NH-групп. Поскольку изменение отношения интенсивностей I_t/I_{20} для связанных водородной связью С=О-групп не превышает 20 %, можно предположить, что в поли--NH

Эти ассоциаты менее устойчивы и диссоциируют при более низких температурах, тогда как межуретановые связи ответственны в основном за высокотемпературную диссоциацию водородных связей [5]. По-видимому, это является одной из причин понижения термической устойчивости полиуретанов, имеющих значительную концентрацию силоксановых групп [6].

О большей чувствительности к термическим воздействиям полиуретанов, содержащих 0,75 и 0,5 г.экв ОФСД, свидетельствует также появление в ИК-спектрах, начиная от 180°, вначале слабой, а затем широкой полосы 2320—2380 см⁻¹, интенсивность которой увеличивается с ростом температуры и затем падает. По данным [7], она относится к колебаниям С=О в СО₂, и ее появление связано с распадом уретановых групп. В образце, содержащем 0,25 г.экв ОФСД, эта полоса появляется лишь после его выдерживания в течение 20 мин при 200°, и ее интенсивность незначительна.

Отчетливее зависимость термической устойчивости полиуретанов от состава и условий формирования проявляется при изучении деструкции в более высокотемпературном режиме 20—700°. Данные термического анализа представлены в табл. 2. Зависимость τ^*_{10} и τ_{50} от соотношения ОФСД — лапрол и температуры отверждения приведена на рис. 3, а. Полимеры с добавкой 25 % кремнийорганического полиола значительно стабильнее независимо от условий формирования.

Можно предположить, что снижение термостойкости полиуретанов, полученных при высоких концентрациях ОФСД, являющегося намного более реакционноспособным мономером по сравнению с лапролом, связано с некоторой дефектностью сетчатой структуры полимера, образовавшегося при большой скорости синтеза. Кроме того, эти полимеры

^{*} τ_{10} и τ_{50} — температуры, при которых наблюдаются 10- и 50 %-ные потери массы соответственно.

отличаются более высокой концентрацией термически нестойких уретановых связей (см. табл. 1).

Полиуретаны, отвержденные при 20°, за исключением образца VII, содержащего 0,75 г.экв ОФСД, проявляют большую устойчивость к температурным воздействиям на воздухе, по-видимому вследствие регулярности сетки, образованной с меньшей скоростью. Увеличение плотности сшивки при избытке изоцианатных групп, образующих мочевинные связи в полиуретанах, способствует повышению их термоустойчивости (см. рис. 3, б).

На рис. 4 представлены дифференциальные термогравиметрические (ДТГ) и температурные (ДТА) кривые деструкции на воздухе иссле-

Рис. 3. Влияние температурных характеристик деструкции полиуретанов на состав и условия формирования в зависимости от соотношения ОФСД:лапрол (1—4) и NCO: OH (5—7): 1, 3— τ_{10} и τ_{50} полиуретанов, отвержденных при 100°; 2, 4— при 20°; 5—7— τ_0 ; τ_{10} и τ_{50} соответствению полимеров, отвержденных при 100°.

Рис. 4. Кривые ДТГ (1—4) и ДТА (1'—4') полиуретанов, отвержденных при 100[•]: 1, 1' — полиуретан I: 2, 2'—V; 3, 3'—II, 4, 4'—VIII (см. табл. 1).

дуемых полиуретанов в интервале температур 20—660°. Анализ кривых свидетельствует о сложности процесса, который имеет не менее трех основных стадий. Кривые ДТА образцов II—VI имеют по 3 четко выраженных экзотермических пика с максимумами в области $225-270^\circ$, $330-390^\circ$ и $550-580^\circ$. Кривая ДТА образца I (см. рис. 4, кривая I) имеет более сложный характер, дополнительно появляются пики с максимумами $400-445^\circ$, что, по-видимому, обусловлено более высокой степенью сшивки и большей концентрацией мочевинных связей вследствие значительного избытка изоцианатного компонента (NCO/OH==1,75).

Эндотермы на кривых ДТА с максимумами 290—315° сопровождают ют термический распад уретановых групп [8], протекающий с наибольшей скоростью при этих температурах. Температурные пики эндотерм совпадают с максимумами скорости разложения на кривых ДТГ. Общие потери массы при этом составляют 40—58 %. По-видимому, наряду с термическим распадом уретановых связей происходит окисление продуктов деструкции, о чем свидетельствуют интенсивные экзотермы с максимумами 330—360°, особенно ярко выраженные для образцов с избытком полиэфирного фрагмента.

На кривых ДТА в области 180—290° имеются экзотермические пики, которым на кривых ТГ соответствуют незначительные изменения массы. Очевидно, в этом интервале температур также происходит окисление полиэфирных звеньев полиуретана под воздействием кислорода воздуха. Об этом может свидетельствовать увеличение интенсивности поглощения С=О связей в ИК-спектрах при температурах 180-200° (см. рис. 2, б).

Эффективные энергии активации деструкции на первой, определяющей, стадии деструкции составляют 77-97 кДж/моль, за исключением полиуретана VII, содержащего 0,75 г.экв ОФСД в гликолевой составляющей, отвержденного при 20°, Е_{эф} которого на стадии деструкции при 240—360° равна 53 кДж/моль. Наибольшими эффективными энергиями активации разложения обладают образец VI (97,3 кДж/моль), содержащий 0,25 г.экв ОФСД, отвержденный при 20°, и образец I (95,3 кДж/моль), полученный при соотношении NCO/OH=1,75.

В интервалах температур, соответствующих второй эндотерме на кривых ДТА (см. рис. 4 и табл. 2), реакция сопровождается значительными потерями массы и глубокими, трудно поддающимися учету, превращениями. Езф при этом снижается до 54-23 кДж/моль. В дальнейшем, при температурах 420-600°, очевидно, происходит разрушение и окисление углеродного скелета молекулы, деструкция связей Si-O-C и Si—С в ОФСД с образованием новых, энергетически более выгодных структур. Об усилении процесса структурирования свидетельствует появление интенсивных экзотермических пиков на кривых ДТА с максимумами 500-580° [9].

Таким образом, в изучаемых кремнийорганических полиэфируретанах в интервале 100—180° происходит разрушение водородных связей. При этом значительная часть ассоциированных уретановых связей сохраняется и при 200°. Деструкция полимеров на воздухе начинается с распада уретановых групп, сопровождаемого окислительными процессами, и завершается распадом силоксанового фрагмента. Наиболее устойчивым к деструкции на воздухе является полиуретан, содержащий 0,25 г.экв ОФСД, независимо от условий его формирования. По-видимому, при таком сочетании жестких (ОФСД) и гибких (лапрол) сегментов реализуется оптимальная структура сетки. Повышение термостойкости достигается также при использовании избытка изоцианатного компонента до 1,75 г.экв, что связано с увеличением плотности сшивки и концентрации мочевинных групп в отвержденной системе.

- 1. Кузнецова В. П., Ефремова Э. А., Щепеткина Н. И. Синтез олигофенилгликоксисилоксана и получение пленкообразующих полиуретанов на его основе. - В кн.: Ис-
- следования в области синтеза полимеров. Киев: Наук. думка, 1978, с. 67-74. 2. Kissinger H. E. Reaction kinetics in differential thermal analysis.— Anal. Chem., 1957, 29, N 11, p. 1702-1706.
- 3. Broido A. A simple sensitive graphical method of treating thermogravimetric analyse data.— J. Polymer. Sci., 1969, A-2, 7, p. 1761—1773.
- 4. Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во иностр. лит., 1963.-590 c.
- 5. Srihatrapimuk W. W., Cooper S. L. Infrared thermal analysis of polyurethane block
- ројушет. J. Macromol. Sci. Phys. B, 1978, 15, N 2, р. 267—311. 6. Исследование термической деструкции полнуретансилоксанов / К. А. Андрианов, С. А. Павлова, Ю. И. Толчинский и др.— Высокомолекуляр. соединения. Сер. Б, 1978, 21, № 7, с. 540—545.
- Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. 530 с.
 Тараканов-Шорих О. Г. Изучение структуры и деструкции полиуретанов: Автореф. лис. ... д-ра хим. наук. М., 1968. 26 с.
- 9. Влияние дисперсионного висмута на деструкцию полисилоксана на основе дифениясиландиола / М. Т. Брык, В. К. Карданов, В. А. Компаниец, И. А. Павлова. В кн.: Синтез и физико-химия полимеров. Киев : Наук. думка, 1978, вып. 22, с. 54-58.

Институт химии высокомолекулярных соединений АН УССР

Поступила 7 июня 1982 г.