УДК 541.183.3

ПОВЕРХНОСТНО-АКТИВНЫЕ И МИЦЕЛЛООБРАЗУЮЩИЕ СВОЙСТВА ИНДИВИДУАЛЬНЫХ ОКСИЭТИЛИРОВАННЫХ ОКТИЛФЕНОЛОВ

Т. В. Кармазина, А. А. Абрамзон, Н. А. Клименко

Поверхностное натяжение, критические концентрации мицеллообразования (ККМ) и другие свойства оксиэтилированных октилфенолов хорошо исследованы и описаны в научной и справочной литературе [1, 2]. Однако для исследованных ранее оксиэтилированных октилфенолов не проведено сопоставление данных по мицеллообразующим и адсорбционным свойствам, не изучено влияние полярной части на термодинамические свойства ПАВ. Поэтому нами исследованы соединения, имеющие общую формулу:

 $CH_{3} - CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - O - (CH_{2} - CH_{2} - O)_{n} - H$

В данном соединении углеводородный радикал имеет жесткую структуру, приближающуюся по форме к цилиндру. В работе были использованы чистые, строго индивидуальные по составу оксиэтилированные 1,1,3,3-тетраметилбутилфенолы с числом оксиэтиленовых групп (*n*) 3, 7, 10, 13, 16. Индивидуальные препараты были выделены из Тритона X-100 (фирмы «Rohm and Haas C°», США) методом препаративной колоночной хроматографии [3]. Чистоту полученных образцов по оксиэтиленовым группам контролировали методом тонкослойной хроматографии. О чистоте продуктов свидетельствует отсутствие минимумов в области перегиба кривых изотерм поверхностного натяжения.

Поверхностное натяжение измеряли методом Дю Нуи. При измерениях применяли никелево-хромовое кольцо. Посуда и кольцо перед каждым измерением были тщательно промыты горячей хромовой смесью и пропарены. Растворы индивидуальных ПАВ были приготовлены из исходного, содержащего 10 ммоль/л, с последующим разбавлением. Измерение поверхностного натяжения проводили сутки спустя после того, как растворы ПАВ были приготовлены и разлиты в бюксы с крышкой для установления равновесия на границе раздела раствор ПАВ — воздух. Изотермы поверхностного натяжения для веществ с числом оксиэтильных групп 3, 7, 10, 13, 16 сняты при 22; 40, 60°. Растворы были термостатированы в ячейке, точность термостатирования $\pm 1^\circ$.

На рис. 1 показаны изотермы поверхностного натяжения при 22, 40, 60° в полулогарифмических координатах. Расчет ошибок измерения поверхностного натяжения произведен согласно [4]. Средняя квадратичная ошибка арифметического среднего 0,38; наибольшая ошибка отдельного измерения 1,14; относительная ошибка 0,67 %.

Таблица 1

Поверхностное натяжение оксиэтилированных 1, 1, 3, 3-тетраметилбутилфенолов при различных температурах ($C = 5 \cdot 10^{-4}$ ммоль/л)

n	σ (дин/см) при температуре, °С										
	25	30	35	40	45	50	55	60			
	71,0	70,6	69,3	68,8	63,2	67,4	67,0	66,1			
7	65,0	64,0	63,0	62,1	61,3	60,3	59,5	59,5			
10	64,8	64,0	62,7	61,8	60,9	59,8	59,5	59,5			
13	63,8	63,4	62,2	60,3	59,0	58,4	58,1	58,1			

УКРАИНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ, 1983, т. 49, № 32*

Для определения адсорбции использовано уравнение Гиббса: $\Gamma = -\frac{1}{RT} \cdot \frac{d\sigma}{d\ln C}$, где R — газовая постоянная, равная 8,3 Дж/моль·К; σ — поверхностное натяжение; C — концентрация ПАВ, г·моль/л. Γ определяли по тангенсу угла наклона касательной, а Γ_m (предельная адсорбция) — по наклону прямолинейного участка изотермы, она совпадает с оп-

Рис. 1. Изотермы поверхностного натяжения OcPhOE₃ (a), OcPhOE₇ (б), OcPhOE₁₀ (в), OcPhOE₁₃ (г) и OcPhOE₁₆ (д) при различных температурах: 1—22; 2—40; 3—60°.

ределенной обычным методом [5]. Площадь, приходящуюся на одну молекулу в поверхностном слое, вычисляли по формуле $S = \frac{1}{\Gamma \cdot N}$ (*N*—чиского Авогадро). Для предельного слоя $S_m = \frac{1}{\Gamma_m \cdot N}$. Стандартную свободную

Таблица 2

Термодинамические функции адсорбции молекул оксиэтилированных 1, 1, 3, 3-тетраметилбутилфенолов при $C = 5 \cdot 10^{-4}$ ммоль/л

		22°		40°	60°			
n	$ \begin{vmatrix} \Delta S_{a} = \frac{dW}{dT}, \\ \kappa \mathcal{I} \\ \mathbf{K} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{K} \\ $	W _a ΔH _a . кДж моль	ΔS _a , кДж моль-Қ	Wa ΔHa кДж моль	ΔS _a , <u>кДж</u> моль-К		<u>ΔH</u> а Дж юль	ΔS _a , <u>к</u> Дж моль Қ
3 7 10 13	0,19 0,13 0,14 0,10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,13 0,14 0,14 0,24	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,18 0,16 0,18 0,21	44,7 42,3 44,9 4 3 ,4	5,33 3,5 6,1 50,2	0,12 0,14 0,15 0,28

УКРАИНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ, 1983, т. 49, № 3

энергию мицеллообразования определяли по выражению $\Delta G_m^0 = RT \ln C_k$, где $C_k - KKM$, выраженная в мольных долях; стандартную энтальпию мицеллообразования — по уравнению $\Delta H_m^0 = -RT^2 \frac{d \ln C_k}{dT}$.

ал Стандартную энтропию мицеллообразования можно определить, исходя из формулы $\Delta G_m^0 = \Delta H_m^0 - T \Delta S_m^0$, а также как тангенс наклона зависимости $\frac{dG_m^0}{dT}$, то есть $\Delta S_m^0 = -\frac{dG_m^0}{dT}$. Таким образом ΔH_m^0 , ΔS_m^0 рассчитаны по Таблица 3

ккм	оксиэтилиров	ванных 1,	1,	В, З-тет	раметилб	утилфенолов
-----	--------------	-----------	----	----------	----------	-------------

÷,

	KKM-104 M	оль/л при темпер	Гт. 10 ²⁰ , моль/см ²	
n	32	40	60	
3	1,9	1,2	1,0	2
7	2,2	1,3	1,1	
10	2,4	1,4	1,1	290 300 310 320 330 7
13	2,8	1,6	1,4	Рис. 2. Зависимость пре-
16	3,1	2,2	1,5	дельной адсорбции OcPhOE ₂ _ от температуры.

изменению $\ln C_h$ от $\frac{1}{T}$. Работа адсорбции $W = RT \ln \frac{\Gamma}{C \cdot \delta} + \frac{\Delta \delta}{\Gamma_m}$, где δ — толщина слоя, определяющего поверхностное натяжение, то есть 9.10⁻⁸ см для систем жидкость—газ; $\Delta \sigma = \sigma_0 - \sigma$, σ_0 , σ — поверхностные натяжения системы без ПАВ и с ПАВ соответственно.

Энтальпию адсорбции определяли, исходя из уравнения

$$\frac{d\sigma}{dT} = \frac{d\sigma_0}{dT} + R\Gamma_m \ln\left(1 - \frac{\Gamma}{\Gamma_m}\right) + RT \frac{\Gamma_m}{\Gamma_m - \Gamma} - \left(\frac{\Delta H_a/RT^2}{\frac{C \cdot \sigma}{\Gamma_m^2} \exp \frac{W}{RT} + \frac{2}{\Gamma_m} + \frac{\exp\left(-\frac{W}{RT}\right)}{C \cdot \sigma}\right).$$

Для определения температурного коэффициента $\frac{d\sigma}{dT}$ в присутствии ПАВ было измерено поверхностное натяжение растворов ПАВ с концентрацией $C = 5 \cdot 10^{-4}$ ммоль/л при температуре от 25 до 60° с интервалом 5° (табл. 1).

Энтропию адсорбции ПАВ на границе раздела раствор—воздух определяли по наклону зависимости W = f(T), $\Delta S_a = \frac{dW}{dT}$, а также по урав-

нению $\Delta H_a = W + T\Delta S_a$. Оба метода расчета хорошо согласуются (табл. 2). По данным изотерм поверхностного натяжения построена зависи-

мость предельной адсорбции от температуры (рис. 2). Предельная адсорбция индивидуальных оксиэтилированных октилфенолов (OcPhOE_n) понижается с повышением температуры для всех значений длины оксиэтильной цепи, что, по-видимому, связано с понижением плотности поверхностного слоя при повышении температуры вследствие возрастания молекулярно-кинетического движения. Экстраполировав прямую к абсолютному нулю, находим поперечное сечение молекулы: $S_m = 25,7$ Å². Этот результат совпадает с размерами поперечного сечения молекулы, найденного с помощью моделей Стюарта — Бриглеба.

Значения ККМ представлены в табл. З. Зависимость ККМ от длины оксиэтильной цепи имеет линейный характер и ее можно выразить

УКРАИНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ, 1983, т. 49, № 3

при $t=22^{\circ}$ уравнением lg $C_{h}=-5,35$ n+0,018, что хорошо согласуєтся с уравнением, полученным по [1]: lg $C_{h}=-5,33$ n+0,036 при $t=25^{\circ}$.

Термодинамические функции процесса мицеллообразования представлены в табл. 4. Свободная энергия мицеллообразования слабо повышается с возрастанием числа оксиэтильных групп в молекуле ПАВ.

		22°			40°			60°		
n	$\Delta S_m^{\circ} = \frac{dG_m}{dT},$ $\frac{\kappa \mathcal{A} \times}{MOJE \cdot K}$	$\frac{-\Delta G_m^\circ}{\frac{\kappa \lambda}{MC}}$	Δ <i>H</i> [°] _m	ΔS _m , кДж моль•К	-ΔG [°] _m	Δ <i>H</i> [°] _m ж	ΔS [°] m, кДж моль-К	-ΔG [°] _m 	Δ <i>H</i> _m ж ль	ΔS [°] m, <u>кДж</u> моль К
3	0.09	30.7	11.1	0.140	33.9	12.5	0.147	36.6	14.0	0,151
7	0,140	30,5	11,1	0,140	33,5	12,5	0,147	36,2	14,2	0,151
10	0,140	30,2	11,4	0,141	33,3	12,9	0,147	36,0	14,5	0,152
13	0,140	29,9	11,7	0,140	32,9	13,2	0,147	35,6	14,9	0,152
16	0,150	29,5	12,1	0,141	32,3	13,9	0,147	35,4	15,4	0,153

Термодинамические функции мицеллообразования индивидуальных оксиэтилированных 1, 1, 3, 3-тетраметилбутилфенолов

гаолица э				
Работа адсорбции	молекул	оксиэтилировани	ых 1, 1, 3, 3	-тетраметилбутилфенолов
при адсорбции на	поверхно	сти раздела раст	BOD-BO3AV	x

	п	<i>₩</i> _а (кДж/моль) при различной концентрации, моль/л							
<i>t</i> , °C		1.10-7	2-10-7	3.10-7	5.10-7	10.10-7			
22	3	38,0	37,9	37,5	37,0	36,0			
	7	38,8	38,2	37,8	37,5	37,0			
	10	37,2	36,9	36,7	36,3	35,8			
	13	38,6	38,3	37,7	36,9	35,0			
	16	39,6	37,5	36,6	35,6	34,8			
40	3	41,4	40,5	40,0	39,1	38,2			
	7	42,0	40,0	39,1	38,3	37,4			
	10	41,4	40,8	39,9	38,9	37,8			
	13	40,9	40,0	39,4	38,5	37,6			
	16	40,6	39,9	38,9	38,1	37,1			
60	3	44,0	43,2	42,3	41,4	4,0			
	7	44,2	42,7	41,8	40,8	39,9			
	10	44,2	43,2	42,6	41,8	38,8			
	13	43,6	42,6	41,6	40,6	38,0			
	16	40,6	39,9	38,9	38,1	37,1			

Значения работ адсорбции молекул исследованных ПАВ при адсорбции на поверхности раствор — воздух приведены в табл. 5. Работа адсорбции лишь незначительно понижается с повышением концентрации. Известно, что в системе жидкость — газ работа адсорбции повышается с концентрацией ПАВ, в системе жидкость — жидкость она практически не изменяется [7]. Следовательно, работа адсорбции напоминает систему жидкость — жидкость. Неизменность работы адсорбции в рассматриваемом случае свидетельствует о плотной упаковке молекул в адсорбционном слое. Такая упаковка возможна благодаря жесткой структуре алифатической части оксиэтилированных 1,1,3,3-тетраметилбутилфенолов, в чем и проявляется их отличие от ПАВ, обладающих подвижной гидрофобной цепью. Этим, по-видимому, также можно объяснить и то, что работа адсорбции ПАВ при фиксированной кон-

Таблица 4

центрации выше свободной энергии мицеллообразования при определенной температуре и длине оксиэтилированной цепи (ср. табл. 2 и 4, где приведены термодинамические характеристики процесса адсорбции).

Ранее было указано [6], что свободная энергия мицеллообразования и работа адсорбции молекул ПАВ с подвижной алифатической частью близки друг к другу. Жесткий же гидрофобный радикал не позволяет плотно упаковываться неполярным частям молекул рассматриваемых ПАВ в сферических мицеллах, которые образуются в точке ККМ.

- 1. Абрамзон А. А. Поверхностно-активные вещества: Справочник. Л.: Химия, 1979.-
- Петров А. А., Позднышев Г. Н. Коллондно-химические свойства неионогенных поверхностно-активных веществ. Коллонд. журн., 1966, 28, № 6, с. 858—864.
 Кофанов В. И., Клименко Н. А. Хроматографический анализ неионогенных поверх.
- ностно-активных веществ типа оксиэтилированных жирных спиртов.— Завод. лаб., 1977, № 6, с. 668—670.
- 4. Батунер Л. М., Позин М. Е. Математические методы в химической технике.— Л.: Госхимиздат, 1968.—822 с.
- 5. Практикум по коллондной химии латексов и поверхностно-активных веществ / Под ред. Р. Е. Неймана. М. : Высш. школа, 1972. 175 с.
- 6. Абрамзон А. А. Поверхностно-активные вещества.— Л.: Химия, 1981.—304 с. 7. Каковский И. А. Изучение физико-химических свойств некоторых органических флотационных реагентов и их солей с ионами тяжелых цветных металлов.— Тр. Ин-та горного дела АН СССР, 1956, т. 3, с. 355—389.

Институт коллондной химии и химии воды им. А. В. Думанского АН УССР Ленинградский технологический институт

Поступила 29 апреля 1982 г.

УДК 541.18.043

ИССЛЕДОВАНИЕ УКРУПНЕНИЯ ЧАСТИЦ В СИСТЕМАХ ГЛИНА — МИНЕРАЛ — НАСЫЩЕННЫЙ СОЛЕВОЙ РАСТВОР

Б. М. Курилко, А. И. Лопушанская, С. И. Радин, Т. С. Слипенюк, В. П. Руди

При переработке полиминеральных руд Прикарпатья существенное значение имеет интенсификация процессов разделения глинисто-солевых суспензий. Однако выбор оптимальных условий проведения таких процессов ограничен из-за того, что недостаточно изучены особенности налипания частиц глины на минералы. Процессы слипания частиц при турбулентном потоке суспензии были изучены в работах [1, 2]. Предлагаемая в них методика основывается на измерении фототока, прошедшего или отраженного от движущихся частиц суспензий. Это применимо при исследовании систем, содержащих относительно крупные частицы (>5 мкм), так как они в состоянии покоя быстро седиментируют и точное определение оптических характеристик невозможно [3].

Цель настоящей работы — количественно изучить процессы налипания высокодисперсных частиц гидрослюдистой глины на относительно крупные частицы минералов галита (NaCl), полигалита (2CaSO₄. ·K₂SO₄·MgSO₄·2H₂O) и лангбейнита (K₂SO₄·2MgSO₄) в зависимости от дисперсности и концентрации последних. Дисперсионной средой служил насыщенный солевой раствор по отношению к исследуемым минералам следующего состава, %: MgSO4 8,06; MgCl2 4,37; KCl 6,29; NaCl 14,10. Благодаря полученным данным можно выбрать оптимальные технологические режимы при переработке полиминеральных руд.

Для исследований были выбраны следующие фракции минералов, мкм: 15-40 (I), 40-50 (II), 50-250 (III). Размеры частиц гидрослюдистой глины — в пределах до 20 мкм, причем максимум распределения приходится на 2,0÷0,2 мкм [4]. Естественно, крупные частицы минера-

УКРАИНСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ, 1983, т. 49, № 3