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Abstract. The straight lines in three-dimensional vector space realize the shortest distance for
various metrics. This property is reformulated in terms of the inverse problem of the calculus of variations
and closely related to the ultrahyperbolic equation with four independent variables. The interrelation is
useful in both directions. For instance, polynomial solutions of the ultrahyperbolic equation provide all
polynomial metrics with extremals the straight lines and conversely, a slight generalization of the Hilbert
metrics leads to rather nontrivial (multi-valued or focusing) solutions of the ultrahyperbolic equation. In
general, the article clarifies some well-known achievements concerning the 4th Hilbert Problem.

INTRODUCTION

The history of our topic goes back to the famous Hilbert Problems [1]|, namely to the
4th Problem concerning the determination of all metrics in the open subsets of P" that
have the straight lines as the shortest curves and the study of the relevant geometries. In
this strong version, it is still far from a complete solution [2]. With additional smoothness
assumptions, a close connection to the inverse problem of the calculus of variations (% )
and the prominent role of the ultrahyperbolic equation (% ) was soon indicated [3].

Let us recall that .2 consists in determination of the variational integral if the
extremals are given in advance. In two dimensions, for the integral [ f(z,y,v)dz (v =v/),
the solution is rather easy [4]. Especially in the particular case of extremal straight
lines the formula f,, = U(v,y — vz) with arbitrary U resolves the problem. This
result was adapted to three dimensions [3] with the following result. The variational
integral [ f(z,y,z,v,w)dz (v=y',w = 2') has the straight lines for extremals if and only
if foo =U, fow =V, fuw =W are functions of the variables

a=v,f=y—vx,y=w,d =2z— WT.
One can check the compatibility conditions
Uy =V, Vy =W,, Us = Vs, Us = W;s

and they imply the % A equation 0°(-)/030, = 0*(-)/0a0s for all functions (-) = U,V
and W. Then the function f can be reconstructed from U, V,W by double quadrature.

Subsequently other solutions of . & were discussed. In the ingenious article [5], the
three-dimensional subcase was thoroughly analysed in full generality. However, in the
particular case of extremal straight lines the path from % . (formula (8.22)) to the
kernel function f (pages 82-84) is not quite easy. The recent general solution [6] of . &
rests on non-elementary tools, the variational bicomplex, and the straight lines are not
separately mentioned.

In this article we follow the geometrical approach [7] based on the systematical
application of the Poincaré-Cartan (%) forms |[8] with intentional use of quite
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elementary methods of algorithmical nature. Our result is as follows: for the variational
integral [ f(z,y,z,v,w)de (v = y,w = 2') with extremals the straight lines, every
function f = f(c,y,z,v,w) (c = const) satisfies U O*f/Oydw = 0*f/020v and
conversely, every solution f = f(y,z,v,w) of this % S permits to reconstruct the kernel
function f of the variational integral (which reduces to f if z = c is kept fixed for a given
constant ¢) by a quadrature.

On this occasion, a few examples are presented. The polynomial case related to
the Bessel functions, a far going generalizations of the Hilbert projective metrics [9]
on Riemannian surfaces with the multivalued and focusing solutions of % ¢, and
finally the proof of analyticity of the elliptical Hilbert metrics employing very advanced
results [10, 11].

We will establish a close relationship between the familiar property of the straight
lines y = Az + B,z = Cz + D in the space R® with coordinates z, v, 2, i.e., that they
represent the shortest curves for certain metrics, and the solutions f = f(y, z, v, w) of the
ultrahyperbolic equation 9%f/0yow = 0% f/0z0v.

In order to employ the common tools of differential calculus, we shall deal with
metrics p such that the limit

1
hr% _P((«T;y, Z)a (ZL‘ +ug,y +ve, 2+ wg)) = F({E,y, Z,U,U,U)) (1)
e—=>0¢&

is a smooth (infinitely-differentiable) function whenever |u|+ |v|+ |w| # 0. In geometrical
terms, F' is the rate of change of the distance at the point (z,y,z) € R® as one moves in
the direction (u,v,w). Equation (1) reads
p((z,y, 2), (r + ue,y + ve, z + we)) = (F(z,y, z,u,v,w) + o(e) )e

and it follows that the length of a smooth curve

(x(t),y(t), 2(1)) €R® (a <t <b,|2" (&) + |y' ()] + [2'(t)| # 0) (2)
is represented by a Riemannian integral as follows. The sum of the distances between the
neighbouring points of a partition

X, = x(tl),yz = y(tz),zz = Z(tl), a<- <t <ty << b

of the curve approximates the Riemannian integral sum and has a limit as the norm of
the partition tends to zero:
b

lim )~ p((2, 3, 24)s (Tisr, Yirrs 2i1)) = /F(x(t),y(t),Z(t),ff’(t),y'(t),Z'(t))dt-

a

b
We speak of a generalized length L = /th of the curve (2) and our aim is to deal with

a
metrics p such that the straight lines realize the shortest curves connecting two given
(sufficiently close) points.
The generalized length L is independent of the parametrization of the curve (2) which
may cause some technical difficulties, however, on every sufficiently short segment of the
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curve one can choose one of the coordinates x,y, z for a new parameter. We shall mostly
use the parameter x assuming z'(t) # 0 in (2). Then the curves under consideration are
given by the equations y = y(x),z = z(x) and the generalized length is represented by
the integral

L= /f(x,y(x),z(x),y'(x), Z(x))dz, f(z,y,z,v,w) = F(z,y,2,1,v,w). (3)

With this adaptation, the methods of the classical calculus of variations can be
comfortably applied.

It is well-known that the curves of the minimal length connecting two given points
satisfy the Fuler-Lagrange (£.%) system

d

fy() = afv()a fZ() = %fw()a where () = (‘%yﬁzﬂyl’zl)'

Recall that the solutions of &% system are called ezxtremals. We wish to determine
functions f such that the straight lines are just the extremals. Recall that &.Z system
represents only the necessary conditions and the local minimum property of the straight
lines is ensured if moreover the familiar Legendre condition holds true, we shall however
focus our interest just on the &.Z system.

With these preparations, our task can be explained in quite simple terms.
The &% system reads

fy = fux + fvyy, + fuzzl + fvvy” + fvwzﬂa

fz - fw:z: + fwyyl + fwzzl + fumy” + fwa”-
It follows that all straight lines y = vz + B,z = wx + D with the variable
parameters A = v, C' = w are extremals (solutions of the &% system) if and only if
the identities

fy() = fv:z:() + fvy(')v + fuz(')wa
fo(4) = fua () 4 fuy (v + fu:(-)w,

where (-) = (z,y,2,v,w) hold true. They provide a system of the second order partial

differential equations for the function f = f(z,y,2,v,w) and we will also use the
alternative transcription
0 0 0
—Xf, fo=Xf, ([X=Z 40l twe 4
Ty fo, f ( 6:E+U6y+waz> (4)

of these equations in future. One can then observe that
fyw = fv:z:w + fvywv + fvzww + fuza

fzv = fw:m; + fwy’uv + fwy + fwsza
whence the ultrahyperbolic equation fy,, = f., follows. The coordinate x appears as a mere
parameter, so it is of interest to consider the equation

f_yw - fzv (f: f(yazavaw) - f(caya Z,U,U))) (5)
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with ¢ an arbitrary constant. We shall see that the equation (5) for the function
f = f(y,z,v,w) of four variables is in certain sense equivalent to the system (4). More
precisely: a solution f of (5) together with the choice of a constant c permits us to
reconstruct the original function f = f(x,y, z, v, w) satisfying (4).

In this article a function f = f(z,y, 2, v, w) is called resolving if (4) is safisfied, i.e., if
all straight lines are extremals. We will determine all resolving functions f by using the
solutions f of (5). The converse setting will also be quite interesting; certain resolving
functions f will be obtained by direct geometrical construction which provides rather
nontrivial solutions f of the ultrahyperbolic equation (5).

PREREQUISITIES

Our reasonings will be carried out in an open subset of the space R® with coordinates
denoted z,vy, z,v, w. We also use the alternative coordinates
r,a=v,f=y—vxr,y=w, 0 =2z— WI.
The coordinates v, w correspond to the derivatives, therefore we consider straight lines
given by the equations
y=Ar+B,z2=Cx+D,v=A, w=C (A, B,C, D are constants) (6)
and, in terms of the alternative coordinates the equations (6) read:
a=A p=B,yv=C,§=D (A, B,C,D are constants). (7)
For a given function g = g(x,y, z,v,w) clearly
dg = Xgdz + g,(dy — vdz) + ¢,(dz — wdz) + g,dv + dg,dw =

= Xgdx + g,dfB + ¢.d0 + (9, + zg,)da + (gu + 2g,)d7. (8)
The functions «, 3, v, § are reduced to @ = v, f = y—cv, ¥ = w, ¥ = z—cuw if they are
considered on the hyperplane = ¢ (a constant). In general, a function g = g(z,y, 2, v, w)

is reduced to g = g(c,y,z,v,w) = gy, z,v,w). In the alternative coordinates, a function
h = h(z,a, 3,7,0) is reduced to

h = h(c,&, 3,%,0) = h(c,v,y — cv,w, z — cw)

and this reduction will be again denoted h = h(y, z, v, w) when regarded as a function of
the original coordinates.

Conversely, every function h = h(«, §,7,9) independent of x (better: expressible in
terms of «, 3,7,8) can be restored from its restriction h(y, z, v, w) expressed in terms of
the original coordinates since

h(Oé,ﬂ,’)/, 6) = B(ﬁ—i_ cQ, 0+ ¢, &, ’7)

Indeed, the restriction of the function is h(3 + ca, § + ¢, @, ) = h(y, z,v, w); use the
formulae for @, 3,7, given above.

Analogous procedure can be applied to differential forms. A differential form v can
be reduced to the form denoted 1 and conversely, every differential form 1 expressible
only in terms the functions o, 3,7,6 (without the use of x) can be restored from the
reduction 1) expressed in terms of y, z,v,w if the functions 8 + ca, § + ¢, a, v are
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substituted for y, z, v, w, respectively. One can verify that the differential is preserved:
dh = dh, d¢p = dip. We omit the simple direct proof (alternatively: reductions and
restorations are special pull-backs).

Definition. For every function f = f(z,y,2,v,w) we introduce the Poincaré-Cartan
(P€) form

¢ = fdz + f,(dy — vdz) + fu(dz — wdz). (9)
The exterior differential ® = d¢ has the obvious properties d® = 0 (® is a closed form)
and ® = 0 (mod dz,dy,dz)). If f is a resolving function, we speak of a resolving €
form. These resolving &% forms will be alternatively characterized in the following
lemmas.

Direct Lemma. If ¢ is a resolving P€ form, then ® = d¢ can be erpressed in
terms of the functions «, 3, 7, § (without the use of the coordinate x and the differential
dzx).

Proof. Obviously dy — vdx = df + zda, dz — wdx = dd + zdvy, dv = da, dw = dvy,
therefore

O =df Adx +df, A (dS + zda) + df, A (A0 + 2dy) — (foda + fudy) Ada.
Using (8) for g = f, fy, fuw, if follows that
® = ((f,— Xf,)(dB+xda) + (f. — X fu)(d6 +xdy)) Adz + fPdandB+- -+ fdyAdS

with certain coefficients f*%, - -+ | f7% (they need not be explicitly stated). By virtue of (4),
we obtain

d = fPdandB+ -+ fr0dy Ads,

where the coefficients can be expressed in terms of the alternative coordinates =, «a, 3, v, 6.
However, they are in fact independent of = as follows from the identity d® = 0.

O

Converse Lemma. Let ¥ be a closed 2-form satisfying ¥ =2 0 (mod dz, dy, dz).
If W is expressible only in terms of «, (3, vy, & then there (locally) exists a resolving PE€
form ¢ such that dp = .

Proof. By virtue of the Poincaré lemma, ¥ = d« for an appropriate form
v = Kdx + Ldy + Rdz + Mdv 4+ Ndw.

The congruence ¥ = d¢) = 0 implies M,, = N, and there exists g = g(z,y, z,v, w) such
that g, = M, g, = N. Clearly d(¢» — dg) = ¥ where the corrected form

Yp—dg=Udz+Vdy+Wd> (U=K-g,,V=L-g,, W=R—g,)
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has no terms in dv, dw. We will see that ¢ — dg is identical to the sought resolving Z%
form ¢. Obviously

Y —dg = fdx + V(dy — Vdz) + W(dz — wdz)
where f = U + vV + wWW, whence
U =d(¢y—dg) =df Ade +dV A (df + zda) + dW A (dd + xzdy) — (Vda + Wdy) A dz.
Using (8), one can verify that
U= ((f, — XV)(AB + zda) + (f, — XW)(dS + xdy)+
+(f, = V)da + (f,, — W)dy) Adz + ---

where all the products da A df, ---,dy A d0 are neglected. Since W is expressible in
terms of «, 3, v, d, we conclude that f, =V, f,, = W, hence ¥ is indeed a &% form.
Moreover f, = XV = X f,, f, = XW = X f,,, therefore ¢ is resolving. The proof is done.

O

Crucial Lemma. Let ¥ be a 2-form expressible only in terms of «, 3, , d. Then
the congruence ¥ =2 0 (mod dz, dy, dz) holds true if and only if the reduction ¥ to some
(equivalently: to any) hyperplane x = ¢ is of the special kind

U = (Mdv + Ldw) A dy + (Ldv + Ndw) A dz. (10)
Proof. Assuming (10), we obtain
U = (Mda + Ldy) Ad(B + ca) + (Lda + Ndvy) A (dd + )

by restoration. Then the desired congruence can be directly verified.
In order to prove the converse, we use the formula

U = f%daAdB+ --- + fPdyAdd =
= f¥dv Ad(y —vz) + -+ fdw Ad(z — wa)
> (f7 —x (f + )+ 22 fYduAdv (mod dz, dy, dz).
Assuming the congruence ¥ 22 0, it follows that f® = f® 4+ f#7 = 89 — () hence the
reduction is
U= fPdandB+ - + [PdyAdd =
= (f*%dv + f*dw) A dy + (f*dv + f°dw) A dz
after some calculations. This is exactly (10).
(Alternative proof. Clearly Xa = --- = X¢§ = 0, hence Zxda = --- = ¥xdj =0
and therefore ZxV¥ = 0 where %y denotes the Lie derivative. Let us denote
O =dr Ady Adz AW. Then

ZLxO =dz A (dvAdz+dy Adw) AT,
Lo =2dz Adv Adw AV,
L20 =0.
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The form O satisfies a third order linear differential equation, therefore © is determined
if the initial values

Opee =dz Ady Adz AT,
LxOp—e =dx A (dv Adz +dy Adw) AT,
2)2(91:0 =drAdvAdw AT,

at the point x = c are given. In particular © = 0 identically if and only if the initial values
are all vanishing, however, this is true just for the forms ¥ of the special kind (10). Finally,
the identity © = 0 is a mere transcription of the congruence ¥ 22 0 (mod dx,dy, dz) and
therefore the last congruence is equivalent to (10). The alternative proof is not elementary.
However, it may be applied even to the general .# & where the given extremals need not
be the straight lines [7]|. As for the other Lemmas, there need not be any change.) O

FINAL RESULTS

Let us overview our achievements and add some remarks.

By virtue of the Converse Lemma (better: the proof), if ¢ is such a 1-form that
the differential ¥ = d¢ is expressible in terms of «,[,7v,0 and moreover satisfies
U 20 (mod dz,dy,dz), then ¢ —dg = 0 (mod dz,dy,dz) for an appropriate function ¢
and for every correction dg, the result ¢ = ¢ — dg is a resolving &% form. The Direct
Lemma ensures that every resolving £ form can be obtained in this manner (triviality:
put ¢ = @, dg = 0).

In order to determine all resolving % forms ¢, we have to search for all
forms v = Kdx + Ldy + Rdz + Mdv + Ndw with the above two properties of the
differential ¥ = dv. The first property will be guaranteed if v is chosen as a restoration
of a form ¢ = Ldy + Rdz + Mdv 4+ Ndw, the second property by the use of the Crucial
Lemma (namely ¥ = dt) must be of the form (10)). In fact it is sufficient to deal with the
reductions of the special kind

Y = Ldy + Rdz = V(y, z,v,w)dy + W(y, z, v, w)dz. (11)

Indeed, let us suppose that we search for a resolving P% form ¢ (not yet explicitly
known). Clearly % 22 0 (mod dy,dz) for the reduction and so we may put ¢» = ¢ which
is just of the form (11) (with V,W as yet unknown). Let 1 be the restoration of the
form (11). Then ¥ = dq) is the restoration of

T—df—dZ=3 (®=dy),

hence ¥ = ® (restorations are uniquely determined) which means d¢) = d¢ and ¢ = ¢—dg
for appropriate correction dg therefore we do not lose any possible resolving % form .

Altogether, in order to obtain an arbitrary resolving &% form ¢, it is sufficient to start
with the restorations ¢ of the special differential form (11). So let us choose a differential
form (11). Then the restoration 1, hence the differential ¥ = di can be expressed in terms
of «, 3,7, d; the first requirement is satisfied. The congruence ¥ 2 0 (mod dz, dy, dz), that
is, the second requirement is ensured if the reduction is of the form (10). However clearly

U =dy = (W, - V,)dy Adz + (Vodv + Viydw) A dy + (W,dv + W,,dw) A dz
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and we have the conditions W, = V,, W, = V,, for the coefficients in (11). Now we recall
the % A equation (5). If f is a solution, the functions V = f,, W = f,, clearly satisfy
the conditions and the converse also holds true. We are done.

Our achievements can be summarized as follows.

Main Theorem. We start with an arbitrary form
Y= f,(y, z,v,w)dy + fu(y, z,v,w)dz (12)
where f = f(y,z,v,w) is a solution of (5). Then the restoration
= fo(--)d(B + ac) + fu(-)d(d + 7e) =
= fol-)(dy — vdw) + fu () (dz — wdz) + (¢ = 2)(fo (- -+ )dv + fu(---)dw)  (13)

where
(- )= +ac,d+ye,a,7)=(y+ (c—x)v, 2+ (¢ — r)w, v, w) (14)
needs the correction —dg(x,y, z, v, w) such that
9= (= D)F(-). g0 = (c—)Ful---) (15)

in order to obtain the resolving %€ form
=t —dg=-Xgdz + (f,(--+) = g,)(dy — vdz) + (ful-+) = g:)(dz — wdz)  (16)

whence f = —X g is the desired resolving function.

Equations (15) for the unknown function g can be resolved by the line integrals in
the two-dimensional subspaces © = xg,y = yo, 2 = 2o (with coordinates v, w) of the total
five-dimensional space with the coordinates z, v, z, v, w. For instance

1

9(z0, Y0, 20, v, w) = go + (¢ — 1) /(fv(' ) (0 = wo) + ful---)(w —wp))dt  (17)
0
where xg, Yo, 20, Vo + t(v — vy), wo + t(w — wy) is substituted for z,y, z, v, w (respectively)
into the arguments (14). The integral is taken along the straight line segment with the
endpoints (vg, wy) and (v, w). Arbitrary smooth functions of the parameters x, yo, 2o can
be in principle chosen for gg, v, wy, however, one can also assume vy, wy are constants
without any loss of generality.
If we are not interested in &% forms but only in the corresponding resolving
function f = —Xg, the formula

f(x[)ayOaZOav)w) = _(— T U=+t W > )90($07?J0,ZO)+

—(c—vg)((v—v0)2/_Uy(---)(l—t)dt+2(v—v0 w— wo/ Y(1 = £)di+

0
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(w — wp) /fwz- (1— t)dt (18)

directly follows from (17). For convenience, we recall the arguments (---) =
(Yo + (¢ — x0) (vo + t(v — 1)), 20 + (¢ — o) (wo + t(w — wp)), vo + t(v — vy), wo + t(w — wy))
appearing in the integrands (17) and (18).

A FEW APPLICATIONS

First Example. We shall deal with the resolving functions f which are polynomials.
For this aim, it is sufficient to determine all solutions f of the equation (5) that are
homogeneous polynomials

P, = Z P,ibicrdyti i geqpd (a; + by + e, 4+ dy = n) (19)
of given degree n. The equation (5) is satisfied if and only if all the equalities
a" o"
Oy 0zb Qv Qwh = Oy 1920t Quert1owdi—1
between n-th order derivatives are valid whenever a;,d; > 1. However
871
Oy 0z Qver Qwh
and so we have the conditions
ai! b]’ Ck! dl' Pnaibjckdl = (CLZ' — 1)’ (b] + 1)’ (Ck + 1)' (dl — 1)’ Pnai_l’bj+1’ck+1’dl_1

for the coefficients. The products yw and zv play a significant role here which is not clearly
expressed. Let us therefore rearrange (19) as follows

Py =Y ytizPuCwP Py P (A + B + Gy + Dy + 2m = n) (20)

Py,

P, = a; b;! ! ;) Peiticsd

where the homogeneous polynomials
A B Ck'Dl — ZPA B Ck-DlT‘S w)r(Z/U)s (’f' + s = m)

involve all factors yw and zv, i.e, we suppose A;D; = B;C}, = 0 in the sum (20). After
this arrangement, we have the conditions

(A; + 1)I(Bj + $)/(Ch + s)I(Dy + 1)1 Py P =

= (A +r—DUB;j+ 5+ D(Cp + 5+ 1)|(D; + r — 1)1 Pyl CuPrr=lett

whenever r > 1. They can be explicitly resolved:

(21)

P P — const (yrw)" (z0)" r+s=m 22
2m Z (A; + )/(Dy + r)!(Bj + $)!(Ck + )! ( ) @22
where const = CAiBkaDl. Substituting (22) into (20), we obtain all polynomial

solutions f =P, of the ultrahyperbolic equation (5).
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A certain relationship to Bessel functions is worth mentioning. For the particular
case A; = --- = D; = 0 this is simple since

f: (y:ﬁj‘)r Z ZU}‘ ZPO 0\m (23)
r=0 s=0

which reads Io(2(yw)/?)I5(2(zv\)Y?) = Y PS-0A™. As the general case is concerned,
recall that A;, B;, Ck, D; are natural numbers such that either A;,D; or B;,C} are
vanishing. Assume A; = C} = 0. Then the obvious identity

(yU))\) ZU)\ 0B3j0D; \m
P J l)\
ZT!(D[+T)'Z B —|—S 'S' Z

r=0

reads
I, (2(ywA) /) I (2(200)2) = (2(yw))) P (2(20)) ZPOB 1001 ym

where I,,(2) = (2/2)" >.(2/2)?* /(k!T(v+k+1)) are the Bessel functions. We have obtained
the generating functions for the ultrahyperbolic polynomials.

The generating functions are useful if one calculates the resolving functions f. We
mention only the particular case when A; = B; = Cy = D; = 0 here. Then, applying (17)
with the functions f = Y P%:-°A™ and Choosmg go=v9y=wy=c=10 for simplicity, we
obtain the result

flx,y, z,v,w;A) =
0 0 J | — 4 Y e r+s
— (— R _ )¢ )\H-s
G Wi 1D ) G R T 7T P T

i’j77.7s
(sum over i,7,s,r > 0 and moreover r > i,s > j.r+ s+ i+ j > 0). The coefficient
of A™ on the right-hand side is the resolving function which corresponds to the particular
solution f = P50 of the ultrahyperbolic equation (5).

o0

By using the “general solution” f = / E(t,y — vt, z — wt)dt of % A with the choice

E=gt)(y—tv)P(z —tw)?  (p,q,=0,1,--+)

where ¢(¢) is an arbitrary function with a compact support, we obtain the above
polynomial solutions as well. However, this is in fact a misleading strategy: the proofs of
the most interesting geometrical results to follow rest on quite other principles.

Second Example. Together with the primary coordinates z,vy,z,v,w we shall use
the alternative coordinates z, a, (3,7, 0. Then the straight lines (6) have the alternative
equations (7). Let & = £(«, 3,7, d)be a given function. In virtue of (7), £ may be regarded
as a function on the family of straight lines. We will determine all resolving functions
of the form f = F(z,a,3,7,0) = h(x,£). One can verify that conditions (4) for our
resolving function read

2Fﬁ:Fam—xFﬁI, 2F§:F'ya:_xF5:D (24)
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in the alternative coordinates. Continuing in this way we obtain the system of differential
equations

2§ﬁh§ = (504 - xgﬁ)hﬁla 285 = (g'y - «T@?)hgx
for the functions h, & where the variables can be separated as

ba b2 _ e
5—£—H+x<H_ ). (25)

We have omitted the exceptional (and quite simple) cases when some of the
functions &g, &5, he, H vanish. It follows that 0(2/H + x)/0x = 0 whence

W[ »
H= e = ape " /—u—p(wd“ (@)

where p(£), ¢(€), r(x) are arbitrary functions. With this function h, conditions (25) reduce
to the system

504 = p(f)fﬁ; 57 = p(f)fa (26)
The solution is given by the implicit equation
§=M(B+p(&)e,d+p&)y) (27)

and we have the result.
If a function & = &(a, 3,7, 9) satisfies the implicit equation (27) and p(§),q(&), r(x)
are arbitrary, then

_ q(§) (x
be) = [ S de+ (o (28)

is a resolving function. The function r(x) is immaterial here and may be omitted.
Without much loss of generality, we may assume p(§) = £. Then (27) simplifies as

§=M(B+&a, 6 +¢P). (29)
In terms of the primary coordinates, we have the equation
.f':M(y—(fL'—.f')U, Z_(x_‘;il)w) (izf(v,y—vx,w,z—wx)) (30)

and a nice geometrical interpretation is as follows.

Let a smooth surface x = M (y, z) in the space R* with the coordinates x, y, z be given,
the domain of M being a certain open subset of R?. Given z,, z, v, w, we consider the
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point P = (, 7, Z) of intersection of the straight line y—j = (z—&)v, z2—% = (z—&)w with
this surface; then the intersection point P is determined just by the implicit equation (30).

Smooth dependence of the intersection P on the variables z,y, z, v, w is ensured if the
inequality

o(x — M)

o0z
holds true (i.e., if the line transversally intersects the surface).

Assuming p(&) = &, the formula (28) also greatly simplifies and leads to a huge family
of resolving functions. We shall however deal only with the simplest possible case ¢(§) = 1,

h
ence , B dé. B 1 B 1 39
(x,ﬁ)—/(x_g)z_ﬁ_g(a,ﬁ,%(s)_x—f(ﬁ,y,z,v,w) ( )

=1~ My(ga 2)2) - Mz(gv é)w #0 (31)

from now on. B
Let us recall the % 5 equation (5). In general, if f = f(y, z, v, w) is a solution then

0? 0? - P —
A Ao A A~ k = k” w — JzJv

(55— g ) D =KD~ 1.7

for any function k. In particular, let us choose the function (32), hence f = 1/(z — &)

where z is regarded as a mere parameter. Then f,f, = f.f, identically. (Direct

verification: the formulae

. . M,
Ty=—R &= 1 W= —(x —T)==, Ty = —(x—x)K
with A =1—vM, —wh, easily follow from (30).) So we have the result: every composed
function k(1/(z — 7)) is a solution of Z  (if x = c is kept fixed) and therefore every
composed function of the form K (%) and in particular T itself is a solution of U .
According to the geometrical meaning of the function & = #(z,y, 2, v, w) which is the z-
coordinate of the intersection point P, we have very clear insight into a huge the family
of (generalized) solutions of U with the singularities at the exceptional “focusing
points”where the inequality (31) is not satisfied.

By employing the latter result, one can obtain a certain counterpart of the formula (18)
by applying (17) with the choice f = K(%(c,y, z,v,w)). Clearly

g=(c—x) /K'(i(c, ) (Eo(ey ) (v =) + Tyle, .. ) (w — wg))dt.

In the case vy = wy = 0 we may substitute
—M,v— M, JA-1
yUA = =(c-9) A

Ty + Tpyw = (¢ — )

and therefore the final result
1

g (c—x)/K'(gz(c,...))(c—:z(c,...))Tdt

0
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with the arguments (---) = (yo + (¢ — zo)tv, 2 + (¢ — xo)tw, tv, tw) looks fairly good.

Third Example. We shall deal with the complex—valued functions f = f; + if,
of the common real variables (either of the original ones z,y,z,v,w or the
alternative x, «, 3,7,d). Such a function is called resolving if (4) is satisfied (with f
substituted for f) and this is true if and only if the components fi, fo are resolving
functions in the common sense. Nontrivial results can be nevertheless obtained if one
deals with the generalized length f fdx. We wish to obtain real values after appropriate
adaptations.

Recall that every (real) straight line is determined by the real constants & = A, 3 = B,
v = C,§ = D in terms of the alternative coordinates «a, 3,~,d and the equations of the
straight line are as before

y=Arx+B, 2=Cx+ D

in terms of the original coordinates. However we will choose a complez point P = (X, ¥, 2)
on the real straight line (hence y = Ax+ B,z = Cx+ D). It is clearly determined by the
(arbitrary) choice of a complez-valued function X = £(«, 3,7, d) of real variables a, 3,7, 0.

Theorem. Assuming Im & # 0, then the function f = 1/(x — &) is resolving if and only
if € is a holomorphic function such that (except for some degenerate cases) a certain
implicit equation & = M(B+ &a, 0 + &) is satisfied, where M = M(y, z) is a holomorphic
function.

One can observe that we again deal with the point of intersection P = (x,¥,2)
where X = £, with the complex surface X = M(y, z).

Proof is a mere slight adaptation of the above reasonings. Let us
denote f = F(z,a,3,7,0) in terms of the alternative coordinates. Then f is resolving
if (24) is satisfied for the (complex-valued) function F instead of the previous F. In
particular, assuming F = 1/(z — &), we obtain the requirement (26) with p(§) = £ and
the new, complex-valued function & (instead of the previous real £). However, £ = & + i,
and separation of the real and imaginary components provides the systems

g 0 (06 000
§i57 3 — oo 28 95 +&—— 55~ da’ (33)
62,2 851, 6% 4601 06 (34)

oy
Both (33) and (34) are elhptlcal systems (see below) 1f 52 # 0, therefore any classical
solution &, &, is in reality an analytical function of the variables «, 3,+,d (which may
be therefore extended to complex variables). Then equations (26) ensure the existence
of certain nontrivial identity M(&, 5 + a, § + £y) = 0 where M is appropriate analytic
function. The proof is done.

Note to the ellipticity. We mention the particular case of the quasilinear

system S A7, oc'/oy* = B/ (i,j = 1,...,m;k = 1,...,n) with the holomorphic
coefficients Afk,BJ The system is called ellzptzcal if det(ZAktk) # 0 for all real
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nonvanishing vectors (¢y,...,%,). In our particular case, i.e., for the system (33), we have
denoted y! = o, y> = # (n = m = 2) and then

D ALt => Aft=Eita—t, Y Alty ==Y Ahty = &b

whence det (32 A% ty) = (E1ty — 11)% + (Ext2)? # 0 if & # 0 and (¢4, 1) # (0,0).

Passing to the example proper, one can see that the distances (lengths of the segments
along a fixed straight line where £ = const) are given by the complex-valued and multi-
valued logarithm

fdr = n(x — &) =Injx — & + iArg(z — §).

It is desirable to introduce the real—valued components

1 1 1
Re/fdx_§/<$—f1—i§2+$—§1+i§2> /|I §|2dx ln|x §|,

1 1 1 B 9 B _
Im/fdx—ﬂ/<x_§l_i§2—x_§1+i§2>dx—/7|x_§|2dx—Arg(x £).

Both are rather interesting. For instance, if one takes the imaginary sphere
2?2 +y? + 22 = —1 for the surface x = M(y, z), the resolving functions
Ref = ((y — va)v + (= — wayw) /(L + 2* +y* + 2%),

Imf = (140> +w? + ((y — v2)* + (z —wx)? — (vz + wy)?) /(1 + 2® + > + 2?)
appear. The latter one provides the distance in the non-Euclidean elliptical geometry.

One can observe that(in contrast to the hyperbolic case) the distances are defined on
total lines and for the component Im f also at the points of infinity.
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