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zAbstra
t. The straight lines in three-dimensional ve
tor spa
e realize the shortest distan
e forvarious metri
s. This property is reformulated in terms of the inverse problem of the 
al
ulus of variationsand 
losely related to the ultrahyperboli
 equation with four independent variables. The interrelation isuseful in both dire
tions. For instan
e, polynomial solutions of the ultrahyperboli
 equation provide allpolynomial metri
s with extremals the straight lines and 
onversely, a slight generalization of the Hilbertmetri
s leads to rather nontrivial (multi-valued or fo
using) solutions of the ultrahyperboli
 equation. Ingeneral, the arti
le 
lari�es some well-known a
hievements 
on
erning the 4th Hilbert Problem.Introdu
tionThe history of our topi
 goes ba
k to the famous Hilbert Problems [1℄, namely to the4th Problem 
on
erning the determination of all metri
s in the open subsets of Pn thathave the straight lines as the shortest 
urves and the study of the relevant geometries. Inthis strong version, it is still far from a 
omplete solution [2℄. With additional smoothnessassumptions, a 
lose 
onne
tion to the inverse problem of the 
al
ulus of variations (I P)and the prominent role of the ultrahyperboli
 equation (U H ) was soon indi
ated [3℄.Let us re
all that I P 
onsists in determination of the variational integral if theextremals are given in advan
e. In two dimensions, for the integral R f(x; y; v)dx (v = y0),the solution is rather easy [4℄. Espe
ially in the parti
ular 
ase of extremal straightlines the formula fvv = U(v; y � vx) with arbitrary U resolves the problem. Thisresult was adapted to three dimensions [3℄ with the following result. The variationalintegral R f(x; y; z; v; w)dx (v = y0; w = z0) has the straight lines for extremals if and onlyif fvv = U; fvw = V; fww = W are fun
tions of the variables� = v; � = y � vx; 
 = w; Æ = z � wx:One 
an 
he
k the 
ompatibility 
onditionsU
 = V�; V
 =W�; UÆ = V�; UÆ =W�and they imply the U H equation �2(�)=���
 = �2(�)=���Æ for all fun
tions (�) = U; Vand W: Then the fun
tion f 
an be re
onstru
ted from U; V;W by double quadrature.Subsequently other solutions of I P were dis
ussed. In the ingenious arti
le [5℄, thethree-dimensional sub
ase was thoroughly analysed in full generality. However, in theparti
ular 
ase of extremal straight lines the path from U H (formula (8.22)) to thekernel fun
tion f (pages 82-84) is not quite easy. The re
ent general solution [6℄ of I Prests on non-elementary tools, the variational bi
omplex, and the straight lines are notseparately mentioned.In this arti
le we follow the geometri
al approa
h [7℄ based on the systemati
alappli
ation of the Poin
ar�e-Cartan (PC ) forms [8℄ with intentional use of quite



36 Chrastinov�a V.elementary methods of algorithmi
al nature. Our result is as follows: for the variationalintegral R f(x; y; z; v; w)dx (v = y0; w = z0) with extremals the straight lines, everyfun
tion �f = f(
; y; z; v; w) (
 = 
onst) satis�es U H �2 �f=�y�w = �2 �f=�z�v and
onversely, every solution �f = �f(y; z; v; w) of this U H permits to re
onstru
t the kernelfun
tion f of the variational integral (whi
h redu
es to �f if x = 
 is kept �xed for a given
onstant 
) by a quadrature.On this o

asion, a few examples are presented. The polynomial 
ase related tothe Bessel fun
tions, a far going generalizations of the Hilbert proje
tive metri
s [9℄on Riemannian surfa
es with the multivalued and fo
using solutions of U H ; and�nally the proof of analyti
ity of the ellipti
al Hilbert metri
s employing very advan
edresults [10, 11℄.We will establish a 
lose relationship between the familiar property of the straightlines y = Ax + B; z = Cx + D in the spa
e R3 with 
oordinates x; y; z; i.e., that theyrepresent the shortest 
urves for 
ertain metri
s, and the solutions �f = �f(y; z; v; w) of theultrahyperboli
 equation �2 �f=�y�w = �2 �f=�z�v.In order to employ the 
ommon tools of di�erential 
al
ulus, we shall deal withmetri
s � su
h that the limitlim"!0 1"�((x; y; z); (x+ u"; y + v"; z + w")) = F (x; y; z; u; v; w) (1)is a smooth (in�nitely-di�erentiable) fun
tion whenever juj+ jvj+ jwj 6= 0. In geometri
alterms, F is the rate of 
hange of the distan
e at the point (x; y; z) 2 R3 as one moves inthe dire
tion (u; v; w). Equation (1) reads�((x; y; z); (x+ u"; y + v"; z + w")) = (F (x; y; z; u; v; w) + o("))"and it follows that the length of a smooth 
urve(x(t); y(t); z(t)) 2 R3 (a � t � b; jx0(t)j+ jy0(t)j+ jz0(t)j 6= 0) (2)is represented by a Riemannian integral as follows. The sum of the distan
es between theneighbouring points of a partitionxi = x(ti); yi = y(ti); zi = z(ti); a < � � � < ti < ti+1 < � � � < bof the 
urve approximates the Riemannian integral sum and has a limit as the norm ofthe partition tends to zero:limX �((xi; yi; zi); (xi+1; yi+1; zi+1)) = bZa F (x(t); y(t); z(t); x0(t); y0(t); z0(t))dt:We speak of a generalized length L = bZa Fdt of the 
urve (2) and our aim is to deal withmetri
s � su
h that the straight lines realize the shortest 
urves 
onne
ting two given(su�
iently 
lose) points.The generalized length L is independent of the parametrization of the 
urve (2) whi
hmay 
ause some te
hni
al di�
ulties, however, on every su�
iently short segment of the¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010
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urve one 
an 
hoose one of the 
oordinates x; y; z for a new parameter. We shall mostlyuse the parameter x assuming x0(t) 6= 0 in (2). Then the 
urves under 
onsideration aregiven by the equations y = y(x); z = z(x) and the generalized length is represented bythe integralL = bZa f(x; y(x); z(x); y0(x); z0(x))dx; f(x; y; z; v; w) = F (x; y; z; 1; v; w): (3)With this adaptation, the methods of the 
lassi
al 
al
ulus of variations 
an be
omfortably applied.It is well-known that the 
urves of the minimal length 
onne
ting two given pointssatisfy the Euler-Lagrange (E L ) systemfy(� � � ) = ddxfv(� � � ); fz(� � � ) = ddxfw(� � � ); where (� � � ) = (x; y; z; y0; z0):Re
all that the solutions of E L system are 
alled extremals. We wish to determinefun
tions f su
h that the straight lines are just the extremals. Re
all that E L systemrepresents only the ne
essary 
onditions and the lo
al minimum property of the straightlines is ensured if moreover the familiar Legendre 
ondition holds true, we shall howeverfo
us our interest just on the E L system.With these preparations, our task 
an be explained in quite simple terms.The E L system readsfy = fvx + fvyy 0 + fvzz 0 + fvvy 00 + fvwz 00;fz = fwx + fwyy 0 + fwzz 0 + fwvy 00 + fwwz 00:It follows that all straight lines y = vx + B; z = wx + D with the variableparameters A = v, C = w are extremals (solutions of the E L system) if and only ifthe identities fy(�) = fvx(�) + fvy(�)v + fvz(�)w;fz(�) = fwx(�) + fwy(�)v + fwz(�)w;where (�) = (x; y; z; v; w) hold true. They provide a system of the se
ond order partialdi�erential equations for the fun
tion f = f(x; y; z; v; w) and we will also use thealternative trans
riptionfy = Xfv; fz = Xfw �X = ��x + v ��y + w ��z� (4)of these equations in future. One 
an then observe thatfyw = fvxw + fvywv + fvzww + fvz;fzv = fwxv + fwyvv + fwy + fwzvw;when
e the ultrahyperboli
 equation fyw = fzv follows. The 
oordinate x appears as a mereparameter, so it is of interest to 
onsider the equation�fyw = �fzv ( �f = �f(y; z; v; w) = f(
; y; z; v; w)) (5)¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



38 Chrastinov�a V.with 
 an arbitrary 
onstant. We shall see that the equation (5) for the fun
tion�f = �f(y; z; v; w) of four variables is in 
ertain sense equivalent to the system (4). Morepre
isely: a solution �f of (5) together with the 
hoi
e of a 
onstant 
 permits us tore
onstru
t the original fun
tion f = f(x; y; z; v; w) satisfying (4).In this arti
le a fun
tion f = f(x; y; z; v; w) is 
alled resolving if (4) is sa�s�ed, i.e., ifall straight lines are extremals. We will determine all resolving fun
tions f by using thesolutions �f of (5). The 
onverse setting will also be quite interesting; 
ertain resolvingfun
tions f will be obtained by dire
t geometri
al 
onstru
tion whi
h provides rathernontrivial solutions �f of the ultrahyperboli
 equation (5).PrerequisitiesOur reasonings will be 
arried out in an open subset of the spa
e R5 with 
oordinatesdenoted x; y; z; v; w: We also use the alternative 
oordinatesx; � = v; � = y � vx; 
 = w; Æ = z � wx:The 
oordinates v; w 
orrespond to the derivatives, therefore we 
onsider straight linesgiven by the equationsy = Ax +B; z = Cx +D; v = A; w = C (A;B;C;D are 
onstants) (6)and, in terms of the alternative 
oordinates the equations (6) read:� = A; � = B; 
 = C; Æ = D (A;B;C;D are 
onstants): (7)For a given fun
tion g = g(x; y; z; v; w) 
learlydg = Xgdx + gy(dy � vdx) + gz(dz � wdx) + gvdv + dgwdw == Xgdx+ gyd� + gzdÆ + (gv + xgy)d� + (gw + xgz)d
: (8)The fun
tions �; �; 
; Æ are redu
ed to �� = v; �� = y�
v; �
 = w; �
 = z�
w if they are
onsidered on the hyperplane x = 
 (a 
onstant). In general, a fun
tion g = g(x; y; z; v; w)is redu
ed to �g = g(
; y; z; v; w) = �g(y; z; v; w): In the alternative 
oordinates, a fun
tionh = h(x; �; �; 
; Æ) is redu
ed to�h = h(
; ��; ��; �
; �Æ) = h(
; v; y � 
v; w; z � 
w)and this redu
tion will be again denoted �h = �h(y; z; v; w) when regarded as a fun
tion ofthe original 
oordinates.Conversely, every fun
tion h = h(�; �; 
; Æ) independent of x (better: expressible interms of �; �; 
; Æ) 
an be restored from its restri
tion �h(y; z; v; w) expressed in terms ofthe original 
oordinates sin
eh(�; �; 
; Æ) = �h(� + 
�; Æ + 

; �; 
):Indeed, the restri
tion of the fun
tion is �h( �� + 
��; �Æ + 
�
; ��; �
) = �h(y; z; v; w); use theformulae for ��; ��; �
; �Æ given above.Analogous pro
edure 
an be applied to di�erential forms. A di�erential form  
anbe redu
ed to the form denoted � and 
onversely, every di�erential form  expressibleonly in terms the fun
tions �; �; 
; Æ (without the use of x) 
an be restored from theredu
tion � expressed in terms of y; z; v; w if the fun
tions � + 
�; Æ + 

; �; 
 are¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010
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 Equation 39substituted for y; z; v; w, respe
tively. One 
an verify that the di�erential is preserved:d�h = dh; d � = d : We omit the simple dire
t proof (alternatively: redu
tions andrestorations are spe
ial pull-ba
ks).De�nition. For every fun
tion f = f(x; y; z; v; w) we introdu
e the Poin
ar�e-Cartan(PC ) form �' = fdx + fv(dy � vdx) + fw(dz � wdx): (9)The exterior di�erential � = d �' has the obvious properties d� = 0 (� is a 
losed form)and � �= 0 (mod dx; dy; dz)): If f is a resolving fun
tion, we speak of a resolving PCform. These resolving PC forms will be alternatively 
hara
terized in the followinglemmas.Dire
t Lemma. If �' is a resolving PC form, then � = d �' 
an be expressed interms of the fun
tions �; �; 
; Æ (without the use of the 
oordinate x and the di�erentialdx).Proof. Obviously dy � vdx = d� + xd�; dz � wdx = dÆ + xd
; dv = d�; dw = d
;therefore� = df ^ dx + dfv ^ (d� + xd�) + dfw ^ (dÆ + xd
)� (fvd� + fwd
) ^ dx:Using (8) for g = f; fv; fw; if follows that� = ((fy�Xfv)(d�+xd�)+ (fz�Xfw)(dÆ+xd
))^dx+ f��d�^d�+ � � �+ f 
Æd
 ^dÆwith 
ertain 
oe�
ients f��; � � � ; f 
Æ (they need not be expli
itly stated). By virtue of (4),we obtain � = f��d� ^ d� + � � �+ f 
Æd
 ^ dÆ;where the 
oe�
ients 
an be expressed in terms of the alternative 
oordinates x; �; �; 
; Æ:However, they are in fa
t independent of x as follows from the identity d� = 0: �Converse Lemma. Let 	 be a 
losed 2-form satisfying 	 �= 0 (mod dx; dy; dz):If 	 is expressible only in terms of �; �; 
; Æ then there (lo
ally) exists a resolving PCform �' su
h that d �' = 	:Proof. By virtue of the Poin
ar�e lemma, 	 = d for an appropriate form = Kdx+ Ldy +Rdz +Mdv +Ndw:The 
ongruen
e 	 = d �= 0 implies Mw = Nv and there exists g = g(x; y; z; v; w) su
hthat gv =M; gw = N: Clearly d( � dg) = 	 where the 
orre
ted form � dg = Udx+ V dy +Wdz (U = K � gx; V = L� gy; W = R� gz)¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



40 Chrastinov�a V.has no terms in dv; dw: We will see that  � dg is identi
al to the sought resolving PCform �': Obviously  � dg = fdx + V (dy � V dx) +W (dz � wdx)where f = U + vV + wW;when
e	 = d( � dg) = df ^ dx + dV ^ (d� + xd�) + dW ^ (dÆ + xd
)� (V d� +Wd
) ^ dx:Using (8), one 
an verify that	 = ((fy �XV )(d� + xd�) + (fz �XW )(dÆ + xd
)++(fv � V )d� + (fw �W )d
) ^ dx+ � � �where all the produ
ts d� ^ d�; � � � ; d
 ^ dÆ are negle
ted. Sin
e 	 is expressible interms of �; �; 
; Æ, we 
on
lude that fv = V; fw = W; hen
e 	 is indeed a PC form.Moreover fy = XV = Xfv; fz = XW = Xfw; therefore �' is resolving. The proof is done.�Cru
ial Lemma. Let 	 be a 2-form expressible only in terms of �; �; 
; Æ: Thenthe 
ongruen
e 	 �= 0 (mod dx; dy; dz) holds true if and only if the redu
tion �	 to some(equivalently: to any) hyperplane x = 
 is of the spe
ial kind�	 = (Mdv + Ldw) ^ dy + (Ldv +Ndw) ^ dz: (10)Proof. Assuming (10), we obtain	 = (Md� + Ld
) ^ d(� + 
�) + (Ld� +Nd
) ^ (dÆ + 

)by restoration. Then the desired 
ongruen
e 
an be dire
tly veri�ed.In order to prove the 
onverse, we use the formula	 = f��d� ^ d� + � � � + f 
Æd
 ^ dÆ == f��dv ^ d(y � vx) + � � �+ f 
Ædw ^ d(z � wx) �=�= (f�
 � x (f�Æ + f�
) + x2f�Æ)du ^ dv (mod dx; dy; dz):Assuming the 
ongruen
e 	 �= 0, it follows that f�
 = f�Æ + f�
 = f�Æ = 0; hen
e theredu
tion is �	 = �f��d�� ^ d�� + � � � + �f 
Æd�
 ^ d�Æ == ( �f��dv + �f�Ædw) ^ dy + ( �f�Ædv + �f 
Ædw) ^ dzafter some 
al
ulations. This is exa
tly (10).(Alternative proof. Clearly X� = � � � = XÆ = 0; hen
e LXd� = � � � = LXdÆ = 0and therefore LX	 = 0 where LX denotes the Lie derivative. Let us denote� = dx ^ dy ^ dz ^	: Then
LX� = dx ^ (dv ^ dz + dy ^ dw) ^ 	;

L
2X� = 2dx ^ dv ^ dw ^ 	;

L
3X� = 0:¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spa
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 Equation 41The form� satis�es a third order linear di�erential equation, therefore� is determinedif the initial values �x=
 = dx ^ dy ^ dz ^ �	;
LX�x=
 = dx ^ (dv ^ dz + dy ^ dw) ^ �	;

L
2X�x=
 = dx ^ dv ^ dw ^ �	;at the point x = 
 are given. In parti
ular � = 0 identi
ally if and only if the initial valuesare all vanishing, however, this is true just for the forms �	 of the spe
ial kind (10). Finally,the identity � = 0 is a mere trans
ription of the 
ongruen
e 	 �= 0 (mod dx; dy; dz) andtherefore the last 
ongruen
e is equivalent to (10). The alternative proof is not elementary.However, it may be applied even to the general I P where the given extremals need notbe the straight lines [7℄. As for the other Lemmas, there need not be any 
hange.) �Final resultsLet us overview our a
hievements and add some remarks.By virtue of the Converse Lemma (better: the proof), if  is su
h a 1-form thatthe di�erential 	 = d is expressible in terms of �; �; 
; Æ and moreover satis�es	 �= 0 (mod dx; dy; dz), then  � dg �= 0 (mod dx; dy; dz) for an appropriate fun
tion gand for every 
orre
tion dg, the result �' =  � dg is a resolving PC form. The Dire
tLemma ensures that every resolving PC form 
an be obtained in this manner (triviality:put  = �', dg = 0).In order to determine all resolving PC forms �', we have to sear
h for allforms  = Kdx + Ldy + Rdz + Mdv + Ndw with the above two properties of thedi�erential 	 = d . The �rst property will be guaranteed if  is 
hosen as a restorationof a form � = �Ldy + �Rdz + �Mdv + �Ndw; the se
ond property by the use of the Cru
ialLemma (namely �	 = d � must be of the form (10)). In fa
t it is su�
ient to deal with theredu
tions of the spe
ial kind� = �Ldy + �Rdz = V (y; z; v; w)dy +W (y; z; v; w)dz: (11)Indeed, let us suppose that we sear
h for a resolving PC form �' (not yet expli
itlyknown). Clearly ��' �= 0 (mod dy; dz) for the redu
tion and so we may put � = ��' whi
his just of the form (11) (with V;W as yet unknown). Let  be the restoration of theform (11). Then 	 = d is the restoration of�	 = d � = d ��' = �� (� = d �');hen
e 	 = � (restorations are uniquely determined) whi
h means d = d �' and �' =  �dgfor appropriate 
orre
tion dg therefore we do not lose any possible resolving PC form �'.Altogether, in order to obtain an arbitrary resolvingPC form �'; it is su�
ient to startwith the restorations  of the spe
ial di�erential form (11). So let us 
hoose a di�erentialform (11). Then the restoration  , hen
e the di�erential	 = d 
an be expressed in termsof �; �; 
; Æ; the �rst requirement is satis�ed. The 
ongruen
e 	 �= 0 (moddx; dy; dz); thatis, the se
ond requirement is ensured if the redu
tion is of the form (10). However 
learly�	 = d � = (Wy � Vz)dy ^ dz + (Vvdv + Vwdw) ^ dy + (Wvdv +Wwdw) ^ dz¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



42 Chrastinov�a V.and we have the 
onditions Wy = Vz; Wv = Vw for the 
oe�
ients in (11). Now we re
allthe U H equation (5). If �f is a solution, the fun
tions V = �fv;W = �fw 
learly satisfythe 
onditions and the 
onverse also holds true. We are done.Our a
hievements 
an be summarized as follows.Main Theorem. We start with an arbitrary form� = �fv(y; z; v; w)dy + �fw(y; z; v; w)dz (12)where �f = �f(y; z; v; w) is a solution of (5). Then the restoration = �fv(� � � )d(� + �
) + �fw(� � � )d(Æ + 

) == �fv(� � � )(dy � vdx) + �fw(� � � )(dz � wdx) + (
� x)( �fv(� � � )dv + �fw(� � � )dw) (13)where (� � � ) = (� + �
; Æ + 

; �; 
) = (y + (
� x)v; z + (
� x)w; v; w) (14)needs the 
orre
tion �dg(x; y; z; v; w) su
h thatgv = (
� x) �fv(� � � ); gw = (
� x) �fw(� � � ) (15)in order to obtain the resolving PC form�' =  � dg = �Xgdx + ( �fv(� � � )� gy)(dy � vdx) + ( �fw(� � � )� gz)(dz � wdx) (16)when
e f = �Xg is the desired resolving fun
tion.Equations (15) for the unknown fun
tion g 
an be resolved by the line integrals inthe two-dimensional subspa
es x = x0; y = y0; z = z0 (with 
oordinates v; w) of the total�ve-dimensional spa
e with the 
oordinates x; y; z; v; w: For instan
eg(x0; y0; z0; v; w) = g0 + (
� x) 1Z0 ( �fv(� � � )(v � v0) + �fw(� � � )(w � w0))dt (17)where x0; y0; z0; v0 + t(v � v0); w0 + t(w� w0) is substituted for x; y; z; v; w (respe
tively)into the arguments (14). The integral is taken along the straight line segment with theendpoints (v0; w0) and (v; w): Arbitrary smooth fun
tions of the parameters x0; y0; z0 
anbe in prin
iple 
hosen for g0; v0; w0; however, one 
an also assume v0; w0 are 
onstantswithout any loss of generality.If we are not interested in PC forms but only in the 
orresponding resolvingfun
tion f = �Xg; the formulaf(x0; y0; z0; v; w) = �( ��x0 + v ��y0 + w ��z0 )g0(x0; y0; z0)++(v � v0) 1Z0 �fv(� � � )dt+ (w � w0) 1Z0 �fw(� � � )dt��(
� v0)((v � v0)2 1Z0 �fvy(� � � )(1� t)dt+ 2(v � v0)(w � w0) 1Z0 �fvz(� � � )(1� t)dt+¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spa
e and the Ultrahyperboli
 Equation 43+(w � w0)2 1Z0 �fwz(� � � )(1� t)dt (18)dire
tly follows from (17). For 
onvenien
e, we re
all the arguments (� � � ) =(y0 + (
� x0)(v0 + t(v� v0)); z0 + (
� x0)(w0 + t(w�w0)); v0 + t(v� v0); w0 + t(w�w0))appearing in the integrands (17) and (18).A few appli
ationsFirst Example.We shall deal with the resolving fun
tions f whi
h are polynomials.For this aim, it is su�
ient to determine all solutions �f of the equation (5) that arehomogeneous polynomialsPn =XP aibj
kdln yaizbjv
kwdl (ai + bj + 
k + dl = n) (19)of given degree n. The equation (5) is satis�ed if and only if all the equalities�n�yai�zbj�v
k�wdl Pn = �n�yai�1�zbj+1�v
k+1�wdl�1Pnbetween n-th order derivatives are valid whenever ai; dl � 1: However�n�yai�zbj�v
k�wdl Pn = ai! bj! 
k! dl!P aibj
kdlnand so we have the 
onditionsai! bj! 
k! dl!P aibj
kdln = (ai � 1)! (bj + 1)! (
k + 1)! (dl � 1)!P ai�1; bj+1; 
k+1; dl�1nfor the 
oe�
ients. The produ
ts yw and zv play a signi�
ant role here whi
h is not 
learlyexpressed. Let us therefore rearrange (19) as followsPn =X yAizBjvCkwDlPAiBjCkDl2m (Ai +Bj + Ck +Dl + 2m = n) (20)where the homogeneous polynomialsPAiBjCkDl2m =XPAiBjCkDl rs2m (yw)r(zv)s (r + s = m)involve all fa
tors yw and zv, i.e, we suppose AiDl = BjCk = 0 in the sum (20). Afterthis arrangement, we have the 
onditions(Ai + r)!(Bj + s)!(Ck + s)!(Dl + r)!PAiBjCkDl rs2m == (Ai + r � 1)!(Bj + s+ 1)!(Ck + s+ 1)!(Dl + r � 1)!PAiBjCkDl;r�1;s+12m (21)whenever r � 1: They 
an be expli
itly resolved:PAiBjCkDl2m = 
onstXr;s (yw)r(zv)s(Ai + r)!(Dl + r)!(Bj + s)!(Ck + s)! (r + s = m) (22)where 
onst = CAiBjCkDl : Substituting (22) into (20), we obtain all polynomialsolutions �f = Pn of the ultrahyperboli
 equation (5).¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



44 Chrastinov�a V.A 
ertain relationship to Bessel fun
tions is worth mentioning. For the parti
ular
ase Ai = � � � = Dl = 0 this is simple sin
e1Xr=0 (yw�)rr!2 1Xs=0 (zv�)ss!2 = 1Xr=0 P0:::02m �m (23)whi
h reads I0(2(yw�)1=2)I0(2(zv�)1=2) = PP0:::02m �m: As the general 
ase is 
on
erned,re
all that Ai; Bj; Ck; Dl are natural numbers su
h that either Ai; Dl or Bj; Ck arevanishing. Assume Ai = Ck = 0: Then the obvious identity1Xr=0 (yw�)rr!(Dl + r)! 1Xs=0 (zv�)s(Bj + s)!s! =XP0Bj0Dl2m �mreads IDl(2(yw�)1=2)IBj (2(zv�)1=2) = (2(yw�))Dl(2(zv�))Bj XP0Bj0Dl2m �mwhere I�(z) = (z=2)�P(z=2)2k=(k!�(�+k+1)) are the Bessel fun
tions. We have obtainedthe generating fun
tions for the ultrahyperboli
 polynomials.The generating fun
tions are useful if one 
al
ulates the resolving fun
tions f: Wemention only the parti
ular 
ase when Ai = Bj = Ck = Dl = 0 here. Then, applying (17)with the fun
tions �f = PP0:::02m �m and 
hoosing g0 = v0 = w0 = 
 = 0 for simpli
ity, weobtain the result f(x; y; z; v; w;�) == ( ��x + v ��y + w ��z ) 1Xi;j;r;s(�x)i+j yr�izs�jvs+iwr+ji!(r � i)!j!(s� j)!r!s! r + sr + s+ i + j �r+s(sum over i; j; s; r � 0 and moreover r � i; s � j; r + s + i + j > 0). The 
oe�
ientof �m on the right-hand side is the resolving fun
tion whi
h 
orresponds to the parti
ularsolution �f = P0:::02m of the ultrahyperboli
 equation (5).By using the �general solution� �f = 1Z�1 �(t; y � vt; z � wt)dt of U H with the 
hoi
e� = g(t)(y � tv)p(z � tw)q (p; q;= 0; 1; � � � )where g(t) is an arbitrary fun
tion with a 
ompa
t support, we obtain the abovepolynomial solutions as well. However, this is in fa
t a misleading strategy: the proofs ofthe most interesting geometri
al results to follow rest on quite other prin
iples.Se
ond Example. Together with the primary 
oordinates x; y; z; v; w we shall usethe alternative 
oordinates x; �; �; 
; Æ: Then the straight lines (6) have the alternativeequations (7). Let � = �(�; �; 
; Æ)be a given fun
tion. In virtue of (7), � may be regardedas a fun
tion on the family of straight lines. We will determine all resolving fun
tionsof the form f = F (x; �; �; 
; Æ) = h(x; �): One 
an verify that 
onditions (4) for ourresolving fun
tion read 2F� = F�x � xF�x; 2FÆ = F
x � xFÆx (24)¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010
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 Equation 45in the alternative 
oordinates. Continuing in this way we obtain the system of di�erentialequations 2��h� = (�� � x��)h�x; 2�Æ = (�
 � x�Æ)h�xfor the fun
tions h; � where the variables 
an be separated as���� = �
�Æ = 2H + x �H = h�xh� � : (25)We have omitted the ex
eptional (and quite simple) 
ases when some of thefun
tions ��; �Æ; h�; H vanish. It follows that �(2=H + x)=�x = 0 when
eH = � 2x� p(�) ; h� = q(�)(x� p(�))2 ; h = Z q(�)(x� p(�))2d� + r(x)where p(�); q(�); r(x) are arbitrary fun
tions. With this fun
tion h; 
onditions (25) redu
eto the system �� = p(�)��; �
 = p(�)�Æ: (26)The solution is given by the impli
it equation� =M(� + p(�)�; Æ + p(�)
) (27)and we have the result.If a fun
tion � = �(�; �; 
; Æ) satis�es the impli
it equation (27) and p(�); q(�); r(x)are arbitrary, then h(x; �) = Z q(�)(x� p(�))2d� + r(x) (28)is a resolving fun
tion. The fun
tion r(x) is immaterial here and may be omitted.Without mu
h loss of generality, we may assume p(�) = �: Then (27) simpli�es as� =M(� + ��; Æ + ��): (29)In terms of the primary 
oordinates, we have the equation~x =M(y � (x� ~x)v; z � (x� ~x)w) (~x = �(v; y � vx; w; z � wx)) (30)and a ni
e geometri
al interpretation is as follows.
XXXXXXXXXXXXz (1; v; w)à~P = (~x; ~y; ~z)̀aP = (x; y; z)~x =M(~y; ~z) y � ~y = (x� ~x)vz � ~z = (x� ~x)w

Let a smooth surfa
e x =M(y; z) in the spa
e R3 with the 
oordinates x; y; z be given,the domain of M being a 
ertain open subset of R2 : Given x; y; z; v; w; we 
onsider the¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



46 Chrastinov�a V.point ~P = (~x; ~y; ~z) of interse
tion of the straight line y�~y = (x�~x)v; z�~z = (x�~x)w withthis surfa
e; then the interse
tion point ~P is determined just by the impli
it equation (30).Smooth dependen
e of the interse
tion ~P on the variables x; y; z; v; w is ensured if theinequality �(~x�M)�~x = 1�My(~y; ~z)v �Mz(~y; ~z)w 6= 0 (31)holds true (i.e., if the line transversally interse
ts the surfa
e).Assuming p(�) = �, the formula (28) also greatly simpli�es and leads to a huge familyof resolving fun
tions. We shall however deal only with the simplest possible 
ase q(�) = 1,hen
e h(x; �) = Z d�(x� �)2 = 1x� �(�; �; 
; Æ) = 1x� ~x(x; y; z; v; w) (32)from now on.Let us re
all the U H equation (5). In general, if f = �f(y; z; v; w) is a solution then� �2�y�w � �2�z�v� k( �f) = k00( �f)( �fy �fw � �fz �fv)for any fun
tion k. In parti
ular, let us 
hoose the fun
tion (32), hen
e �f = 1=(x � ~x)where x is regarded as a mere parameter. Then �fy �fw = �fz �fv identi
ally. (Dire
tveri�
ation: the formulae~xy = My� ; ~xz = Mz� ; ~xv = �(x� ~x)My� ; ~xw = �(x� ~x)Mz�with � = 1� vMy�wMz easily follow from (30).) So we have the result: every 
omposedfun
tion k(1=(x � ~x)) is a solution of U H (if x = 
 is kept �xed) and therefore every
omposed fun
tion of the form K(~x) and in parti
ular ~x itself is a solution of U H .A

ording to the geometri
al meaning of the fun
tion ~x = ~x(x; y; z; v; w) whi
h is the x-
oordinate of the interse
tion point ~P , we have very 
lear insight into a huge the familyof (generalized) solutions of U H with the singularities at the ex
eptional �fo
usingpoints�where the inequality (31) is not satis�ed.By employing the latter result, one 
an obtain a 
ertain 
ounterpart of the formula (18)by applying (17) with the 
hoi
e �f = K(~x(
; y; z; v; w)). Clearlyg = (
� x) 1Z0 K 0(~x(
; : : :))(~xv(
; : : :)(v � v0) + ~xw(
; : : :)(w � w0))dt:In the 
ase v0 = w0 = 0 we may substitute~xvv + ~xww = (
� ~x)�Myv �Mzw� = (
� ~x)�� 1�and therefore the �nal resultg = (
� x) 1Z0 K 0(~x(
; : : :))(
� ~x(
; : : :))�� 1� dt¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010
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 Equation 47with the arguments (� � � ) = (y0 + (
� x0)tv; z + (
� x0)tw; tv; tw) looks fairly good.Third Example. We shall deal with the 
omplex�valued fun
tions f = f1 + if2of the 
ommon real variables (either of the original ones x; y; z; v; w or thealternative x; �; �; 
; Æ). Su
h a fun
tion is 
alled resolving if (4) is satis�ed (with fsubstituted for f) and this is true if and only if the 
omponents f1; f2 are resolvingfun
tions in the 
ommon sense. Nontrivial results 
an be nevertheless obtained if onedeals with the generalized length R fdx. We wish to obtain real values after appropriateadaptations.Re
all that every (real) straight line is determined by the real 
onstants � = A; � = B;
 = C; Æ = D in terms of the alternative 
oordinates �; �; 
; Æ and the equations of thestraight line are as before y = Ax +B; z = Cx+Din terms of the original 
oordinates. However we will 
hoose a 
omplex point ~P = (~x; ~y; ~z)on the real straight line (hen
e ~y = A~x+B; ~z = C~x+D): It is 
learly determined by the(arbitrary) 
hoi
e of a 
omplex-valued fun
tion ~x = �(�; �; 
; Æ) of real variables �; �; 
; Æ:Theorem. Assuming Im � 6= 0; then the fun
tion f = 1=(x� �) is resolving if and onlyif � is a holomorphi
 fun
tion su
h that (ex
ept for some degenerate 
ases) a 
ertainimpli
it equation � =M(�+ ��; Æ+ �
) is satis�ed, whereM =M(y; z) is a holomorphi
fun
tion.One 
an observe that we again deal with the point of interse
tion ~P = (~x; ~y; ~z)where ~x = �; with the 
omplex surfa
e ~x =M(~y; ~z):Proof is a mere slight adaptation of the above reasonings. Let usdenote f = F(x; �; �; 
; Æ) in terms of the alternative 
oordinates. Then f is resolvingif (24) is satis�ed for the (
omplex-valued) fun
tion F instead of the previous F: Inparti
ular, assuming F = 1=(x � �); we obtain the requirement (26) with p(�) = � andthe new, 
omplex-valued fun
tion � (instead of the previous real �). However, � = �1+ i�2and separation of the real and imaginary 
omponents provides the systems�1��1�� � �2��2�� = ��1�� ; �1��2�� + �2��1�� = ��2�� ; (33)�1��1�Æ � �2��2�Æ = ��1�
 ; �1��2�Æ + �2��1�Æ = ��2�
 : (34)Both (33) and (34) are ellipti
al systems (see below) if �2 6= 0; therefore any 
lassi
alsolution �1; �2 is in reality an analyti
al fun
tion of the variables �; �; 
; Æ (whi
h maybe therefore extended to 
omplex variables). Then equations (26) ensure the existen
eof 
ertain nontrivial identity M(�; � + ��; Æ + �
) = 0 where M is appropriate analyti
fun
tion. The proof is done.Note to the ellipti
ity. We mention the parti
ular 
ase of the quasilinearsystem PAjik��i=�yk = Bj (i; j = 1; : : : ; m; k = 1; : : : ; n) with the holomorphi

oe�
ients Ajik; Bj: The system is 
alled ellipti
al if det(PAjiktk) 6= 0 for all real¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



48 Chrastinov�a V.nonvanishing ve
tors (t1; : : : ; tn): In our parti
ular 
ase, i.e., for the system (33), we havedenoted y1 = �; y2 = � (n = m = 2) and thenXA11ktk =XA22ktk = �1t2 � t1;XA21ktk = �XA12ktk = �2t2when
e det(PAjiktk) = (�1t2 � t1)2 + (�2t2)2 6= 0 if �2 6= 0 and (t1; t2) 6= (0; 0):Passing to the example proper, one 
an see that the distan
es (lengths of the segmentsalong a �xed straight line where � = 
onst) are given by the 
omplex-valued and multi-valued logarithmZ fdx = Z dxx� � = Ln(x� �) = ln jx� �j+ iArg(x� �):It is desirable to introdu
e the real-valued 
omponentsRe Z fdx = 12 Z � 1x� �1 � i�2 + 1x� �1 + i�2� dx = Z x� �1jx� �j2dx = ln jx� �j;ImZ fdx = 12i Z � 1x� �1 � i�2 � 1x� �1 + i�2� dx = Z �2jx� �j2dx = Arg(x� �):Both are rather interesting. For instan
e, if one takes the imaginary spherex2 + y2 + z2 = �1 for the surfa
e ~x =M(~y; ~z); the resolving fun
tionsRe f = ((y � vx)v + (z � wx)w)=(1 + x2 + y2 + z2);Im f = (1 + v2 + w2 + ((y � vz)2 + (z � wx)2 � (vz + wy)2)=(1 + x2 + y2 + z2)appear. The latter one provides the distan
e in the non-Eu
lidean ellipti
al geometry.One 
an observe that(in 
ontrast to the hyperboli
 
ase) the distan
es are de�ned ontotal lines and for the 
omponent Im f also at the points of in�nity.A
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