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Let D? C R? be a closed unit 2-disk centered at the origin O € R?, and F be a smooth vector field such
that O is a unique singular point of F' and all other orbits of F' are simple closed curves wrapping once
around O. Thus topologically O is a ,,center” singularity. Let DT (F) be the group of all diffeomorphisms
of D? which preserve orientation and orbits of F.

Recently the author described the homotopy type of D (F) under the assumption that the I-jet j* F(O)
of F at O is non-degenerate. In this paper degenerate case j' F(O) is considered. Under additional ” non-
degeneracy assumptions” on F the path components of DT (F) with respect to distinct weak topologies
are described. These conditions imply that for each h € DT (F) its path component in DT (F) is uniquely
determined by the I-jet of h at O.

Hexaii D?> C R? — zamkHenuti 0OuHu4HULL 0808UMIPHULL OUCK 3 UEHMPOM Y NOYAMKY KOOPOUHAM
O € R? ma F — 2aa0xe sexkmopHe noae maxe, wo O € eOunor ocobausor mouxor F, a éci iHwi op-
6imu — npocmumu 3amMKHeHUMU Kpusumu, wo ozopmaroms O 00uH pas. Taxum YuHOM, MONOAORIUHO
O e ocobausicmio muny yenmp. Hexait DV (F) — epyna écix ougpeomopizmie D?, wo 36epizaromp
opienmauito ma opoimu noasn F.

HewodasHo asmopom 6y.a0 onucaro 0momoniunuii mun DF (F) za ymosu, wo I-cmpyminw j*F(O)
noasa F 6 O e nesupoOxcenum. Y yiti cmammi podaaadaemvcsa supoOoxcenull éunadok j1F(O). 3a do-
0amKo080i ymosu HesupoOxceHocmi Ha F onucano Komnonenmu Ainiinoi 36’a3nocmi npocmopy D (F)
BIOHOCHO PI3HUX CAAOKUX MONOAORIU. 3 Yux ymos sunausae, wo 0aa koxnoz0 h € DT (F) tioz0 kom-
noHenma AiHiHol 36’ a3nocmi 6 DT (F) eOunum wunom susnawaemocs I-cmpymenem h 6 O.

1. Introduction. Let D? = {22 + 32 < 1} C R? be a closed unit 2-disk centered at the origin
O € R?,V C R? be a closed subset diffeomorphic to D?, z € Int V, and

0 0
F = F1%+Fga—y

be a C° vector field on V. We will say that F'is a T'C vector field on V with topological center
at z if it satisfies the following conditions:

(T1) z is a unique singular point of F),
(T) F is tangent to OV, so OV is an orbit of F, and
(T3) all other orbits of F' are closed.
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508 S. I. MAKSYMENKO

Let F' be a TC vector field on V. Then it easily follows from Poincaré — Bendixson theorem
[1] that there exists a homeomorphism

h = (hi,he) : V — D? (1.1)

(ENO)

Fig. 1

such that h(z) = O and for every other orbit o of F its image h(o) is a circle of some radius
¢ € (0,1] centered at the origin, see Fig. 1. This motivates the term TC which we use, see [2].
Moreover, since the first recurrent map of closed orbits is smooth, see [1], it can be assumed
that the restriction h : V\z — D?\O is a C* diffeomorphism.

Let F be a TC vector field on D?. In this case we will always assume that F(O) = 0.
Consider the following matrix

oF o0F

0 GO
VF =

0F, 0F

50 G20

We will call VF the linear part or the linearization of F' at O.
Suppose VF' is non-degenerate. Then it can be shown that there are local coordinates at O
in which

0 0
JF(O) = —ay 9z + ay —ay

for some a # 0, so the 1-jet of F" at O is a “rotation”. This class of singularities is well-studied
from many points of view, see e.g. [3-8]. In particular, in [5] normal forms of such vector fields
are obtained.

Denote by D(F) the group of C* diffeomorphisms h of D? such that h(o) = o for each
orbit o of F. Let also D (F') be the subgroup of D(F) consisting of all orientation preserving
diffeomorphisms, and D?(F) be the subgroup of D+ (F) consisting of all diffeomorphisms fixed
of 9D?. We endow D(F), D*(F), and D?(F) with the weak W>-topologies, see Section 6.

The main result of [2] describes the homotopy types of D?(F) and DT (F) for a TC vector
field with non-degenerate V F, see (i) of Proposition 2.1.

Moreover, in [9] the author calculated the homotopy type of DT (F) for F being a “reduced”
Hamiltonian vector field of a real homogeneous polynomial f : R?> — Rin two variables having
a local extremum at O, see Example 2.1. Notice that in almost all the cases of f, we have that
VF = 0.

In the present paper we study D?(F) and DT (F) for TC vector fields with degenerate VF
but satisfying certain additional “non-degeneracy” assumptions, see Theorems 2.1, 2.2, and 2.3.
The obtained results are not so complete as in the non-degenerate case due to the variety
of normal forms. We are able to prove that the inclusion D?(F) c D*(F) induces isomor-
phisms of the homotopy groups ;. for k > 1 and also describe path components of D?(F) and
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SYMMETRIES OF DEGENERATE CENTER SINGULARITIES OF PLANE VECTOR FIELDS 509

DT (F) with respect to distinct weak topologies. It turns out that for each h € DT (F) its path
component in DT (F') is uniquely determined by the 1-jet of h at O.

These results agree with the ones of [9] and they are essentially new for the case when VF
is degenerate but is not zero.

The principal difference of the presented technique from [2] that we do not require conti-
nuity of the inverse of the so-called shift-map of F, see § 2.4.

In [10] for each compact surface M the author calculated the homotopy types of the stabili-
zers and orbits of Morse functions on M with respect to the right action of the diffeomorphism
group D(M ) of M. The results of the present paper as well as of [2] will be used in another paper
to extend calculations of [10] to a large class of smooth functions with degenerate singularities
on surfaces.

2. Formulation of results. Let F' be a TC vector field on D?. Denote by £(F) the subset of
C*(D?, D?) which consists of all maps h : D? — D? satisfying the following conditions:

(i) h(o) = o for every orbit o of F; in particular, h(O) = O;

(ii) h is a local diffeomorphism at O, though it can be non-bijective and even degenerate
outside O.

Evidently, £(F) is a subsemigroup of C°°(D?, D?) with respect to the usual composition of
maps. Consider the map

j:&F)— GL(2,R), j(h)=J(h,0),

associating to every h € &(F) its Jacobi matrix J(h,O) at O. Let

be the image of j. Then a priori L(F') is a subsemigroup of GL(2, R).

Let £F(F) = j7'(GL"(2,R)) be the subset of £(F) consisting of all maps h with positive
Jacobian at O.

Let also £2(F) C £%(F) be the subsemigroup consisting of all maps A fixed on 9D?, i.e.,
h(z) = z for all z € 9D?. Evidently,

D(F) C &(F), DT (F)c ET(F), DF)c &(F). (2.1)

Forr = 0,1,...,00 denote by E(F)" (E1(F)", etc.) the space E(F), (ET(F), etc.) endowed
with the weak W"-topology, see § 6. Let also Eiq(F)" (€ (F)" etc.) be the path component of
the identity map idp2 in E(F), (€T (F), etc.) with respect to the W7 -topology. Evidently, each
h € E(F)\ET(F) (if it exists) changes the orientation of D2, whence £ (F)" consists of full
path components of £(F)". In particular,

ELF) =&a(F)", r=0,1,...,00.

It turns out that it is more convenient to work with £(F') instead of D(F'). Moreover,
the following theorem shows that such a replacement does not loose the information about
homotopy types.
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510 S. I. MAKSYMENKO

We will assume throughout that the identity map id p2 is a base point and therefore omit it
from the notation. For instance, we denote the n-th homotopy group 7, (E(F)",idp2) simply by
mE(F)" and so on.

Theorem 2.1. Let F be a TC vector field on D?. Let D denotes one of the groups D(F),
DT (F), or D?(F), and & be the corresponding semigroup E(F), E*(F), or E9(F). By D" (resp.
E") we denote the topological space D (resp. £) endowed with the W' -topology. Then

(1) the inclusion D" C E" is a weak homotopy equivalence' forr > 1;

(2) in the W-topology, the induced map myD° — mo&° is a surjection;

(3) for each r > 0O the semigroup mo&" is a group and any two path components of £" are
homeomorphic to each other.

Remark 2.1. In general, a topological semigroup may have path components which are non
homeomorphic to each other. For instance, this is often so for the semigroup of continuous
maps C(X, X) of a topological space X with non-trivial homotopy groups, see e.g. [11].

The next result describes the relative homotopy groups of the pair (€1 (F), E2(F)).

Theorem 2.2. Let F be a TC vector field on D?. Then for each r > 0,

Z, n=1,
0, otherwise.

mEH(F) ) = {
Hence the inclusion £9(F) C £T(F) yields isomorphisms,
& (F) — mEX(F)", n > 2, (2.2)

and we also have the following exact sequence:

0 — mEF) — mENF) — Z — m€2(F) — mpEF(F)" — 0. (2.3)

Our next aim (see Theorem 2.3 below) is to obtain some information about the homotopy
groups of £(F), EY(F) and £9(F). First we recall necessary definitions and some preliminary
results.

Shift map. Let F : D? x R — D? be the flow generated by F and
¢ : C°(D*R) — C™(D? D?)

be the map defined by

p()(z) = F(z,a(2))
for o € C*(D?,R) and z € D?. We will call ¢ the shift map along orbits of ' and denote its
image in C°°(D?, D?) by Sh(F),

Sh(F) := (C>®(D* R)) c C*(D? D?).

! Recall that amap i : D — & is a weak homotopy equivalence if for each n > 0 the induced map 4, :
(D, z) — 7 (&, x) of homotopy sets (groups for n > 1) is a bijection for each z € D.
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Lemma 2.1. The following inclusions hold true:
Sh(F) C &q(F)® C ... C &a(F)! c &a(F)°. (2.4)

If Sh(F) = Eiq(F)" for somer = 0,1, ..., 00, then
Dig(F)* = ... = Dy(F)", (2.5)

whence the identity maps id : D(F)>® — D(F)% and id : E(F)>* — E(F)® for s > r yield the
following bijections:

7T()D(F)OO S 7'('0'D(F)r, Wog(F)oo LR TFUS(F)T.

Proof. The first inclusion in (2.4) follows from [12] (Corollary 21) and the others are evident.
The fact that (2.5) is implied by the assumption Sh(F') = &Eq(F)" is proved in [9].

The lemma is proved.

The following Proposition 2.1 and Example 2.1 describe some results about kerj, Sh(F),
and &4 (F)" for TC vector fields. The most complete information is given for the cases when VF'
is non-degenerate and when F'is a “reduced” Hamiltonian vector field of some homogeneous
polynomial on R?.

Proposition 2.1. Let F be a TC vector field on D?.
(1) IfVF = 0, then Sh(F) C kerj.
(2) Suppose that VF is degenerate but is not zero. Then there are local coordinates at O in

which VF = < 8 g ) for some a € R\{0}. Define the following subsets of GL™(2,R) :

o 2 s (4]
A+_:{<(1] _dl>,deR}, A_+:{(_01 f1>,de]1a<}, (2.6)

A=A, UA _UA _UA_,.
Then
JSWE)) = App, JET(F) C Ay UA_, j(E(F)) C A 2.7)
(3) If VF' is non-degenerate, then there are local coordinates at O in which F is given by

0 0

0 0 — —
F(x,y) = a(x,y) <_y8:c + 5an> + X% + Ya—y, (2.8)

where o is a C*°-function such that o(0O) # 0,and X,Y are flatat O. Moreover,
JTH(SO(2)) = Sh(F) = &a(F)® = ... = &a(F)" = ET(F),
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512 S. L. MAKSYMENKO

Dia(F)® = ... = Dy(F)°,

the inclusions D?(F) C £2(F) and DT (F) C £¥(F) are homotopy equivalences with respect to
the W>-topologies, D°(F) is contractible, and D (F) is homotopy equivalent to a circle.

(4) Let 6 : D*\O — (0,+00) be the function associating to each = € D?\O its period 0(z)
with respect to F. Then 0 is C* on D?\O and we will call it the period function for F.

In the cases (1) and (2), i.e., when VF is degenerate, 211_{1(1) 0(z) = +oo and thus 6 can not

be even continuously extended to all of D?. On the other hand in the case (3) 0 extends to a
C>®-function on all of D? such that 6(O) # 0.

Proof. Statement (1) is a particular case of [13] (Lemma 5.3). (2) and (4) are established
in [2].

(3) Representation (2.8) is due to E Takens [5], and all other statements are proved in [2].
Actually, E Takens has shown that except for (2.8) there is also an infinite series of normal
forms for vector fields with a “rotation as 1-jet”, however the orbits of these vector fields are
non-closed, and so they are not TC.

The proposition is proved.

Example 2.1. Let f : R? — R be a real homogeneous polynomial in two variables such that
O € R? is a unique critical point of f being its global minimum. Then we can write

k
flay) = [[Q) (z.w), (2.9)
j=1

where every @); is a positive definite quadratic form, 3; > 1, and

@ # const for j # j.
j/

k p—
Then it is easy to see that D = [] Qfﬂ "is the greatest common divisor of partial derivatives
j=1

/2 and f{/. LetG = — fz’l’aax + f;i/ be the Hamiltonian vector field of f and

F = ~(f}/D)g + (12D

Then the coordinate function of F' are relatively prime in the ring R[z, y]. We will call F' the
reduced Hamiltonian vector field for f.

Fixe > Oand put V = f~1[0,¢]. Then F is a TC vector field on V with singularity at O.

If & = 1, then VF is non-degenerate and a description of o™ (F)>° and &4 (F)* is given
by (3) of Proposition 2.1.

If £ > 2, then VF = 0. In this case, see [9, 14],

kerj = Sh(F) = Eq(F)® = ... = Eq(F)! # &q(F)° = ET(F),

Eq(F)*> is contractible with respect to the W -topology, and moE1(F)>® =~ Zs, for some
n > 1.
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Now we can formulate our last result, Theorem 2.3. It gives some information about weak
homotopy types of £(F) and £2(F) under certain restrictions on F. The main assumption is the
following one:

kerj C Sh(F). (2.10)

It means that for every h € £(F'), whose 1-jet at O is the identity, there exists a C*° shift function
on all of D?.

Theorem 2.3. Let F be a TC vector field on D* such that V' F is degenerate and ker j C Sh(F).
Let also r > 1. Then the following statements hold true.

(1) IfVF = 0, then Sh(F) = kerj. Letid € GL (2,R) be the unit matrix. If in addition the
path component of id in the image L(F') = j(E(F')) of j coincides with {id} (e.g. when L(F) is
discrete), then Sh(F) = &q(F)', and therefore j induces the isomorphisms

€T (F) ~ L(F)NGLT(2,R), m&(F)" ~ L(F). (2.11)

(2) IfVF = < 8 g )forsomea # 0, then

Sh(F) = Eq(F)® = ... = &a(F) = 71 (AL, (2.12)
whence j yields a monomorphism, see (2.6),
WOE(F)OO — oA & 7o D Zs.

(3) The inclusion EJ(F)" C &5 (F)" between the identity path components is a weak homotopy
equivalence, whence from Theorem 2.2 we have the isomorphisms

ﬂnga(F)T ~ mEN(E), n>1,
and the following exact sequence:
0— Z — mE2(F)" — & (F)" — 0. (2.13)

(4) Suppose that the image L(F) of j is finite. Then o2 (F)" ~ 7, moET(F)" ~ Z, for some
n > 0, and (2.13) has the following form:

0—-2-"sz 2", 7. 0.

IfE(F) # ET(F), then moE(F)" ~ Dy, the dihedral group.

The proof of Theorems 2.1, 2.2, and 2.3 will be given in Sections 9—-11. All of them are based
on results of [14] described in Section 7 about existence and uniqueness of shift functions for
deformations in £1(F), see also Proposition 8.1.

3. The inclusion D(F) C E(F). Let F be a TC vector field of D?. The aim of this section
is to prove Lemma 3.1 which allows to change elements of £(F') outside some neighbourhood
of O to produce diffeomorphisms.

ISSN 1562-3076. Heaninitini koausarnnsa, 2009, m. 12, N> 4



514 S. L. MAKSYMENKO

Definition 3.1. A continuous function f : D?> — [0, 1] will be called a first strong intergal for
Fif

(i) f is O on D?\O and has no critical points in D?\O,

(ii) f71(0) = O, f~X(1) = dD?, and for ¢ € [0,1] the set f~1(c) is an orbit of F.

Notice that we do not require that f be C™ at O. It also follows from the definition that f
takes distinct values on distinct orbits.

€ 2€
Fig. 2

A first strong integral for F' always exists. For instance let h = (hy,hs) : D? — D? be a
homeomorphism which maps orbits of ' onto concentric circles around O, see (1.1). If A is C*°
on D?\O, then function f = h} + h3 is the first strong integral for F.

For every ¢ € (0,1] put U, = f~![0, ¢]. Then U, is invariant with respect to F.

Lemma 3.1. Let h € E(F). Then there exists g € D(F) such that h = g on some nei-
ghbourhood of O.

Proof. By definition, h € £(F) is a diffeomorphism at O, whence there exists ¢ € (0,1/2)
such that i : Uy, — Uy, is a diffeomorphism. Fix any C*°-diffeomorphism p : [0,2¢] — [0, 1]
such that ¢ = id on [0, ¢], see Fig. 2.

We will now construct a diffeomorphism 1) : Us. — D? fixed on U, and such that f oy =
= po f,ie., it makes the following diagram commutative:

Use N D?

7| |7

0,2¢] —2— [0,1]

It follows that if ¢ € [0,2¢] and o = f~!(c) is an orbit of F, then 1/(0) = f~!(u(c)) is also an
orbit of F. Then we can define a diffeomorphism g : D?> — D? by

-1
g=1wohly, ov " D? Yo Uy 1o Uy -4 D2

Then g € D(F') and since % is fixed on U, it follows that ¢ = h on U..

The construction of ¢ is standard, see e.g. [15], (Ch. 1, § 3). Consider the gradient vector
field Vf of f defined on D?\O, and let (®;) be the local flow of Vf. Let z € Us. and  be the
orbit of z with respect to ®. Then v intersects the level-set f~!(u(f(z))) at a unique point ¢ (z),
see Fig. 3. Similarly to [16] (Lemma 5.1.3) it can be shown that the correspondence z — (z) is
a diffeomorphism of Us. — D? if and only if so is .

The lemma is proved.
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1 u(fiz))
\ Viz)| |
\ \‘ / J -
\\ DZ ‘ /f
\ 7 flz)
Fig. 3

4. Shift functions. Let M be a smooth (C'*°) manifold, F' be a C* vector field on M genera-
tingaflowF : M xR — M, and ¢ : C*°(M,R) — C*>°(M, M) be the shift map along orbits
of F defined by p(a)(z) = F(z,a(z)).

If a subset V. C M, a function o« : V — R, and amap h : M — M are such that
h(z) = F(z,a(z)), then we will say that « is a shift function for h on V| and that the restriction
hly is in turn a shift along orbits of F via .

For a C*-function o : M — R we will denote by F'(«) the Lie derivative of « along F.

Lemma 4.1 ([12], Theorem 19). Let V' C M be an open subset, a : V. — R a C*>-function,

and h : V. — M be a map defined by h(z) = F(z,a(z)). Then h is a local diffeomorphism at
some zy € M if and only if F(a)(z9) # —1.

Lemma 4.2 [12]. Let ag, ap,, a, : M — R be C™-functions and

9 =elag), h=wplan), k=ela)
be the corresponding shifts. Suppose also that k is a diffeomorphism. Then the functions

Qgoh = Qgoh+ap, a1 =—aqpo kL

Qgop—1 = (g —ay) o k1
are C™ shift functions for g o h, k=%, and g o k=1, respectively.

Proof. The formulae for oo, and ay-1 coincide with [12] (Equations (8), (9)). They also
imply the formula for avyop-1.
5. Shift functions for £ (F). Let B = {(¢,7) € R? : 0 < r < 1} be a closed strip,
B={(¢r)eR®:0<r <1} =B\{r=0}
be a half-closed strip in R?, and P : B — D? be the map given by
P(r,¢) = (rcos ¢, rsin ¢).

Then P(B) = D?\O and the restriction P : B — D2\O is a Z-covering map such that the
corresponding group of covering transformations is generated by the following map:

n:B — B, n(g,r)=(¢+2m,r).
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It follows that every C°° map h : D?\O — D?\O lifts to a P-equivariant (i.e., commuting
with ) map h : B — B such that

Poh=hoP.
Such # is not unique and can be replaced with ho n" =mn"o h for anyn € Z.

Remark 5.1. 1t is well-known that if » : D* — D? is a C°°-map being a local diffeomor-
phism at O, and such that h~*(O) = O, then h extends to a C*>®-map h : B — B being a
diffeomorphism near the ¢-axis {r = 0}. We will not use this fact in the present paper.

Let I be a TC vector field on D?. Since F is non-singular on D?\O, F lifts to a unique
vector field G on B such that F o P = TP o G, where TP : TB — TD? is the tangent map.

It is easy to see that every orbit o of G is non-closed, its image o = P(0) is an orbit of F,
and the map P : 0 — ois a Z-covering map.

Let G : B x R — B be the flow generated by G, then we have the following commutative
diagram:

B xR _& . B
Pxide lp (5.1)

(D2\O) x R —— DX\O

In other words, F; o P(3) = Po Gy(2) forallZ € Bandt € R.
In particular, if o : D? — Ris a C*-function and h = ¢(a), i.e.,, h(z) = F(z,a(z)), then
the map h : B — B given by G(z,« o P(%)) is a lifting of /. Indeed,

hoP(3) = F(P(3),a0 P(3)) = PoG(3,a0P(2)) = Poh(3). (5.2)

Lemma 5.1. Let h € £1(F). Then there exists a C™ shift function 3 : D*\O — R for h on
D?\O, i.e, h(z) = F(z,8(2)) for = € D*\O. Moreover, the set {3 +n0 : n € Z} is the set of all
C™ shift functions for h on D*\O, where 6 : D*\O — (0, 00) is the period function for F, see
(4) of Proposition 2.1.

If VF is degenerate, then any h € E(F) has at most one C* shift function defined on all
of D?.

Proof. By the definition, h™ (O) O and h is a local diffeomorphism at O. Then, as noted
above, there exists a C™ lifting b : B — B of h such that P o h = ho P. Moreover, h preserves
orbits of F, whence h(0) = o for each orbit 0 of G. N
_ Since the orbits of G are non-closed, there exists a unique C* shift function 3 : B — R for
h,ie., h(z) = G(z,a(z)) forall z € B. Also notice that G, and h are Z-equivariant. This easily
implies that 3 is Z-invariant, whence it defines a unique C*°-function f3 : D?\O — R such that
B = [ o P. Then it follows from (5.2) that j is a shift function for h with respect to F.

Suppose that o« : D?\O — R is another C* shift function for h on D?\O. Then h(z) =
= F(z,a(z)) = F(z,6(2)) for z # 0, whence the difference a(z) — (z) is a certain integer
multiple of the period (z) of 2. Since § and a — 3 are C*° on D?\0, it follows that o — 3 = nf
for some n € Z.

Conversely, for each n € Z and z # O we have that

F(z,0(z) + n0(2)) = F(F(z,n0(2),5(z)) = F(z,0(2)) = h(2).
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Thus 8 + nd is a shift function for h on D?\O.

Finally, suppose that VF is degenerate, and o, 3 : D? — R are two C shift function for
h defined on all of D?. Then they also shift functions for h on D*\O, whence a — 8 = n#d for
some n € Z. But, by Proposition 2.1, Zh_r)rcl) 9(z) = +o0, while a — 3 is C* on all of D?. Hence
n=0,ie,a = 0.

The lemma is proved.

6. (K, r)-deformations. Let A and B be smooth manifolds. Then the space C*°( A, B) admits
a series {W"}2° of weak topologies, see [17]. The W°-topology coincides with the compact
open one. Let J"(A, B), r < oo, be the manifold of r-jets of maps A — B. Then there is a
natural inclusion i, : C*°(A, B) C C*(A,J"(A, B)) associating to each f : A — B its r-jet
prolongation 57 (f) : A — J"(A, B). Endow C*®(A, J"(A, B)) with the W°-topology. Then the
topology on C*°(A, B) induced by i, is called the W"-topology. Finally, the W-topology is
generated by all W” for 0 < r < oo.

Let X C C*(A, B) be a subset, K be a Hausdorff, locally compact topological space, and
w : K — X be a map. Then w induces the following mapping 2 : K x A — B defined by
Q(a, k) = w(k)(a). Conversely, every map €2 : K x A — B such that Q(k,-) : A — B belongs
to X inducesamapw : K — X.

Endow X with the induced W'-topology. Then it is well known, e.g. [18] (§ 44.1V), that w is
continuous if and only if 2 is so.

Definition 6.1. Let r = 0,...,00. Then the map Q2 : K x A — B will be called a (K,r)-
deformation in X if Q, € X forall k € K and the induced map w : K — X is continuous
whenever X is endowed with the W"-topology. In other words, the map j" : K x A — J"(A, B)
associating to each (k,a) € K x A the r-jet prolongation j"Qy(a) of Q. at a is continuous.

IfK = |0, 1] then the (K, r)-deformation will be called an r-homotopy.

7. Shift functions for (K, r)-deformations. Let K be a Hausdorff, locally compact, and path
connected topological space, F be a TC vector field on D?,

w:K — EF(F)
be a continuous map into some W7-topology of £1(F), and
Q:KxD?*— D% Qkz2) = wk)(z) (71)
be the corresponding (K, r)-deformation in £1(F), so Q € ET(F) for all k € K.
Then by Lemma 5.1 for each £ € K the map Q has a (not unique) C*° shift function Ay,
defined on D?\O. Thus we can define amap A : K x (D?\O) — R by A(k,z) = Ax(z) which,
in general, is not even continuous, though it is C'*° for each k.

Lemma 71 below is a particular case of results of [14], see also [12] (Theorem 25). It shows
that Ay can always be chosen so that A becomes continuous in (&, z).

Definition 7.1. A (K, r)-deformation A : K x (D?*\O) — R satisfying
Qk,z) = F(z, Ak, 2)) VY(k,z) € K x (D*\0) (72)
will be called a shift function for the (K, r)-deformation ).
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Lemma 7.1 [14]. Let ky € K and Ay, be any C* shift function for Q. Then there exists at
most one shift function A : K x (D?*\O) — R for Q such that A(ko, 2) = A, (2).

Moreover, if K is simply connected, i.e., 1K = 0, then any shift function Ay, for Qy,, uniquely
extends to a shift function

A:Kx (D*\O) - R
for Q.

This lemma will be used in the proofs of Theorems 2.1 and 2.2. For the proof of Theorem 2.3
we will also need the following Lemmas 72 and 7.3.

Suppose now that w(K) C Sh(F'), that is, for each £ € K the map € has a C* shift
function defined on all of D2. Let A : K x (D?\O) — R be a shift function for  such that Ay,
for some kg € K smoothly extends to all of D?. The following lemma gives sufficient conditions
when any other shift function A;, = A(k, -) smoothly extends to all of D?. Again it is a particular
case of results of [14].

Lemma 7.2 [14]. Let Q) : K x D?> — D? be a (K, r)-deformation admitting a shift function
A : K x (D?\O) — R. Suppose that

(i) kerj C Sh(F),

(ii) Qo = idp2 for some ky € K, and

(iii) j Q. = id, i.e, Qp € kerj C Sh(F), forall k € K.

Then for each k € K the function Ay, : D*\O — R extends to a C*®-function on all of D?,
though the induced function A : K x D?> — R is not necessarily continuous.

Finally, we present a sufficient condition when a map into Sh(F") can be deformed into ker j.

Lemma 7.3. Let K be path connected and simply connected, r > 1,andw : K — Sh(F) bea
continuous map into the W'-topology of Sh(F). Suppose VF is degenerate and kerj C Sh(F).
Then there exists a homotopy B : I x K — Sh(F') such that By = w, B1(K) C kerj, and
B:(k) = w(k) for all k such that w(k) € ker}j.

Proof. If VF = 0, then Sh(F') = ker j and there is nothing to prove.
Suppose that VF' = ( 0 a

00
(K, r)-deformation in Sh(F'). Then, by (2.7),

) forsome a # 0. Let Q) : Kx D? — D? be the corresponding

i = (g "W). ke

for some 7(k) € R. Since {2 is an r-homotopy with » > 1, it follows that the function7 : K — R
is continuous. Moreover, 7(k) = 0 if and only if ; € kerj.
Define the homotopy B : I x K — Sh(F) by

B(t,k)(z) = F(Q(k, z), —t7(k)).

Then it is easy to see that B satisfies the statement of our lemma.

8. Deformations in £ (F). In this section we prove the key Proposition 8.1 that will imply
Theorems 2.1, 2.2, and 2.3.
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Let K be a Hausdorff, locally compact topological space and
w:K — EF(F)

be a continuous map into some W"-topology of £ (F). Our aim is to show that under certain
mild assumptions w is homotopic to a map into D?(F) = DT (F) N EY(F) so that the intersecti-
ons of w(K) with D?(F), D*(F) and £7(F) remain in the corresponding spaces during the
homotopy. More precisely the following result holds true:

Proposition 8.1. Suppose that either

(i) K is a point and r > 0, or

(ii) K is compact, path connected, and simply connected, and r > 1.

Let L, C K bea (possibly empty) subset such that w(L) C DT (F),and P C K be a connected
subset such that w(P) C E2(F). Thus we can regard w as a map of triples,

w i (KL, P) — (EX(F); DH(F), E2(F)").
Then there exists a homotopy of triples,
Ay (KL P) — (EX(F)DHE),EXF)), tel,

such that
Ag=w and A(K) c DO(F). (8.1)

The phrase homotopy of triples means that
Ay(L) C DN(F), A(P) C E(F), (82)

and therefore Ay(LNP) C DH(F)NEY(F) = D?(F) forallt € 1.

The proof will be given at the end of this section. Let
Q:KxD?— D% Q,z2) = wk)(z)

be the corresponding (K, r)-deformation in £ (F'). Then by Lemma 71 there exists a shift
function A : K x (D?\O) — R for Q. The deformation of €, we will be produced via a
deformation of Ay.

Let a,b € (0,1) be such that a < b, f : D?> — [0,1] be the first strong integral for F, see
Definition 3.1, and v : [0,1] — [0, 1] be a C*°-function such that v[0,a] = 1 and v[b,1] = 0.
Define a function a : K x (D?\0) — R by

alk,z) =vo f(z) Ak, 2), (k z2) €K x (D*0), (8.3)
the map Q' : K x D? — D? by
F(z,a(k,2)), z# O,
V(k,z) = (8.4)
0, z=0,
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and a homotopy A : I x K x D?> — D? by

At k,z) =

{ F(z,(1 —t)a(k, z) + tA(k,2)), =z # O,
(8.5)

0, z = 0.

Lemma 8.1. For (t,k) € I x K denote Ay = A(t,-,-) : Kx D?* — D?and A, = A(t, k") :
D? — D2 Then

(a) Ag = Q, A1 = Q' and Ay is a (K, r)-deformation in E(F) foreach t € 1.

(b) Q. is fixed on D>\ Uy, for all k € K. In particular, Ay = Q' is a deformation in £ (F).

(c) If for some (k, z) € K x D? the map QU is a local diffeomorphism at z, then so is Ay, for
eacht € I.

(d) Denote Z = A=1(0) € K x (D?\O). Thus Q(k, z) = z forall (k,z) € Z. Then

At k,z) =2z Vtel, (k=z)e€Z.

(e) Let P C K be a connected subset such that Y, is fixed on OD? for each k € P and
Akylop2 = 0 for some ko € P. Then Ay, is also fixed on dD? for all (t,k) € I x P.
Thus A induces a homotopy

A K — EVF),  Ayk)(z) = At k, 2) (8.6)

such that Ay = w, and A;(K) c E2(F).

Proof. Statements (a) and (b) follow from (8.3) - (8.5).
(c) Denote

Ber(z) = (1 —t)a(k,z) +tA(k,z) = (1 —t)vo f(z) +1t) - Ap(2). (8.7)

Then by (8.5) B is a shift function for A, on D*\O.
The assumption that {2y, is a local diffeomorphism at z means that

F(AY)(2) > —1, (8.8)

see Lemma 4.1. Therefore by that lemma it suffices to verify that (8, ;)(z) > —1forallt € I.
Notice that

F(((AI=twof+t)-A) =1Q—=8)Fwof)+((1—tvof+1t)F(Ay).

The first summand is zero since f and, therefore, v o f are constant along orbits of F. Moreover,
0 < v(z) < 1, whence we get from (8.8) that the second summand is > —1. Hence F(f; )(z) >
> —1forallk € K.

(d) If A(k,2) = 0 for some (k,2) € K x (D?\0), then by (8.7) B;x(z) = 0, whence
At k,z) = F (2,5 1(2)) = F(2,0) = 2.

(e) If 2, is fixed on OD? for some k € K, then A}, takes on D? a constant value,

Ax(0D?) = ny, - 0(0D?),
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for some n; € Z. Since P is connected, A is continuous on P x 9D?, and the set of possible
values of Ay, on 9D? is discrete, it follows that A is constant on P x9D?. In particular, A|p,gp2 =
= Aky|pxop2 = 0. Then by (d) Ay, is fixed on 9D? for all (k,t) € I x P.

The lemma is proved.

Proof of Proposition 8.1. We will find a, b € (0, 1) and a shift function A : K x (D?\0) — R
for 2 such that the corresponding homotopy A; constructed in Lemma 8.1 will satisfy (8.1) and
(8.2).

Choice of A. Let A’ : K x (D?\O) — R be any shift function for Q. Since ), is fixed on
dD? for some ko € P, we have that A}, |yp2 = n8(9D?) for some n € Z.

Define another function A : K x (D*\O) — R by

A(k,z) = N(k,z) —nB(0D?).
Then A is also a shift function for €2 in the sense of (7.2) and satisfies
Ak() |8D2 — 0 (8.9)

Choice of a,b € (0,1). Notice that Q4 (U) = U forall k € K and b € (0,1]. We claim that
there exists b € (0,1) such that the map Q. : U, — Uy is a diffeomorphism for all k € I. Indeed,
by the definition of £1(F), the map €y, is a diffeomorphism at O for each k¥ € K. This implies
existence of b in the case (i), i.e., when K is a point. In the case (ii) the assumption » > 1 means
that the partial derivatives of ) are continuous functions on K x D?. Then existence of b now
follows from compactness of K x D?.

Take arbitrary a € (0,b) and let A; be a homotopy constructed in Lemma 8.1 for A and a, b.
We claim that A satisfies (8.1) and (8.2).

By (a) of Lemma 8.1 Ay = w.

Let us prove that A{(K) C D?(F), ie., for each k € K the map A;; = Q) is a di-
ffeomorphism of D? fixed on §D?. By (b) of Lemma 8.1 (2}, is fixed even on D?\U,. Moreover,
by the assumption on b, we have that Q; : U, — U, is a diffeomorphism, whence, by (c) of
Lemma 8.1, A; ;, = A,(k) is also a self-diffeomorphism of U, and therefore of all D?.

To show that A;(L) C DT (F) notice that by the assumption €; : D* — D? is a di-
ffeomorphism for all I € L. Then again, by (c) of Lemma 8.1, A;; = Ay(l) is also a self-
diffeomorphism D? for alll € L, i.e., A;(L) C DV (F).

Finally, the inclusion A;(P) c £2(F) follows from (8.9) and (e) of Lemma 8.1.

9. Proof of Theorem 2.1. First we prove (1) and (2) for the inclusions D (F) C E1(F)
and D?(F) c £9(F). Then we establish (3) and deduce from it (1) and (2) for the inclusion
D(F) C E(F).

(1) We have to show that 7, (£",D") = 0 for all n > 0 if » > 1. Then the result will follow
from the exact homotopy sequence for the pair (£, D").

Letw : (I",0I™) — (£",D") be a continuous map representing some element of the relati-
ve homotopy set 7, (", D"). Our aim is to show that w is homotopic as a map of pairs to a map
into D, i.e.,w = 0in m,(E",D"), whence we will get 7, (E",D") = 0.

Inclusion D (F) C ET(F). If r > 1, then applying Proposition 8.1 to the case K = I™,
L = OI" we obtain that w is homotopic as a map of pairs to a map into D" (F).
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Inclusion D?(F) C £9(F). Since
(E9(F), DO(F)) C (E7(F),D*(F)),

we see that w is also an element of 7, (£ (F)", DT (F)"), which, as just shown, is trivial. Then
Proposition 8.1 can be applied to the case K = P = [" and L = 0I", and we obtain that w is
homotopic as a map of pairs (K, L) — (£2(F)", D?(F)") to a map into D?(F)". Hence w = 0
in 7, (E2(F)", D2(F)").

(2) We have to show that the map moD? — moEY is surjective for all » > 0. Let h € £1(F).
It can be regarded as a map from the set K consisting of a unique point into £(F'),

w:K—-E& wkK)=h

Then applying (i) of Proposition 8.1 we obtain that w is C*°-homotopic to a map into D?(F),
whence the inclusion D?(F) c £*(F) yields a surjecitve map moD?(F)" — mo&T(F)" for all
r > 0. Therefore in the following diagram induced by inclusions all arrows are surjective:

moD?(F)" —— moE9(F)"

l l (9.1)

70D (F) —— me&T(F)"

The proof of the surjectivity moD(F)" — mE(F)" is the same as in (1).

(3) It is well known and is easy to prove that for a topological semigroup & the set moE of
path components of £ admits a semigroup structure such that the natural projections £ — mo€ is
a semigroup homomorphism. If £ is a group, then so is m€&.

If D C & is a subsemigroup, then the induced map mgD — € is a semigroup homomor-
phism.

In our case £" is a topological semigroup and D" is a topological group. From (1) we get that
for r > 1 the homomorphism myD — 7€ is a bijection, whence it is a semigroup isomorphism.
But 7¢D is a group, whence so is mp€.

Let us prove that all path components of £ are homeomorphic to each other. By (1) and
(2) the map iy : moD — mo€ is surjective for each of W”-topologies, » > 0. In particular, this
implies that each path component of £ contains an invertible element. Now the result is implied
by the following statement.

Claim 9.1. Let £ be a topological semigroup such that each path component of € contains an
invertible element. Then all path components of £ are homeomorphic each other.

Moreover, let D be the subgroup consisting of all invertible elements. Then for any two path
components &1 and &; there exists a homeomorphism Q : & — & such that Q(E1ND) = END.

Proof. Let h; € £ and hy € & be any invertible elements. Then we can define a homeomor-
phism @ : & — & by Q(h) = hy - hl_1 - h. Evidently it is continuous, its inverse is given by
Q Mg) =h1-hy'-g,and Q(E; ND) = END.

(1) and (2) for the inclusion D(F') C &(F). Put

D' = D(F)\D"(F), & = EF)\ET(F).
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Then &’ consists of full path components of £(F') with respect each of W”-topologies. Hence
we have to prove our statement for the inclusion D’ C &’. We can also assume that £’ # &.
Then it follows from Lemma 3.1 that D’ # & as well. Let g € D’. Then we can define a map Q :
& — ET(F)byQ(h) = g tohforh € & Evidently, Q is a homeomorphism onto with respect
to any of W”-topologies. Moreover, Q(D') = D (F). Hence, 7,(E', D) = 7, (ET(F), DT (F)).
It remains to note that by (1) and (2) 7, (E1(F), DT (F)) = 0 if eitherr > 1 andn > 0, or
r=0andn = 0.

10. Proof of Theorem 2.2. The proof is similar to the one given in Section 9. Let
w: (I",0I") — (EX(F),ET(F)")

be a continuous map being a representative of some element in the relative homotopy set
T (EX(F), E2(F)).

We have to show that w is homotopic as a map of pairs to a map into £9(F). Again we will
apply Proposition 8.1 but now the situation is more complicated.

Forn # 1denote K = I™ and P = 90I™. Then P is path connected and, by Proposition 8.1,
w is homotopic as a map of pairs,

(K, P) — (EF(F)", €2(F)"),

to a map into £2(F). In this case we can take b arbitrary, and therefore the arguments hold for
the case r = 0 as well. This implies 7, (€1 (F)",E2(F)") = O foralln # 1 and r > 0.

Suppose n = 1. Then I' = [0,1] and I' = {0, 1} is not connected, so Proposition 8.1 can
be applied only to each of the path components {0} and {1} of OI'. Actually this is the reason
why

m(ET(F),E2(F)",idp2) ~ Z. (10.1)

To prove (10.1),use 0 € I' andidp2 € £ (F) as base points, and thus assume that w(0) = id pe.
Consider the (I, r)-deformation in £ (F)" corresponding to w,

Q:I'xD? - D% Qk,z2) = wk)(2).

Then €y = idp2 and therefore the zero function Ag = 0 is a shift function for 2. By Lemma 71,
Ao extends to a unique (I*, r)-deformation

A:T'x (D*\O) — R
being a shift function for Q2 on D?\O in the sense of that lemma. In particular the last function
Ay is a shift function for Q; € £9(F) which is fixed on 9D?. Then by Proposition 8.1 applied to
P = {1}, we get that A; takes constant value on D? being an integer multiple of the period of
orbit 9D? with respect to F. Thus

A(OD?) = p,, - H(OD?)

for some p,, € Z. Evidently, p, counts the number of “full rotations” of 0D? during the
homotopy 2. We claim that the correspondence p : w — p,, yields an isomorphism (10.1).
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It is easy to see that p induces a surjective homomorphism
R:m(EX(F),E(F)) — Z.

To show that R is a monomorphism suppose that p(w) = 0, so Ag(0D?) = A1(0D?) = 0.
Then it follows from (d) of Lemma 8.1 that

A(t,0,2) = A(t,1,2) = 2

forallt € I and z € 9D?. In other words, A;(0), A;(1) € E(F)" forallt € I.
Thus w is homotopic to a map into £2(F) via a homotopy relatively to OI', and therefore it
represents a trivial element of 71 (€1 (F)",£2(F)"). This implies that R is an isomorphism.

11. Proof Theorem 2.3. Let F be a TC vector field on D? such that VF is degenerate and
kerj C Sh(F).

(1) If VF = 0, then the relation Sh(F') = ker j follows from the assumption Sh(F) D kerj
and (1) of Proposition 2.1.

Suppose that {id} is the path component of id in L(F'). Since j is continuous from W"-
topology of £(F) for r > 1, it follows that &q(F)" C kerj = Sh(F) C &q(F)". This also
implies (2.11).

0 a

(2) Suppose that VF = ( 0 0

= &a(F)' = (Aws).

It follows from the definition, see (2.6), that A is a group, A, is its unity component in
GLT(2,R),and A__, A, _, A_, are another path components of A. Since j is continuous in the
W' -topology of £T(F) for r > 1, it follows that the inverse images of these path components
are open-closed in £(F). On the other hand, Sh(F') is path connected in all W"-topologies, as
a continuous image of a path connected space C*°(M,R), whence

> for some a # 0. We have to show that Sh(F) =

Sh(F) C &a(F)' C i ' (Ayy,).

Conversely, let h € j71(A;4,),s0j(h) = < L ar ) for some 7 € R. We have to show

0 1
that h € Sh(F).
Evidently j (h) coincides with

exp(t - VF) :exp< 8 aoT )

0 at
0 0

Consider the flow (F;) of F. Then j (F;) = exp ( (
Define the map g : D> — D? by g(2) = F(h(z),—7) = F_, o h. Then j(g) = ( [1) (1) ) ,

) forallt € R. Hence j (F,) = j(h),

i.e,g € kerj C Sh(F).
In other words, g(z) = F(z,a(z)) for some a € C*°(D? R). Put 3(2) = a(z) + 7. Then
h(z) = F(z,0(2)),ie., h € Sh(F).
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(3) Due to (2.2) we have only to show that the mapping
i1 mENF) — mEH(F)

induced by the inclusion is an isomorphism. Moreover, by exactness of the sequence (2.3) it
remains to show that ; is surjective.
Letw : I — ET(F)" be a continuous map representing a loop in ET(F)", i.e.,

w(0) = w(l) = idpe. (11.1)

We have to show that w is r-homotopic relatively to I to a map into E2(F)".

It follows from (11.1) that w(I) is contained in & (F)" which, by (1) and (2), coincides with
Sh(F). Thus w(I) C Sh(F'). Moreover, w(9I) C kerj. Then, by Lemma 73, w is homotopic to
a map into ker j relatively to 1. Hence we can assume that w is a loop in ker j.

Consider the (I, r)-deformation corresponding to w,

Q:IxD?— D? Qtz2) =wt)(z).

Then Qp = Q1 = idp2 and Qj, € kerj C Sh(F) forall k € I.

In particular, every €, has a C* shift function Ay : D?> — R defined on all of D?. Since VF
is degenerate, we have by Lemma 5.1 that such Ay, is unique. In particular, Ay = A; = 0.

Then it follows from Lemma 72 that the map A : I x (D?\O) — R defined by A(k,2) =
= Ag(z)is a (I,r)-deformation being a shift function for (2.

Take any a,b € (0,1) such thata < band consider the homotopy A; of w into £2(F) defined
by (8.5). Since Q(0,2) = Q(1,2) = z for all z € D?, we obtain from (d) of Proposition 8.1 that
A4(0,2) = Ay(1,2) = zforallt € I.In other words A; is a homotopy relatively O1.

(4) This statement follows from (1) —(3) and the well known fact that any finite subgroup of
GL*(2,R) is cyclic.
Theorem 2.3 is proved.
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