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IMPLICIT DIFFERENCE METHODS FOR PARABOLIC FUNCTIONAL
DIFFERENTIAL PROBLEMS OF THE NEUMANN TYPE

HEABHI PIBHULEBI METOIU JIAA TAPABOJTIYHUX
OYHKUHIOHA/IBHO-IU®EPEHIUIAIBHUX 3ATAY
HENMAHIBCBKOTO THUITY
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Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann
type are considered. A general class of difference methods for the problem is constructed. Theorems on
the convergence of difference schemes and error estimates of approximate solutions are presented. The
proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear
estimates of the Perron type with respect to the functional variable for given functions are used. Numerical
examples are given.

Poseaanymo Heainitini napaboaiuni QyHKYIOHANbHO-OUPEPEeHUIANbHI PIBHAHHA 3 NOYAMKOBUMU 2PA-
HUYHUMU YMOBAMU HelMaHiscbkozo muny. [1o6y00e8ano 3az2aabHUlL KAAC PI3HUUEBUX MemOo0i8 045
p038°a3ky 3aoaui. [losedeHo meopemu po 30IHCHICMb PISHULEBUX CXeM Ma 8CIMAHOBAEHO OUIHKU NOXU-
60K HabauxceHux po3e6’a3kis. /losedenns cmitikocmi pisHULUe80l PYHKUIOHAAbHOT 3a0aui 6a3yembCa Ha
mexHiyi NOpieHAHHA. Bukopucmano HeaiHiliHi OYIHKU NePPOHIBCbK020 MUNY BIOHOCHO (YHKUIOHAAb-
HOI 3MIHHOI 047 ixcosarnoi ¢pynkuii. Hasedeno uucaosi npuxkaaou.

1. Introduction. For any two metric spaces X and Y we denote by C(X, Y) the class of all conti-
nuous functions defined on X and taking values in Y. Let M[n] denote the set of all n x n real
matrices. We will use vector inequalities, understanding that the same inequalities hold between
their corresponding components. Let E = [0, a] x [—b,b], where a > 0,b = (b1,...,b,),b; > 0
for1 < i < n,and

E = [0,a] x ([=b,b] \ (—b,b)).
Write ¥ = E x C(E,R) x R" x M[n] and
oE; = {(t,x) € OE : z; =bj}U{(t,x) € OE : zj = =bj}, 1< j <n,
and suppose that
f:X—=R, ¢:[-bb] =R, ¢;:00E - R, 1<j<n,

are given functions. We consider the problem consisting of the functional differential equation

Oz(t,z) = f(t,x,z,0.2(t, ), Orep2(t, )) (1)
with the initial boundary condition of Neumann type,

2(0,2) = p(x) for z € [-b,b), ()
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330 K. KROPIELNICKA
Oz;2(t,x) = @j(t,x) for (t,x) € dk;, 1<j<mn, 3)

where 0,2 = (0y, 2, ..+, 01,2), and Orz2 = [Op;a;2]i j=1,...,n-

For t € [0,a] we write E;, = [0,t] x [—b,b]. The function f is said to satisfy the Volterra
condition if for each (¢, x,q,s) € ExR"™ x M[n]and z,z € C(E,R) such that z(7,y) = z(7,y)
for (1,y) € E; we have f(t,z,2,q,s) = f(t,z,Z,q,s). Note that the Volterra condition means
that the value of f at the point (¢,x, z, ¢, s) of the space ¥ depends on (¢,x,q,s) and on the
restriction of z to the set E;.

Our purpose is to investigate a numerical method for the approximation of classical soluti-
ons to problem (1)-(3) assuming that f satisfies the Volterra condition. We wish to approxi-
mate these classical solutions with solutions of associated implicit difference functional equati-
ons and to estimate the difference between these solutions.

In recent years a number of papers concerned with numerical methods for parabolic di-
fferential or functional differential equations were published.

Difference methods for nonlinear parabolic problems have the following property. It is easy
to construct an explicit Euler’s type difference scheme which satisfies consistency conditions
on all classical solutions of the original problem. The main task in these considerations is to
find a finite difference scheme which is stable. The method of difference inequalities or si-
mple theorems on recurrent inequalities are used in the investigations of the stability. The
convergence results were also based on a general theorem on the error estimate of numeri-
cal solutions for functional difference equations of the Volterra type with unknown functions
of several variables.

Finite difference approximations of the initial boundary-value problems for parabolic di-
fferential or functional equations were considered by many authors under various assumptions.
Difference methods for nonlinear parabolic differential equations with initial boundary conditi-
ons of the Dirichlet type were considered in [1—3]. Numerical treatment of the Cauchy problem
can be found in [4-7].

The paper [8] is concerned with initial boundary-value problems of the Neumann type.

Difference methods for nonlinear parabolic equations with nonlinear boundary condition
are investigated in [9-12].

The papers [13 —16] initiated the theory of implicit difference methods for nonlinear parabo-
lic differential equations. Classical solutions of initial boundary-value problems of the Dirichlet
type for nonlinear equations without mixed derivatives are approximated in [14, 15] by solutions
of difference schemes which are implicit with respect to time variable. The paper [16] deals
with initial boundary-value problems of the Neumann type for nonlinear equations with mixed
derivatives. The proofs of the convergence of implicit difference schemes are based on the
method of difference inequalities. It is assumed that given functions have partial derivatives
with respect to all variables except for (¢, x). Our assumptions are more general. In the paper
we introduce nonlinear estimates of the Perron type with respect to the functional variable.
Note that our theorems are new also in the case of parabolic equations without a functional
variable.

The paper is organized as follows. In Section 2 we not only set up the notation and termi-
nology, but we construct a class of difference schemes for (1)—(3) as well. The existence and
uniqueness of implicit difference schemes, which are not obvious in contrary to the explicit
schemes, are proved in Section 3. The third section is also devoted to the study of error esti-
mates for approximate solutions of implicit difference functional problems. The main part of
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the paper, Section 4, deals with the convergence of a difference method for (1) —(3). Finally the
numerical examples are presented in the last part of the paper.

Natural specification of given operator allows to apply the results of this paper to differential
equations with deviated variables and integral-differential problems.

2. Discretization of mixed problems. We will denote by F(X,Y") the class of all functions
defined on X and taking values in Y, where X and Y are arbitrary sets. Let N and Z denote
the set of natural numbers and the set of integers, respectively. For z,y € R"™ where z =
= (z1,...,20),y = (Y1,-..,Yn), We write ||z|| = |z1|+ ...+ |zp| and x xy = (191, ..., TnYn)-
We formulate now a difference problem corresponding to (1) —(3). We define a mesh on F in the
following way. Let (hg, h') where h' = (hq, ..., h,) stand for steps of the mesh. For h = (hg, h’)
and (r,m) € Z'™ where m = (my,...,m,) we define nodal points as follows

t0) = rhy, ™ =mxh/, M = (acgml) i)y,

Y

Let us denote by H the set of all h = (hg, k') such that there exist (N1,...,N,) = N € N"
satisfying the condition N « b’ = b. We write ||h|| = ho+ h1 + ...+ hy,. Let Ny € N be defined
by the relation Nohg < a < (Ng + 1)ho. For h € H we put

R = {(¢7,2™) : (r,m) € 2}

and
E,=ENR™, 0B, = ENR™,

OoEhj = OoE; ﬂR}L_HL, j=1...,n,
By ={t" 2"y e B, : 0<r < Ny—1},
Yn = Ej, x F(Ep,R) x R" x M[n].

Put Ej,, = EN ([0,t")] x R") , where 0 < r < Np, and

I2lln.r = max{[z"™]: (10,2) € By} 0 <7< N

Lete; = (0,...,0,1,0,...,0) € R"™ be the vector with 1 in the i-th position. Write

J={(i,j):1<4,j<mn,i+#j}

and suppose that we have defined the sets J, J_ € Jsuchthat Jy UJ_ = J, J,NJ_. = O
(in particular, it may happen that J; = @ or J_ = &). We assume that (i,j) € J; when
(]72) € J+.

For eachm € Z" such that (™ € [—b, b]\(—b, b) we consider the class of &« = (ay, ..., ) €
€ Z" satisfying the conditions:

i) lofl = Lor[laf| =2,
ii) if m = (mq,...,my,) and there is j, 1 < j < n, such that m; = N, then o; € {0, 1},
iii) if m = (m1,...,m,) and there is j, 1 < j < n,such that m; = —Nj then o; € {—1, 0}.
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The set of all « € Z" satisfying the above conditions will be denoted by A™). Let us define
the following sets:

aE; = {(t(r)vx(m+a)) : (t(T),$(m)) S ath and « € A(m)},

+ _
Ef = 0E;f UE),.

Letz : B — Rand —N < m < N. We define

5 rm) — ; (z<r,m+ei> _ Z(r,m>> R e ; (Z(r,m> _ Z(hm—ei)),

where 1 < i < n. We apply the difference operators &g, and the operators

§=(61,-,00), 0P =1[0],4

-----

given by
1
(r,m) - (r+1,m) _ _(r,m)
doz » (z z ) , (4)
5z = = (5720 5zt 1< <, 5)
2
The difference operators of the second order ¢;5, 4,7 = 1,...,n, are defined in the following
way:
82 = §Ho7 M1 < <, (6)
and
5oprm) = L (545 rm) | 5= st ,(rm) e 7
ij% —5 i 957 —|—Z»j2’ ) (17.7)6 —) ()
5,2 = L (sFatatm) o 55 rm) (i,5) € J (8)
ij % o \% Y% z i 05 % ) 2¥) +-

Suppose that the functions
fh:Xn =R, op:[-0b =R, ¢nj:00E,; - R, 1<j<n,
are given. We consider the difference equations

Sz = fh(t(r)jm(m),z,5z(r+1’m)75(2)z(T+1’m)), —N <m < N, 9)
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2t 2mr)y = 2t 27y + 23 " b (), 2™) on BN, o€ A, (10)
j=1
with the initial condition
A0m) — oM for 2(m) e [—b, ). (11)

The function f;, is said to satisfy the Volterra condition if for each (¢, (™) ¢,s) € % x
xR"™ x M[n] and z,z € F(Ep,R) such that z(7,y) = z(r,y) for (1,y) € E}, we have

In (t(r),x(m),z,q, 8) = fy (t(T),x(m),E,q,5> )

The difference functional problem (9)—(11) with &y, , 6 defined by (4)—(8) is considered
as an implicit difference method for (1)-(3). It is important in our considerations that the
difference expressions 6z and 6(?)z appear in (9) at the point (¢t 2(™). The corresponding
explicit difference scheme consist of (10), (11) and the equation

502" = [t 2™ 2 52 §@) M)y N < m < N. (12)

We assume that fj, satisfies the Volterra condition. It is clear that there exists exactly one soluti-
on of problem (10)—(12). We prove that under natural assumptions on given functions there
exists exactly one solution uy, : E;" — R of the implicit difference problem (9)—(11).

3. Approximate solutions of difference functional problems. We will denote by Fj, the Ni-
emycki operator corresponding to (9), i.e.,

Fp[2]™ = f, <t<r)7x<m>7z,5z<r+17m)75<2>Z<r+17m>>’ (0, 2 ¢ B
Assumption H|[f3]. The function f; : ¥, — R of variables (¢, z,w, ¢, s), where

q = (QIa SR qn)a s = [sij]i,j:L...,n;

satisfies the conditions
1) fu(t,z,z,-) € C(R"™ x M|n|,R) and the derivatives

Ogfn = (Ogy fns -3 0g, fn),  Osfn = [0s;; fulij=1,..n;
exist on X5, and
Ogfn(t,z,z,-) € C(R" x M[n],R"), 0Osfn(t,z,2,-) € C(R" x Mn], M[n])
for each (t,z,2) € E; x F(Ep, R);
2) the functions 9, f, : ¥ — R", 0sf5 : ¥, — M|n] are bounded;

3) the matrix 0 f}, is symmetric and

Os; fn(P) >0 for (i,j) € Ju, Os,;fn(P) <0 for (i,j) € J, (13)
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n

> P 20, 1<i<n,(14)

1 1
= 3100 Fu(P)| + +-0s, fa(P) -
) Yy
J=Lj#

where P = (z,y,2,q,8) € X.

Remark 1. 1t is assumed in condition H|f,] 3) that the functions

9h.ij = Signasijf/w (27]) € Ja

are constant on Y;,. Relations (13) can be considered as definitions of the sets J; and J_.

Remark 2. Suppose that
(i) conditions 1), 2) of Assumption H|f3] are satisfied;
(ii) there is p > 0 such that

Doy fr(P) = |05, fu(P)| = B, i=1,....n, (15)
=1
7
where P = (t,z,w,q,s) € 3.
Then there is £ > 0 such that for ||4/|| < & assumption (14) is satisfied.

It is also worth noting that condition (15) implies that the function fj, is parabolic in the
sense of Walter, i.e.,

n
if §,8§ € Mpxn, and s < s then Z asijfh(P)(gij — gij)&fj > 0,
ij=1

for &= (&,...,&) € R, £ £0.

We first prove a lemma on existence and uniqueness of a solution for problem (9)-(11).
The proof is based on the Banach fixed point theorem.

Lemma 1. If assumption H|f}] is satisfied and oy, : [—=b,b] — R, ¢p; : OoEr; — R,j =
= 1,...,n, then there is exactly one solution uy, : E;f — R of problem (9)—(11).

Proof. Suppose that 0 < r < Ny — 1 is fixed and that the solution of (9)-(11) is defined
on E;" N ([0,t"] x R™) . We prove that the numbers ugfﬂ’m), where (101, z(M) € B exist
and that they are unique. There is (), > 0 such that

n

Qn > 2h0Y" 00 fu(P) —ho 3 ol (P, P e S (16)

i=1 " (ij)es 7
Then equation (9) is equivalent to the system of equations

1
Qn+1

rtLm) _

[th(r+1,m) + uér,m) + hofh(t(r)7$(m)7uh; 5Z(r+1,m)’ 5(2)Z(r+1,m))} 7 (17)
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where — N < m < N, and
Z(t(r-i-l)’ l,(m-i—oc)) — Z(LL(T—H), x(m—a)) +9 Z Oéjhjéph.j (t(H_l), m(m))’ (18)
=1
where (15(““1)7 x(m)) € 9yE), a € A with the initial condition
2(0m) _ (pém) for ™ e [—b,b] (19)
and z("t1) are unknown. Write

Sp = {x(m) () 2y e E}T}

We consider the space F(Si, R). Elements of F(S),, R) are denoted by ¢, €. For ¢ € F(Sy,,R)
we write £ = ¢(z(™)) and

SEM — (5,60 5.0y §Delm) [@jé(m)] | ,

i,9=1,...,n

where ¢; and ¢;;, 1 < 4,5 < n, are defined by (5)—(8). The norm in the space F(S;,R) is
defined by

€]l = max{[¢™)] = 2™ € 5},
Set
Xp ={€ € F(Sp,R) ¢ €077 = ¢m=2) 4 2N “ajhjoop (0D, &™) on 0B, o € AT,
j=1

Let W, : X; — X, be the operator defined by

W, l€]™ = {th +Uh ™ 4 ho fa(t0), 20y, 50 5@ elm ))}7

Q +1
where —N < m < N and

Wonl§) ) = Wo€™ + 2 " aghjon ;(t7H, &) on Qo B, o € AT, (20)
j=1

We prove that for £, € X, we have

W n[€) = Wenl€]ll < m“f — | (21)
Write
" h
Ai4(Q) = 2h 200 In(@Q) + hg 00 fnl@) = 3 1105, (@)1
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n

h h h
Ai~(Q) = =50 Fu(Q) + 500 Fu(@) = D =105, Fu(Q),
%2
n h n
BQ) =-2)_ hgas“fh Z |as”fh Q)l,
i=1 i,j= 1

JFi

where Q € Ypand 1 < i < n.
It follows from assumption H|[f3] that for each m, —N < m < N, there is prm) ¢ 3,
such that

Wenl€]™ = Weal€ " 1(@n + 1) < [(Qn + B(PT™))(€ = &)™)+

n

20 A (PO~

=1

e[S anptye g '

n -

+ho D 2h R C)

(1,5)€J+ -

(€~ ] 4 [l - e -

n

o 3 GO (@ I O g - e

(4,9)ed-

It follows from assumption H|f;] and from (16) that

Qn+ BP"™) >0, 4;(P™™) >0, A;_(PT™)) >0,1<i<n,

and
B(PC™) 43 A (PO™) + 3 A (PO™)+
i=1 i=1
+h0 Z 2h h asufh(Q) 0 Z 2h h asufh(Q) = 0.
(4.4)€J+ (¢,5)ed—
Thus we get
(m) _ ~N <m<N.
Wnle) <G ANE- Ol -N<m<N

We conclude from (20) that the above inequality is satisfied for (¢t"+1), 2(™) € 9y E),, a € AM™.
This completes the proof of (21). The Banach fixed point theorem implies that there exists
exactly one solution of (17)—(19). Since wy, is given on the initial set {0} x [—b, b], the proof of
the lemma is completed by induction with respect tor, 0 < r < Nj.
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Let us suppose that u;, : E; — R is a solution of problem (9)-(11) and v, : E;/ — R
satisfies the following conditions:

160v"™ — Fy[on) ™| < 4(h) on B}, 22)
o) _ gy lrm=e) 2204] J(pjh < (W)|W|? on 8By, o € A, (23)
(™ — ™) < o(h), =™ € [=b, 1], (24)

where v,v9,71 : H — Ry and

1 h li h) = li h) = 0. 25
lim y(h) = 0, lim y0(k) =0, lim 7 (h) = 0 5)

The function vy, satisfying the above relations is considered as an approximate solution of
problem (9)—(11). We prove a theorem on an estimate of the difference between the exact
and approximate solutions of (9)—(11). Put

I ={t" 0 <r <Ny}, I =1\ {tM)}.

For a function 7 : I;, — R we write (") = 5(¢t(")).

Assumption H|f,, o3]. Assumption H|f},] is satisfied and there is a function o, : I} xR, —
— R is such that

1) oy, is nondecreasing with respect to the second variable and o,(¢,0) = 0 fort € I;;

2) the difference problem

77(7”-1—1) _ 77(7") + hOO—h(t(r)vn(r))v 0<r< Ny-—1, (26)

is stable in the following sense: if 4,49 : H — R are functions such that
1 h lim 4g(h) = 28
hli)%’y( ) 0, hli)r(l)’)/o( ) 0, ( )

and 7, : I, — R is a solution of the difference problem

,'7(T+1) _ ,’7(7’) i hOUh(t(T)aU(T)) +hoy(h), 0<r < Ng—1, (29)

2 = 30(h) (0)
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then there is @ : H — R such that 77,(;) < a(h) for t") € I, and limy,_o &(h) = 0;
3) the estimate

Hfh(t,{E,Z,q,S) - fh(ta%?aQaS)H < Uh(t? HZ - 2||h-7’)

is satisfied on Xj,.

Theorem 1. Suppose that assumption H|fy, o] is satisfied and

1) up : E;[ — Ris a solution of (9) - (11) and the function vy, : E,’f — R satisfies (22) — (24),
2) there is ¢ € Ry such that |)||? < ¢hy.

Then there is o : H — R such that

\(up, —vp) ™| < a(h) on Ej (31)
and
}LE% a(h) = 0. (32)

Proof. LetT'), : E;, — R, T} : Eo, — R, sy 0 09Ep — R be defined by the relations

5ov}(br’m) = Fh[vh](r’m) + Fg’m) on E;L,

v,(f’era) — v,(:’m_a) = 2204]‘}7/]‘(,0;3’;”) + Fg’,:n) on E, and ae A™),
=1

) T, 5 € bt

It follows from (22) —(25) that

K™ <2t on B,

PG| < nIP on o,

‘Fg’.ﬂ'}?‘ < y(h) for ™ e [—b,b]
and
i h) = i h) = li h) = 0.
lim~(h) =0, lim9o(h) =0, lim~i(h) =0
Write z;, = up, — vy, and

Egr,m) = ho [fh(t(r),l'(m),vh,5u§:+1’m),5(2)u§:+1’m)) . fh(t(r),l“(m),vh,(SU}(:Jrl’m),(S(Q)U}(LTJFLm))] 7

AP = ho [ fut), 20wy, S T 50T — g (10, 50,y gl T, 5@l )]
Then we have

Z](lr+1,m) _ Z](:’m) + Eglr,m) + Aér,m) . horglr,m) on E,]/1 (33)
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and

z}(lr’era) = Z}(lr’mia) — ng’}ln) on OyE,, «oc€ A(m).

Our first goal is to estimate the function Aj. According to condition 3) of assumption H|f}],
we have
A < hoon (), |12]nr) on B

The task is now to find an estimate for Eglr’m).

It follows from the definition of difference operators and from condition 1) of assumption
H|fp] that there is Q € X, such that

Eglr,m) _ B(Q)Z£T+17m)+

=1

+ ZAi,—‘,-(Q)Z}(lT—i_l’m—i_Ei) + ZAi.—(Q)Z,(IT—i_l’m_Ei)‘F
i=1

1 rbeten) (e
+ho Z m|882]f(Q)|[z}(L + +J)—|—z}(L J)]+

(i,j)€J+
h L (rmtei—c;) | (rm—eite;) 34
+ ho Z thA’ Szjf(Q)’[zh + 2, ]7 ( )
(ig)es- — "

where (£, 2(M) € E}.
Write

Eglr) = max{|z,(f’m)\ : (t(’"),x(m)) € Eh.r)},

ég) = max{\z,(f’m)] : (t(r),x(m)) € E;[ N ([O,t(r)] X R”)} ,

where 0 < r < Nj.
It follows from (13), (14), condition 1) of assumption H|f] that

Ai4(@Q) 20, A_(Q)=0. (35)
Thus we get

"N - B@Q) < &y

+ sgﬂ) [Z Ai+(Q) + Z A (@) +
i—1

=1

+ hoon (7, €Y + hoy(R).

One can note that

n n n h
DAt (Q 4D A Q)+ B@Q)+ Y 1105, (@) = 0 (36)
i=1 i=1 igj=1"""

JF#i
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and
1-B(Q) > 0.

The above estimates and (33) imply
5§LT+1) < ég) + hoop (£, 8}(;)) + hoy(h),
where 0 < r < Ny — 1. Itis easily seen that
&7 < e L hgy(h)E, 0 << No—1.
Thus we see that the function ¢, satisfies the recurrence inequality
e < e+ hoon (8, e) + ho (v(h) + @i (R)), 0 <7 < No—1,

and 520) < yo(h).
Let us denote by 7;, : I, — R a solution of the initial problem

m T =0 hoon (K7 ni) + ho (v(B) + ém(R), 0 << N1,

7720) = Y(h).

It follows easily that 55:) (T) for 0 < r < Ny. Then the assertion of the theorem follows
from the stability of problem (26) (27).

4. Convergence of implicit difference methods. Now we give an example of the operator fj,
associated with (1) —(3), and we prove that the corresponding difference method is convergent.
For any z € C(E,R) we put

|zl = max{|z(r,z)| : (1,2) € B}, 0<t<a

Equation (1) contains the functional variable z which is an element of the space C(E,R). Then
we need an interpolating operator T}, : F(E,,R) — C(E,R). We give an example of such an
operator as follows. Put

={A=(1,..., ) N €{0,1} for0 < i < n}.
Let z € F(E),,R) and (t,z) € E. There exists (r,m) € Z!'™ such that t(") < t < ¢("+D),

) < g < ) and (¢, (M), (¢ z(mH)y ¢ By where m+1 = (my+1,...,m, +1).
We define

-t (m)\ * (m)\ "
— r — X xr—X
Th [Z] (t Z (r+1,m+A) ( - ) (1 o - ) +

AES

NaREL S e (@ _pm\ | _z—atm =
he ) & I h
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A n ma)\ N
x — x(m _H a:i—xl( i)
h N i=1 hi 7
1-X 1=\
_ (m) n o (mg) g
x X Z; xX:
1—— = | | 1 —>2—
( h ) i=1 ( hi ) 7

and we take 0° = 1 in the above formulas. Then we have defined T}z on E. It follows easily
that 7,z € C(E,R), and that HTh[z]”t<T) = |z|lpr, 0 < 7 < Np.
We approximate solutions of (1) —(3) with solutions of the difference equation

where

5oz = F(M) 2™ Ty [2], 20 §(2) (rHLm)y (37)

with initial boundary condition (10), (11).

Lemma 2. Suppose that z : E — R and
1) 2(t,-) : [=b,b] — Reis of class C* fort € [0,a] and z, = 2|g,,
2) d € Ry is such a constant that
Oym2(tiz)| <d, (tz) € B, jk=1,...n, (38)
3) there is L € R such that

|z(t,x) — 2(t, )| < L|t —1]. (39)

Then
| Th 2] — zllg < Lho +d||W|*.

Proof. Let (t,z) € E and t) < t < tU+D 20" < 2 < zm+) where (¢, 2(m),
(tr+1) g m+)y ¢ B, Write

PR (m)\ m)\ '
Uity = S Y ey (93—;) (1_96—;> b

AES

PR (m)\ * m)\ '
V(t,m):<1_ ! ) S st (%;) (1_90—}:?) o\

AES

t — )
ho

t — )

W(t,x) = o

(7, 2) — 2(t, 2)] + (1 - ) [2(t7), z) — (¢, 2)].

Then we have
Tyl2](t,z) — z(t,x) = U(t,z) + V(t,x) + W(t, x).
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It follows from Theorem 5.27 ([3], Chapter 5) that
U(t,2)| + |V (t,2)| < d|n'||*.

According to condition (39) we have |W (t,z)| < Lhy. Hence, the proof is completed.

Assumption H[o]. Suppose that the function o : [0,a] x Ry — R is such that
1) o is nondecreasing with respect to both variables,
2) o(t,0) = 0fort € [0,a] and the maximal solution of the Cauchy problem

() = o(t, <), ¢(0) =0,

is ((t) = 0fort € [0,a.

Assumption H|f]. The function f : ¥ — R of variables (¢, z, z, q, s) satisfies the conditions:
1) f(t,z,z, -) € C(R™ x M[n],R), the derivatives

an = (alhfa ce 7aqnf)7 8sf = [asijf]i,jzl,...,na
exist on X and
Ogf(t,z,2,-) € C(R" x M[n],R"), 0sf(t,x,z,-) € C(R" x M[n], M[n])

for each (t,z,2) € E' x F(Ex, R),
2) the matrix 0, f is symmetric and

ds, f(P) >0 for (i,j) € Jy, Os,f(P) <0 for (i,j)e J-, (40)
1 1 1 )
—510a f(P) + =05 f(P) = > 105, f(P)| 20, 1<i<n, (41)
’ i=lj#i 7

where P = (t,z,z,q,s) € X,
3) there is a function o satisfying assumption H [o] such that

1f(t @, 2,q,8) = f(t,2,2,q,8)| < o(t, ||z = 2[})

on Eh.
‘We can now formulate our main results.

Theorem 2. Suppose that assumption H|(f] is satisfied and
1) the functionv : E — R is a solution of (1) - (3) and

Vp = U|Eh7 Phj = SD]'|80Eh7 1< ] < n,

2) the function uy, : En, — R is a solution of (10), (11), (37),
3) there exists c € Ry such that hy, < chj for1 <k, j <n,
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4) there is vo : H — R such that
06 = @61 < v0(h) on Eon and lim (k) =0, (42)

5) v(-, ) is of class C' and v(t,-) is of class C?.
Then there exists ¢g > 0 and a function o : H — R such that for ||h|| < o, h € H we have

|(up — vp) ™| < a(h) on E)  and }llinr(l) a(h) = 0. (43)

Proof. We will use Theorem 1 on the error estimation. Write

fh(t7x7zvqa S) = f(tamvTh[qu?S) on Eh’

and
on(t,p) = o(t,p) on I, x R,.

The conditions (22)—(24) are satisfied. Now we prove that problem (26), (27) is stable.
Let n, : I, — Ry be a solution of (29), (30) where vy, : H — R, and }lLin%'yo(h) = 0,

%ir% 7(h) = 0. Let 7y, : [0,a] — Ry be the maximal solution of the Cauchy problem
¢'(t) = a(t,¢(t)) +7(h),  ¢(0) = ao(h). (44)

Then }llin% Mr(t) = 0 uniformly on [0, a]. The function 7, is convex on [0, a], therefore we have

i 2 i 4 hoo (¢, 57) + ho3(h), 0 <7< No—1.

Since 7, satisfies (29), we have 77,(;") < ﬁ,(f) < Mp(a) for 0 < i < Ny, which completes the proof

of the stability of problem (26), (27). It follows from assumption H|f] that

|fh(t,x,z,q,$) _fh(t7$727 q, S)’ =
= ’f(tax7Th[z]7Q7 S) - f(tvxaTh[quvs)‘ <

ot [Thlz] = TwlZllle < o, |2 = Zllnr) = on(t, |12 = Z[lnr)-

IA

Thus we see that all the assumptions of Theorem 1 are satisfied and the proof of (43) is complete.

Remark 3. Suppose that assumption H|f] is satisfied with
o(t,p) = Lp, (t,p) € [0,a] x R+ where L € R4.

Then assuming that f satisfies the Lipschitz condition with respect to the functional variable we
obtain the following error estimates:

La_l

™ =™ < ao(h)e™ +3(h)

on FE, if L>0
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and
u(va) _ v(l7m) S ao h —|— a’_}/ h, on Eh lf L = 0
h h

The above inequality follows from (43) with a(h) = 7,(a) where 7, : [0,a] — Ry is a
solution of (44).

Remark 4. Let us consider the explicit difference method (10)—(12). Then we need the
following assumption on f and on the steps of the mesh [8, 16]:

1= 2h0 >0 0., (P) Hho 3 o, F(P)] 2 0, (45)

12
=1 @jes

where P € . If the partial derivatives Js,; f, 4,5 = 1,...,1, are bounded on ¥ then inequality
(45) states relations between hg and b’ = (hq,. .., hy). Itis important in our considerations that
condition (45) be omitted in the convergence theorem.

5. Numerical examples.

Example 1. Write
E =10,0.2] x [-1,1] x [-1,1],

QE =10,0.2] x [([-1,1] x [-1,1]) \ ((=1,1) x (=1,1))].
Consider the differential equation with deviated variables

1
8t2’(t,x7y) = $$Z(t7 .fL', y) + 8yyz(ta :Z:,y) - §8Iy2<t7$7y)+

b (1550 IF) 4 Hta) + ot ) (46)

and the initial boundary conditions

Z(O,ZL‘,y) =1 fOI‘ (LL',y) € [_171] X [_171]7 (47)
0:2(t,0,y) = ty, 0Ou2(t,1,y) = tye’” for t € [0,0.2], y e [-1,1], (48)
Oyz(t,x,0) = tz, 0Oyz(t,z,1) = tze'™ for t€0,0.2], =z € [-1,1], (49)
where
t 12
J(ta,y) = ey @+ + 5+ =57
(a2 a2
g(t,z,y) = —e T
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The solution of (46)—(49) is known, it is

v(t,z,y) = eV,

We found the approximate solutions of (46) — (49) using both implicit and explicit numerical
method, and taking the following steps of the mesh: hg = 0.0005, h; = 0.002, hy = 0.002.

Note, that the function f and the steps of the mesh do not satisfy condition (45), which
is necessary for the explicit method to be convergent. In our numerical example the average
errors of the explicit method exceeded 1034, while the average errors ¢, for fixed t(") of implicit
method are given in the following table.

Table of errors (¢;,)
ho = 0.0005, h; = 0.002, hy = 0.002
t 0.525 0.100 0.125 0.150 0.175 0.200
Ep 3.107° 4.107° 5.107° 6-107° 6-107° 7-107°

Example 2. Write
E =10,0.2] x [0,1] x [0,1],

dE =[0,0.2] x [([0,1] x [0,1]) \ ((0,1) x (0,1))].
Let us consider the integral-differential equation
1
8tz(t7 xz, y) = axzz(t7 T, y) + 8yyz(t> z, y) - Paxyz(ta xz, y)+

T Y

¢
+ 772//2(15, T, 8)dsdT + /Z(T,x,y)dT + 212 2(t, x,y) + (t + 1) cos Tz cos Ty
0 0 0

(50)
and the initial boundary conditions
2(0,2,y) =0 for (z,y) € [0,1] x [0,1], (51
0:2(t,0,y) =0, 0Oyz(t,1,y) =0 for t € [0,0.2], y € [0,1], (52)
Oyz(t,x,0) =0, Oyz(t,x,1) =0 for t€0,0.2], =z € [0,1]. (53)

The solution of (50) —(53) is known, it is
v(t,z,y) = (€' — 1) cos mx cos Ty.

Likewise in the previous numerical example we chose the steps of the mesh which do not satisfy
condition (45). In accordance with our expectations the explicit method is not convergent, and
the average errors are bigger than 10'°°, while the implicit method is convergent and gives the
following average errors.

ISSN 1562-3076. Heainitini koausarnnsa, 2008, m. 11, N2 3



346

K. KROPIELNICKA
Table of errors (¢3,)

ho = 0.0005, h; = 0.002, hy = 0.002

t 0.525 0.100 0.125 0.150 0.175 0.200
en: 3-107% 4.107%* 5.107* 6-107* 7-107* 8.107%

The above examples show that there are implicit difference schemes which are convergent
and the corresponding classical methods are not convergent. This is due to the fact that we
need the relation (45) for steps of the mesh in the classical case. We do not need this condition
in our implicit method. Implicit difference methods presented in this paper have the potential
for applications in the numerical solving of integral-differential equations or equations with
deviated variables.

Calculations were carried out at the Academic Computer Center in Gdansk.
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