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Palacký Univ.
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We assume that A1,A2 ⊂ R are closed intervals containing 0, φ is an increasing odd homeomorphism
with φ (R) = R and T ∈ (0,∞). We will study the singular Dirichlet problem of the form

(φ(u′))′ + f(t, u, u′) = 0 , u(0) = u(T ) = 0,

and we will prove the existence of its smooth solution satisfying

u(t) ∈ A1 , u′(t) ∈ A2 for t ∈ [0, T ].

Here f satisfies the Carathéodory conditions on the set (0, T ) × D and can have time singularities at t =
= 0, t = T and space singularities at x = 0, y = 0.

Для замкнених iнтервалiв A1,A2 ⊂ R, якi мiстять 0, та зростаючого непарного гомеоморфiз-
му φ, який задовольняє умови φ (R) = R i T ∈ (0,∞), вивчено сингулярну задачу Дiрiхле вигляду

(φ(u′))′ + f(t, u, u′) = 0 , u(0) = u(T ) = 0,

i доведено iснування гладкого розв’язку, що задовольняє умови

u(t) ∈ A1 , u′(t) ∈ A2 для t ∈ [0, T ].

Тут f задовольняє умови Каратеодорi на множинi (0, T ) × D i може мати особливостi в t =
= 0, t = T та просторовi особливостi в x = 0, y = 0.

1. Introduction. Let T ∈ (0,∞) andA1,A2 ⊂ R be closed intervals containing 0. Assume that
φ is an increasing odd homeomorphism with φ (R) = R. We will study the singular Dirichlet
problem of the form (

φ(u′)
)′ + f(t, u, u′) = 0, u(0) = u(T ) = 0, (1.1)
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and prove the existence of a solution of problem (1.1) satisfying

u(t) ∈ A1, u′(t) ∈ A2 for t ∈ [0, T ] .

Denote A = A1 ×A2 and D = D1 ×D2, where Di = Ai \ {0}, i = 1, 2.
We assume that

f satisfies the Carathéodory conditions on the set (0, T )×D

and that f can have time singularities at t = 0, t = T (1.2)

and space singularities at x = 0, y = 0.

Definition 1.1. A function f has a time singularity at t = 0 (t = T ) if there exists (x, y) ∈ D
such that

ε∫
0

|f(t, x, y)|dt = ∞

 T∫
T−ε

|f(t, x, y)|dt = ∞


for any sufficiently small ε > 0.

Definition 1.2. A function f has a space singularity at x = 0 (y = 0) if there exists a set
J ⊂ [0, T ] with a positive Lebesgue measure such that the condition

lim sup
x→0

|f(t, x, y)| = ∞
(

lim sup
y→0

|f(t, x, y)| = ∞
)

holds for a.e. t ∈ J and some y ∈ D2 (x ∈ D1).

Notation.
Let [a, b] ⊂ R. J ⊂ R, M ⊂ R2.
We let measA denote the Lebegue measure of A ⊂ R;
C[a, b] the Banach space of functions continuous on [a, b] with the norm ||x||C = max{|x(t)|;

t ∈ [a, b]};
C1[a, b] the Banach space of functions having continuous first derivatives on [a, b] with the

norm ||x||C1 = ||x||C + ||x′||C ;
AC[a, b] the set of absolutely continuous functions on [a, b];
AC1[a, b] the set of functions having absolutely continuous derivatives on [a, b];
ACloc(J) the set of functions x ∈ AC[c, d] for each [c, d] ⊂ J ;
L[a, b] the Banach space of functions Lebesgue integrable on [a, b] with the norm

||x||L =

b∫
a

|x(t)|dt;

Car([a, b] ×M) the set of functions f : [a, b] ×M → R satisfying the Carathéodory con-
ditions on [a, b] ×M, i.e., f(·, x, y) : [a, b] → R is measurable for all (x, y) ∈ M, f(t, ·, ·) :
M → R is continuous for a.e., t ∈ [a, b], and for each compact set K ⊂ M there is a function
mK ∈ L[a, b] such that

|f(t, x, y)| ≤ mK(t) for a.e. t ∈ [a, b] and all (x, y) ∈ K;
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Car ((a, b)×M) the set of functions f ∈ Car ([c, d]×M) for each [c, d] ⊂ (a, b).

Definition 1.3. A function u : [0, T ] → R with φ(u′) ∈ AC[0, T ] is a solution of problem
(1.1) if u satisfies (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 for a.e. t ∈ [0, T ] and fulfils the boundary
conditions u(0) = u(T ) = 0.

In some works dealing with singular problems (see e.g. [1] or [2]) a little different definition
of a solution is used. In particular, φ(u′) need not belong to AC[0, T ]. To avoid the misunder-
standing we call such functions w-solutions and define them as follows.

Definition 1.4. A function u ∈ C[0, T ] is a w-solution of problem (1.1) if there exists a finite
number of points tν ∈ [0, T ], ν = 1, . . . , r, such that if we denote J = [0, T ] \ {tν}r

ν=1, then
φ(u′) ∈ ACloc(J), u satisfies (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 for a.e. t ∈ [0, T ] and fulfils the
boundary conditions u(0) = u(T ) = 0.

In this paper we generalize the existence principle of [3] which was proved for problem (1.1)
where φ(y) ≡ y. Here we work with a general φ including the case φ(y) = |y|p−2y for p > 1.
Combining this existence principle (Theorem 3.1) with the lower and upper functions method
we prove a new existence result (Theorem 4.1) for problem (1.1). Theorem 4.1 extends earlier
results by Agarwall, Lü and O’Regan [4], Jiang [5], Staněk [6] and Wang, Gao [7].

2. Regular Dirichlet problem. Singular problems are usually studied by means of approxi-
mate regular problems. Therefore we recall here some results for the auxiliary regular problem(

φ(u′)
)′ + g(t, u, u′) = 0, u(0) = u(T ) = 0, (2.1)

where g ∈ Car
(
[0, T ]× R2

)
.

The first one is the Fredholm type existence theorem well known for problem (2.1) with
φ(y) ≡ y, see. e.g. [3]. For readers’ convenience we will prove it here for problem (2.1) with a
general φ.

Theorem 2.1 (Fredholm type existence theorem). Assume that there is a function h ∈
∈ L[0, T ] such that

|g(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all x, y ∈ R . (2.2)

Then problem (2.1) has a solution.

Proof. Step 1. Solution of an auxiliary problem. Consider the auxiliary problem(
φ(u′)

)′ = b(t), u(0) = u(T ) = 0, (2.3)

where b ∈ L[0, T ]. Then u is a solution of problem (2.3) if and only if u ∈ C1[0, T ] satisfies the
equalities

u(t) =

t∫
0

φ−1

φ(u′(0)) +

s∫
0

b(τ) dτ

 ds

and
T∫

0

φ−1

φ(u′(0)) +

s∫
0

b(τ)dτ

 ds = 0.
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We can check this by a direct computation.
Step 2. Definition of functional γ. For each ` ∈ C[0, T ] define

ψ` : R → R, ψ`(x) =

T∫
0

φ−1(x+ `(s))ds.

Due to the assumption that φ is an increasing homeomorphism with φ(R) = R, the function ψ`

is continuous, increasing, and ψ`(R) = R. Thus the equation ψ`(x) = 0 has exactly one root
x = γ(`) ∈ R. Therefore, we can define the functional

γ : C[0, T ] → R, ψ`(γ(`)) = 0.

Step 3. Functional γ maps bounded sets to bounded sets. Assume that B ⊂ C[0, T ] and
c ∈ (0,∞) and such that ||`||C ≤ c for each ` ∈ B. Further assume that there exists a sequence
{`n} ⊂ B such that

lim
n→∞

γ (`n) = ∞ or lim
n→∞

γ (`n) = −∞ .

Let the former possibility occur. Then

0 = lim
n→∞

ψ`n (γ (`n)) ≥ lim
n→∞

Tφ−1 (γ (`n)− c) = ∞,

a contradiction. The latter possibility can be argued similarly. Thus γ(B) is bounded.
Step 4. Functional γ is continuous. Consider a sequence {`n} ⊂ C[0, T ] and assume that

lim
n→∞

`n = `0 in C[0, T ].

By Step 3, the sequence {γ (`n)} ⊂ R is bounded and hence we can choose a subsequence
such that lim

n→∞
γ (`kn) = x0 ∈ R. We get

0 = ψ`kn
(γ (`kn)) =

T∫
0

φ−1 (γ (`kn) + `kn(t)) dt,

which, for n → ∞, yields

0 =

T∫
0

φ−1 (x0 + `0(t)) dt.

Thus, with respect to Step 2, we have x0 = γ (`0). It follows that any convergent subsequence
of {γ (`n)} has the same limit γ (`0). Since {γ (`n)} is bounded, we get γ (`0) = lim

n→∞
γ (`n).

Step 5. Definition of operator F . Define operators N : C1[0, T ] → C[0, T ] and F :
C1[0, T ] → C1[0, T ] by

(N (u)) (t) = −
t∫

0

g(s, u(s), u′(s))ds

and

(F(u)) (t) =

t∫
0

φ−1(γ(N (u)) + (N (u))(s))ds.
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Step 1 and Step 2 yield that u is a solution of problem (2.1) if and only if u ∈ C1[0, T ] satisfies

u(t) =

t∫
0

φ−1(φ(u′(0)) + (N (u))(s))ds, φ(u′(0)) = γ(N (u)).

Therefore the operator equation u = F(u) is equivalent to problem (2.1). Thus it suffices to
prove that the operator F has a fixed point.

Step 6. Fixed point of operator F . Since the operators γ and N are continuous, it follows
that F is continuous. Choose an arbitrary sequence {un} ⊂ C1[0, T ] and denote vn = F (un)
for n ∈ N. Then

v′n(t) = φ−1 (γ (N (un)) + (N (un)) (t)) , t ∈ [0, T ], n ∈ N.

By condition (2.2), there is a c1 ∈ (0,∞) such that ||N (un) ||C ≤ c1. This implies that the
sequences {vn} and {v′n} are bounded on [0, T ]. Consequently the sequence {vn} is equicon-
tinuous on [0, T ]. Further, for t1, t2 ∈ [0, T ],

∣∣φ (
v′n (t1)

)
− φ

(
v′n (t2)

)∣∣ = |(N (un)) (t1)− (N (un)) (t2)| ≤

∣∣∣∣∣∣
t2∫

t1

h(s)ds

∣∣∣∣∣∣ .
Thus the sequence {φ (v′n)} is bounded and equicontinuous on [0, T ]. Making use of the Arzelà
— Ascoli theorem we can find subsequences {vkn} and {φ

(
v′kn

)
} uniformly convergent on

[0, T ]. Then {v′kn
} is also uniformly convergent on [0, T ] and so, {vkn} is convergent in C1[0, T ].

We have proved that the operator F is compact on C1[0, T ]. By the Schauder fixed theorem, F
has a fixed point, which is a solution of problem (2.1).

The theorem is proved.

In the investigation of the regular problem (2.1), the lower and upper functions method is
a profitable instrument, see. e.g. De Coster, Habets [8], Kiguradze, Shekhter [2] or Vasiljev,
Klokov [9]. Note that in some works lower and upper functions are called lower and upper
solutions.

Definition 2.1. A function σ ∈ C[0, T ] is called an upper function of problem (2.1) if there
exists a finite set Σ ⊂ (0, T ) such that

φ(σ′) ∈ ACloc([0, T ] \ Σ), σ′(τ+) := lim
t→τ+

σ′(t) ∈ R,

σ′(τ−) := lim
t→τ−

σ′(t) ∈ R for each τ ∈ Σ,

{
(φ(σ′(t)))′ + g(t, σ(t), σ′(t)) ≤ 0 for a.e. t ∈ [0, T ],

σ(0) ≥ 0, σ(T ) ≥ 0, σ′(τ−) > σ′(τ+) for each τ ∈ Σ.
(2.4)

If the inequalities in (2.4) are reversed, then σ is called a lower function of problem (2.1).
The second auxiliary result is contained in the following theorem.
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Theorem 2.2 (Lower and upper functions method). Let σ1 and σ2 be a lower function and
an upper function of problem (2.1) and let σ1(t) ≤ σ2(t) for t ∈ [0, T ]. Assume that there exists
a function h ∈ L[0, T ] such that

|g(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all x ∈ [σ1(t), σ2(t)] , y ∈ R.

Then problem (2.1) has a solution u such that

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ]. (2.5)

Proof. Step 1. Construction of an auxiliary problem. For a.e. t ∈ [0, T ] and all x, y ∈ R,
ε ∈ [0, 1], define

g̃(t, x, y) =


g(t, σ1(t), y) + ω1

(
t,

σ1(t)− x

σ1(t)− x+ 1

)
+

σ1(t)− x

σ1(t)− x+ 1
if x < σ1(t),

g(t, x, y) if σ1(t) ≤ x ≤ σ2(t),

g(t, σ2(t), y)− ω2

(
t,

x− σ2(t)
x− σ2(t) + 1

)
− x− σ2(t)
x− σ2(t) + 1

if x > σ2(t),

where

ωi(t, ε) = sup
{
|g(t, σi(t), σ′i(t))− g(t, σi(t), y)| : |y − σ′i(t)| < ε

}
, i = 1, 2.

We see that ωi ∈ Car ([0, T ] × [0, 1]) is nonnegative, nondecreasing in its second variable, and
ωi(0, t) = 0 for a.e. t ∈ [0, T ], i = 1, 2. Further, g̃ ∈ Car ([0, T ] × R2) and there exists
h̃ ∈ L[0, T ] such that

|g̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0, T ] and all x, y ∈ R.

Thus, by Theorem 2.1, the problem(
φ(u′)

)′ + g̃(t, u, u′) = 0, u(0) = u(T ) = 0,

has a solution u.
Step 2. Solution u of the auxiliary problem lies between σ1 and σ2. We will prove that esti-

mate (2.5) holds. Denote v(t) = u(t) − σ2(t) for t ∈ [0, T ] and assume, on the contrary, that
max{v(t) : t ∈ [0, T ]} = v(t0) > 0. Since u(0) = u(T ) = 0 and σ2(0) ≥ 0, σ2(T ) ≥ 0, we
have t0 ∈ (0, T ). Moreover, Definition 2.1 implies that t0 /∈ Σ, because v′(τ−) < v′(τ+) for
τ ∈ Σ. So, we have t0 ∈ (0, T ) \Σ and v′(t0) = 0. This guarantees the existence of t1 ∈ (t0, T )
such that

v(t) > 0 and |v′(t)| < v(t)
v(t) + 1

< 1

for t ∈ [t0, t1] and [t0, t1] ∩ Σ = ∅. Then

(φ(u′(t)))′ − (φ(σ′2(t)))
′ = −g̃(t, u(t), u′(t))− (φ(σ′2(t)))

′ =

= −g(t, σ2(t), u′(t)) + ω2

(
t,

v(t)
v(t) + 1

)
+

v(t)
v(t) + 1

− (φ(σ′2(t)))
′ >

> −g(t, σ2(t), u′(t)) + ω2

(
t, |v′(t)|

)
− (φ(σ′2(t)))

′ ≥

≥ −g(t, σ2(t), u′(t)) + g(t, σ2(t), u′(t))− g(t, σ2(t), σ′2(t))− (φ(σ′2(t)))
′ ≥ 0
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for a.e. t ∈ [t0, t1]. Hence,

0 <

t∫
t0

(φ(u′(s)))′ − (φ(σ′2(s)))
′ds = φ(u′(t))− φ(σ′2(t)), t ∈ [t0, t1].

Therefore v′ = u′−σ′2 > 0 on (t0, t1], which contradicts the assumption that v has its maximum
value at t0. The inequality σ1 ≤ u(t) can be proved similarly. Thus u fulfils estimate (2.5) and
so, u is a solution of problem (2.1).

The theorem is proved.

3. Existence principle for singular Dirichlet problem. We will use the following approach
in the investigation of singular problem (1.1):

we approximate problem (1.1) by a sequence of solvable regular problems;
we find a sequence {un} of approximate solutions;
we investigate convergence of a suitable subsequence {ukn}.
The type of this convergence determines the properties of its limit u and, among others,

determines whether u is a w-solution or a solution of the original singular problem (1.1).
There are many ways of constructing an approximate sequence of regular problems. The

main properties of such a sequence are given in the next theorem.
We will consider the sequence of regular problems

(φ(u′))′ + fn(t, u, u′) = 0, u(0) = u(T ) = 0, (3.1)

where fn ∈ Car ([0, T ]× R2), n ∈ N.

Theorem 3.1 (Existence principle for singular problem). Let (1.2) hold. Let εn > 0, ηn > 0
for n ∈ N and let lim

n→∞
εn = 0, lim

n→∞
ηn = 0. Assume that

fn(t, x, y) = f(t, x, y) for a.e. t ∈
[

1
n
, T − 1

n

]
, for each n >

2
T

and for each (x, y) ∈ A1 ×A2, |x| ≥ εn, |y| ≥ ηn,
(3.2)

there exists a bounded set Ω ⊂ C1[a, b] such that

for each n ≥ 2
T

the regular problem (3.1) has a solution

un ∈ Ω and (un(t), u′n(t)) ∈ A1 ×A2 for t ∈ [0, T ].

(3.3)

Then there exist u ∈ C[0, T ] and a subsequence {uk} ⊂ {un} such that

lim
k→∞

uk(t) = u(t) uniformly on [0, T ]. (3.4)

Further assume that there is a finite set S = {s1, . . . , sν} ⊂ (0, T ) such that

on each interval [a, b] ⊂ (0, T ) \ S the sequence {φ(u′n)} is equicontinuous. (3.5)

Then u ∈ C1((0, T ) \ S) and

lim
k→∞

u′k(t) = u′(t) locally uniformly on (0, T ) \ S. (3.6)
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Assume, in addition, that the set S has the form

S = {s ∈ (0, T ) : u(s) = 0 or u′(s) = 0 or u′(s) does not exist}. (3.7)

Then φ(u′) ∈ ACloc((0, T ) \ S) and u is a w-solution of problem (1.1).

Denote s0 = 0 and sν+1 = T . If there exist η ∈
(

0,
T

2

)
, λ0, µ0, λ1, µ1, . . . , λν+1, µν+1 ∈

∈ {−1, 1}, k0 ∈ N and ψ ∈ L[0, T ] such that

λifk (t, uk(t), u′k(t)) signu′k(t) ≥ ψ(t) for a.e. t ∈ (si − η, si) ∩ (0, T ),

µifk(t, uk(t), u′k(t)) signu′k(t) ≥ ψ(t) for a.e. t ∈ (si, si + η) ∩ (0, T ),
for all i ∈ {0, . . . ν + 1}, k ∈ N, k ≥ k0,

(3.8)

then φ(u′) ∈ AC[0, T ] and u is a solution of problem (1.1). Moreover, (u(t), u′(t)) ∈ A1 × A2

for t ∈ [0, T ].

Proof. By (3.3) there exist r > 0 and a sequence {un} of solutions of (3.1) such that

||un||C1 ≤ r for each n ∈ N, n >
2
T
. (3.9)

Therefore the sequence {un} is bounded in C[0, T ] and equicontinuous on [0, T ]. By Arzelà –
Ascoli theorem we can choose a subsequence {u`} such that

lim
`→∞

||u` − u||C = 0, u ∈ C[0, T ]. (3.10)

Now assume also (3.5) and choose an interval [a, b] ⊂ (0, T ) \ S arbitrarily. Then {φ(u′`)} is
equicontinuous on [a, b]. By (3.9) the sequence {u′`} is bounded in C[a, b]. Since φ is home-
omorphism, the sequence {φ(u′`)} is bounded in C[a, b] too. Arzelà – Ascoli theorem implies
that we can choose a subsequence {φ(uk)} ⊂ {φ(u`)} such that

lim
k→∞

φ(u′k(t)) = φ(u′(t)) uniformly on [a, b]

and consequently we get

lim
k→∞

u′k(t) = u′(t) uniformly on [a, b].

By virtue of (3.10), the sequence {uk} satisfies (3.4). Using the diagonalization method we can
choose such {uk} that (3.6) holds, as well. Therefore u ∈ C1((0, T ) \ S).

By (3.4), u satisfies u(0) = u(T ) = 0.
Let (3.7) be true. Define sets

V1 = {t ∈ (0, T ) : f(t, ·, ·) : D → R is not continuous},

V2 = {t ∈ (0, T ) : the equality in (3.2) is not satisfied},

and let
U = (0, T ) \ (S ∪ V1 ∪ V2).
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We see that

meas(S ∪ V1 ∪ V2) = 0. (3.11)

Choose an arbitrary t ∈ U . Then there exists kt ∈ N, such that for each k ∈ N, k ≥ kt, we have

t ∈
[
1
k
, T − 1

k

]
, |uk(t)| > εk, |u′k(t)| > ηk,

and
fk(t, uk(t), u′k(t)) = f(t, uk(t), u′k(t)).

Since t is an arbitrary element of U , by (3.4), (3.6) and (3.11) we get

lim
k→∞

fk(t, uk(t), u′k(t)) = f(t, u(t), u′(t)) a.e. on [0, T ]. (3.12)

Now choose an arbitrary interval [a, b] ⊂ (0, T ) \ S and integrate the equality

−(φ(u′(t)))′ = fk(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. (3.13)

We get

−φ(u′k(t)) + φ(u′k(a)) =

t∫
a

fk(s, uk(s), u′k(s))ds for each t ∈ [a, b]. (3.14)

Moreover there exists k∗ ∈ N, ε∗ > 0, η∗ > 0, such that for each k ∈ N, k ≥ k∗,

|fk(t, uk(t), u′k(t))| ≤ m(t) for a.e. t ∈ [a, b],

where
m(t) = sup {|f(t, x, y)| : ε∗ ≤ |x| ≤ r, η∗ ≤ |y| ≤ r} ∈ L[a, b].

Sincem ∈ L[a, b] we can apply the Lebesgue convergence theorem on [a, b] and get f(·, u(·),
u′(·)) ∈ L[a, b]. Moreover,

lim
k→∞

b∫
a

fk(s, uk(s), u′k(s))ds =

b∫
a

f(s, u(s), u′(s))ds,

which, by (3.14), yields

−φ(u′(t)) + φ(u′(a)) =

t∫
a

f(s, u(s), u′(s))ds for each t ∈ [a, b]. (3.15)

Since [a, b] is an arbitrary interval in (0, T ) \ S, we get that φ(u′) ∈ ACloc((0, T ) \ S) and u is a
w-solution of (1.1).

Now assume also that there exist η ∈
(

0,
T

2

)
, λ0, µ0, λ1, µ1, . . . , λν+1, µν+1 ∈ {−1, 1},

k0 ∈ N and ψ ∈ L[0, T ] such that (3.8) holds. Since u is a w-solution of (1.1), it remains to
prove that φ(u′) ∈ AC[0, T ].
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Choose i ∈ {0, . . . , ν + 1} and denote (ci, di) = (si − η, si) ∩ (0, T ). For k ∈ N and for a.e.
t ∈ (ci, di) \ S we denote

hk(t) = λifk(t, uk(t), u′k(t)) signu′k(t) + |ψ(t)|,

h(t) = λif(t, u(t), u′(t)) signu′(t) + |ψ(t)|.

Due to (3.7) we have u′(t) 6= 0. Further, hk ∈ L[ci, di] and according to (3.6) and (3.12) we
have

lim
k→∞

hk(t) = h(t) for a.e. t ∈ [ci, di].

If we multiply (3.13) by signu′k(t) and then integrate over [ci, di] we get, for k ≥ k0,∣∣∣∣∣∣
di∫

ci

fk(s, uk(s), u′k(s)) signu′k(s)ds

∣∣∣∣∣∣ ≤ φ(|u′k(di)|) + φ(|u′k(ci)|).

By (3.9) we get that the sequence {φ(u′k)} is bounded. By (3.8)

di∫
ci

|hk(s)|ds =

di∫
ci

hk(s)ds ≤

∣∣∣∣∣∣
di∫

ci

fk(s, uk(s), u′k(s)) signu′k(s)ds

∣∣∣∣∣∣ +

+

di∫
ci

|ψ(s)|ds ≤ φ(|u′k(di)|) + φ(|u′k(ci)|) +

di∫
ci

|ψ(s)|ds ≤ c.

Fatou lemma implies that h ∈ L[ci, di] and f(·, u(·), u′(·)) ∈ L[ci, di].
If (ci, di) = (si, si + η) ∩ (0, T ) we argue similarly.
Since f(·, u(·), u′(·)) ∈ L[a, b] for each [a, b] ⊂ (0, T ) \ S, we get f(·, u(·), u′(·)) ∈ L[0, T ]

and the equality in (3.15) is fulfilled for each t ∈ [0, T ] and φ(u′) ∈ AC[0, T ]. We have proved
that u is a solution of (1.1).

By (3.3) and (3.4) we have (u(t), u′(t)) ∈ A1 ×A2 for t ∈ [0, T ].

4. Application of existence principle. Existence principle in Theorem 3.1 is applicable to
singular problems where their nonlinearity f(t, x, y) can have singularities in all its variables
t, x, y. If f has no singularity at y = 0, then we can put ηk = 0 for k ∈ N in Theorem 3.1.
Moreover, due to the proof of Theorem 3.1, the set S in (3.7) consists only of the zeros of u.
This will be accounted for in the next theorem where we will assume that

f ∈ Car ((0, T )×D) can change its sign, D = (0,∞)× R,

f has mixed singularities at t = 0, t = T, x = 0.
(4.1)

Theorem 4.1. Let (4.1) hold. Let σ1 and σ2 be a lower function and an upper function of
problem (1.1) and let

0 < σ1(t) ≤ σ2(t) for t ∈ (0, T ).
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Assume that there exist a1, a2 ∈ [0, T ], a1 < a2, b ∈ (0,∞), a nonnegative function h ∈ L[0, T ],
and a function ω ∈ C[0,∞) fulfilling

∞∫
0

ds

ω(s)
= ∞, ω(s) ≥ b for s ∈ [0,∞) (4.2)

and
f(t, x, y) sign y ≤ ω(|φ(y)|)(h(t) + |y|)

for a.e. t ∈ [0, a2] and all x ∈ [σ1(t), σ2(t)], y ∈ R,

f(t, x, y) sign y ≥ −ω(|φ(y)|)(h(t) + |y|)

for a.e. t ∈ [a1, T ] and all x ∈ [σ1(t), σ2(t)], y ∈ R.
Then problem (1.1) has a solution satisfying estimate (2.5).

Remark 4.1. Lower and upper functions of problem (1.1) are understood in the sense of
Definition 2.1.

The proof of Theorem 4.1 is based on Theorem 3.1 where the existence of a bounded set
Ω ⊂ C1[0, T ] is needed. Therefore we first prove an apriori estimate.

Lemma 4.1. Let a1, a2 ∈ [0, T ], a1 < a2, r0, κ ∈ (0,∞). Further, let h0 ∈ L[0, T ] be
nonnegative and let ω be positive and fulfil the condition

∞∫
0

ds

ω(s)
= ∞. (4.3)

Then there exists r > 0 such that for each function u satisfying

φ(u′) ∈ AC[0, T ], ||u||C ≤ r0,

(φ(u′(t)))′ signu′(t) ≥ −κω(|φ(u′(t))|)(h0(t) + |u′(t)|) for a.e. t ∈ [0, a2], (4.4)

(φ(u′(t)))′ signu′(t) ≤ κω(|φ(u′(t))|)(h0(t) + |u′(t)|) for a.e. t ∈ [a1, T ],

the estimate ||u′||C ≤ r is valid.

Proof. Choose an arbitrary u satisfying condition (4.4). By the Mean Value Theorem we
can find ξ ∈ (a1, a2) such that

|u′(ξ)| ≤ 2r0
a2 − a1

=: c0.

Put v(t) = φ(u′(t)) for t ∈ [0, T ]. Then |v(ξ)| ≤ φ(c0) and signu′(t) = sign v(t) for t ∈ [0, T ].
Condition (4.3) implies that there exists ρ ∈ (φ(c0),∞) such that

ρ∫
φ(c0)

ds

ω(s)
> κ(||h0||L + 2r0). (4.5)
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Assume that max{|v(t)| : t ∈ [0, ξ]} = |v(α)| > ρ. Then α < ξ and there exists β ∈ (α, ξ]
such that |v(β)| = φ(c0), |v(t)| ≥ φ(c0) for t ∈ [α, β]. By the inequality in (4.4), which holds on
[0, a2], we get

−v
′(t) sign v(t)
ω(|v(t)|)

≤ κ(h0 + |u′(t)|) for a.e. t ∈ [α, β].

Integrating this inequality over [α, β] and using the substitution s = |v′(t)|, we have

|v(α)|∫
φ(c0)

ds

ω(s)
≤ κ

 β∫
α

h0(t)dt+

β∫
α

|u′(t)|dt

 . (4.6)

Since |v(t)| = |φ(u′(t))| ≥ φ(c0) for t ∈ [α, β], we see that u′ does not change its sign on [α, β]
and hence

β∫
α

|u′(t)|dt =

∣∣∣∣∣∣
β∫

α

u′(t)dt

∣∣∣∣∣∣ ≤ 2r0.

So, inequality (4.6) leads to

ρ∫
φ(c0)

ds

ω(s)
<

|v(α)|∫
φ(c0)

ds

ω(s)
≤ κ(||h0||L + 2r0),

which contradicts inequality (4.5). Therefore |v(α)| ≤ ρ and we have proved

|φ(u′(t))| ≤ ρ for t ∈ [0, ξ].

The estimate
|φ(u′(t))| ≤ ρ for t ∈ [ξ, T ]

can be proved similarly using the inequality in (4.4) which holds on [a1, T ].
Hence, we get ||u′||C ≤ r, if we put r = φ−1(ρ).
The lemma is proved.

Proof Theorem 4.1. Choose an arbitrary n ∈ N, n >
2
T

and denote

∆n =
[
0,

1
n

)
∪

(
T − 1

n
, T

]
,

∆n1 = {t ∈ ∆n : σ1(t) = σ2(t)} ,

∆n2 = {t ∈ ∆n : σ1(t) < σ2(t)} .

Define

α(t, x) =


σ1(t) if x < σ1(t),

x if σ1(t) ≤ x ≤ r0,

r0 if x > r0,
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for all t ∈ [0, T ], x ∈ R and r0 = max {||σ1||C , ||σ2||C},

β(y) =

{
y if |y| ≤ r,

r sign y if |y| > r,

where r > max {||σ′1||C , ||σ′2||C} is a constant by Lemma 4.1 for κ = 1 +
1
b

,

gn(t, x) =


(φ(σ′2(t)))

′ if x > σ2(t),

(x− σ1(t))(φ(σ′2(t)))
′ + (σ2(t)− x)(φ(σ′1(t)))

′

σ2(t)− σ1(t)
if σ1(t) ≤ x ≤ σ2(t),

(φ(σ′1(t))
′ if x < σ1

for a.e. t ∈ ∆n2 and all x ∈ R, and

fn(t, x, y) =


(f(t, α(t, x), β(y)) if t ∈ [0, T ] \∆n,

−(φ(σ′1(t)))
′ if t ∈ ∆n1 ,

−gn(t, x) if t ∈ ∆n2

for a.e. t ∈ [0, T ] and all x, y ∈ R.
Then fn ∈ Car ([0, T ]× R2), and fn satisfies the inequalities

fn(t, x, y) sign y ≤
(

1 +
1
b

)
ω(|φ(y)|)(h0(t) + |y|)

(4.7)
for a.e. t ∈ [0, a2] and all x ∈ [σ1(t), σ2(t)], y ∈ R,

fn(t, x, y) sign y ≥ −
(

1 +
1
b

)
ω(|φ(y)|)(h0(t) + |y|)

(4.8)
for a.e. t ∈ [a1, T ] and all x ∈ [σ1(t), σ2(t)], y ∈ R,

where h0(t) = h(t) + |(φ(σ′1(t)))
′|+ |(φ(σ′2(t)))

′|. Consider the problem

(φ(u′))′ + fn(t, u, u′) = 0, u(0) = u(T ) = 0. (4.9)

We see that σ1 and σ2 are also lower and upper functions to problem (4.9). Moreover there
exists hn ∈ L[0, T ] such that

|fn(t, x, y)| ≤ hn(t) for a.e. t ∈ [0, T ].

Hence, for each n ∈ N, n >
2
T

, Theorem 2.2 gives a solution un of problem (4.9) satisfying

(2.5). Moreover un fulfils conditions (4.4) with κ = 1 +
1
b

. Therefore, by Lemma 4.1, ||u′n||C ≤
≤ r.

Define
Ω =

{
x ∈ C1[0, T ] : σ1 ≤ x ≤ σ2 on [0, T ], ||x′||C ≤ r

}
.
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Put A1 = [0, r0], A2 = [−r, r], εn = max
{
σ1

(
1
n

)
, σ1

(
T − 1

n

)}
, ηn = 0 for n ∈ N. Then

conditions (3.2) and (3.3) are fulfilled and, by Theorem 3.1, we can find a subsequence {uk} ⊂
⊂ {un} uniformly converging on [0, T ] to a function u ∈ C[0, T ].

Choose [a, b] ⊂ (0, T ). Then there exists k0 ∈ N such that for k ≥ k0 we have [a, b] ⊂

⊂
[
1
k
, T − 1

k

]
and

|fk(t, uk(t), u′k(t))| ≤ h(t) for a.e. t ∈ [a, b],

where
h(t) = sup{|f(t, x, y)| : r∗ ≤ x ≤ σ2(t), |y| ≤ r},

and r∗ = min{σ1(t) : t ∈ [a, b]} > 0. Since h ∈ L[a, b], we see that the sequence {φ(u′k)} is
equicontinuous on [a, b]. Since f has not singularities at y, the set S ⊂ (0, T ) consists only of
the zeros of u. Since u is positive on (0, T ), S is empty and we see that conditions (3.5) and (3.7)
hold. Hence, by Theorem 3.1, φ(u′) ∈ ACloc((0, T )) and u is a w-solution of problem (1.1).

Denote ω0 = max{ω(s) : s ∈ [0, φ(r)]} and ψ(t) = −
(

1 +
1
b

)
ω0(h0(t) + r).

Inequality (4.7) implies that

−fk(t, uk(t), u′k(t)) signu′k(t) ≥ ψ(t)

for a.e. t ∈ [0, a2] and all k ≥ k0, and similarly inequality (4.8) gives

fk(t, uk(t), u′k(t)) signu′k(t) ≥ ψ(t)

for a.e. t ∈ [a1, T ] and all k ≥ k0.
So, if we put ν = 0, µ0 = −1, s0 = 0, s1 = T , λ1 = 1, η = min{a2, T − a1}, we get

inequalities (3.8). Therefore, by Theorem 3.1, φ(u′) ∈ AC[0, T ] and u is a solution of problem
(1.1).

The theorem is proved.

Example 4.1. Let α, β ∈ [1,∞), a ∈ R, b ∈
(

0,
1√
2

)
, c ∈ (0,∞), d ∈

(
1
b
− 2b

)
. Consider

problem (1.1) where φ(y) ≡ y and

f(t, x, y) =
(
(T − t)−β − t−α + a

)
(x− bt(T − t))y + cy2 − d+

t(T − t)
x

for a.e. t ∈ [0, T ] and all x, y ∈ R. The first term of f has time singularities at t = 0, t = T and
the last term of f has a space singularity at x = 0.

Let us put

σ1(t) = bt(T − t), σ2(t) ≡ r2 ≥
T 2

4

(
1
d

+ b

)
,

ω(s) = (s+ 1)(c+ 1), a1 =
T

3
, a2 =

T

2
.

If we choose a sufficiently large positive constant K and put h(t) ≡ K, we can check that
all conditions of Theorem 4.1 are fulfilled. Therefore our problem has a solution u satisfying
estimate (2.5).
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