UDCS517.9

PERIODIC SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS
WITH W),,-PSEUDOMONOTONE MAPS

MEPIOVYHI PO3B’I3KN HEJIIHINHUX EBOJIIMHUX PIBHAHD
3 Wi,-IICEBIOMOHOTOHHMMM BITIOBPAKEHHAMMN

P. O. Kasyanov

Kyiv Nat. Taras Shevchenko Univ.
Volodymyrs’ka Str. 64, 01033, Kyiv, Ukraine
e-mail: kasyanov@univ.kiev.ua

V. S. Mel’nik

Inst. Appl. and System Analysis Nat. Acad. Sci. Ukraine
Peremogy Avenue 37 Build. 35, 03056, Kyiv, Ukraine
e-mail: vsmelnyk@ukr.net

S. Toscano

Univ. Salerno
Via Ponte Don Melillo 1, 84084 Fisciano (Salerno), Italy
e-mail: speranza.toscano@virgilio.it

We consider differential-operator equations with Wy -pseudomonotone operators. The problem of stu-
dying periodic solutions via the Faedo— Galerkin method has been considered. The important a priory
estimates have been obtained. A topological description of resolvent operators is given.

Pozenanymo oughepenyianvro-onepamopHi pisnanua 3 Wy, -nce60omonomonrumu onepamopamu. Pos-
8°’A3aHO NPoOAeMY BUBHEHHA NEPIOOUYHUX PO36°A3Kie memooom DPaedo — lanvopkina. Ompumaro 8axc-
ausi anpiopti ouinku. Hagedeno nesHuli monoaoitHuLl OnUcC pe30ab8eHMHUX ONepamopie.

We obtain a condition for existence and uniqueness of a periodic solution of a system of
nonlinear integro-differential equations with an impulsive effect. The solution is represented as
a limit of periodic iterations. We give estimates for the convergence rate and the exact solution.

Opep:kaHO YMOBY iCHYBaHHS €IMHOT'O MEPIOUYHOTO PO3B’SI3KY CHCTEMH HEJiHIIIHUX iHTerpo-
nudepeHiaIbHUX PiBHAHD 3 IMITYJIBCHOIO fii€t0. PO3B’A30K OJjaHO y BUIISL IPaHUL Tepiofu-
yHKX iTepaniid. HaBeneHo oliHKY MIBUIKOCTI 361KHOCTI i TOYHOT'O PO3B’SI3KYy CHCTEMU.

1. Introduction. One of the most effective approaches to investigate nonlinear problems, defi-
ned by partial differential equations with boundary values consists in their into equations in
Banach spaces governed by nonlinear operators. In order to study these equations, modern
methods of nonlinear analysis have been used [1-3]. In [4], by using a special basis, the Cauchy
problem for a class of equations with operators of Volterra type has been studied. An important
periodic problem for equations with monotone differential operators of Volterra type has been
studied in [1]. Periodic solutions for pseudomonotone operators have been considered in [2].
In the present paper we introduce a new construction of bases to prove existence of peri-
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188 P.0. KASYANOV, V.S. MELNIK, S. TOSCANO

odic solutions of differential-operator equations by using the Faedo- Galerkin method for
Wy,-pseudomonotone operators. From the point of view of applications, we have essentially
extended the class of operators considered by other authors (see [4-6]).

2. Problem definition. Let (V1,| - ||y;) and (V2, || - ||v,) be some reflexive separable Banach
spaces, continuously embedded in a Hilbert space (H, (-, -)) such that

V := Vi N Vs is dense in the spaces Vi, V2 and H. (2.1)
After the identification H = H* we get
VicHcCV, Vo C HCVy, (2.2)

with continuous and dense embeddings [1], where (V;*, ||-||v;) is the space topologically conjugate
to V; with respect to the canonical bilinear form (-, ‘>V; : VExV, - R i = 1,2
which coincides on H with the inner product (-,-) on H. Let us consider the functional spaces
Xi = L, (S;H)N Ly, (S;V;),where S = [0,7],0 < T < +00,1 < p; <1 < 400,1 = 1,2.
The spaces X; are Banach spaces with the norms [|y||x, = [lyl|z,,s:v;) + [1¥]lz,., (s:0)- Moreover,
X is a reflexive space.

Let us also consider the Banach space X = X; N X, with the norm ||y||x = ||y||x, + [|y| x,-
Since the spaces L, (S; V;*) + L,»(S; H) and X are isometrically isomorphic, we identify them.
Analogously, X* = X{ + X = Lg, (S; Vi) + Lgy (S;V5") + Ly (S; H) + L,y (S; H), where

ri ' 77t = p;71 4+ ¢! = 1. Let us define a duality form on X* x X,

mm—/ummmamm+/UMmMﬂmw+/vmmmmmm+

S S S

+ [ ) v dr = [ (G p)dr

S S

where f = fi1 + fiz + fo1 + foo, fri € Ly(S; H), fai € Lg,(S;V;"). For each f € X*,

/1

e = inf maxyq || fullz, (s;m)
f = fun+ fig+ far + faz : !
fri € Ly (S5 H), fai € Ly, (S;V7) (i = 1,2)

||f12||LTé(S;H)a 1 f21ll Ly, (s:v7) |f22|Lq2(S;V2*)}~

Let A: X; — X and B : X9 — X be single-valued nonlinear operators, L : D(L) C
C X — X* be alinear closed densly defined operator. We consider the following problem:

Ly+ A(y) + B(y) = f, (2.3)

y € D(L), (2.4)
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where f € X* is arbitrary and fixed.

3. Classes of maps. Let (Y, ||-||y) be a Banach space, W a normed space with a norm || - ||y .
We consider W C Y with a continuous embedding. Further, y,, — y in Y means that y,, weakly
converges to y in the space Y. If Y is not reflexive, then y,, — y in Y* means that y,, *-weakly
converges to y in the space Y*.

Definition 3.1. Let D(A) be a subset of Y. A single-valued map A : D(A) C Y — Y*is
called:

coercive if |ylly' (A(y), y)y — +ooas [|ylly — oo,y € D(A);

weakly coercive if for each f € Y* there exists R > 0 such that

(A(y) = fry)y = 0as |ylly = R, y € D(A);

bounded if for any L > 0 there exists | > 0 such that

1A(y)]

locally bounded if for any fixed y € D(A) there exist constants m > 0 and M > 0 such that

[A©) v+ < Miflly—¢lly < m, & € D(A);
finite-dimensionally locally bounded if for each finite-dimensional subspace F' C D(A), A| P
is locally bounded on (F, || - ||y ).

Definition 3.2. A single-valued map A : D(A) C Y — Y™ is called
radially continuous if for any fixed y, £ € D(A),

v« <1l YyeDA): |yly <L

(Aly +1£),8)y = (A(y),&)v;

lim
t——+40

an operator with semibounded variation on W (with (Y, W)-semibounded variation) if for
all R > 0and all y1,y2 € D(A) with |y1|ly < R, ||y2]ly < R, the inequality

(A(y1) — A(y2),y1 — v2)y = —C(R;|ly1 — vllw)
is fulfilled;

A-pseudomonotone on W (Wy-pseudomonotone), if for each sequence {yy }n>1 C WND(A)
such that y,, — yo in W with yo € D(A), the inequality

lim <A(yn)7yn - y0>y <0, (31)

n—oo

implies existence of {yn, }k>1 from {yn }n>1 such that

lim (A(Yn, ), Yn, — W)y > (A(Yo) Yo —w)y Yw € D(A)NW; (3.2)

k—o0

Xo-pseudomonotone on W (W, -pseudomonotone), if for each sequence {yn}n>1 C W N
ND(A) such that

Yn = yoin W,  A(yn) — doinY* withyog € D(A) and dy € Y™,
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190 P.0. KASYANOV, V.S. MELNIK, S. TOSCANO

it follows from (3.1) that there exists {yn, }k>1 C {yn}n>1 such that (3.2) is true.
The above single-valued map satisfies
property (k) if for each bounded set D in Y there exists ¢ € R such that

(A(v),v)y = —clvlly Vv € D;
property (1) if for each nonempty bounded subset B C D(A) and for each k > 0 such that
(A(y),y)y <k foreachy € B,
it follows that there exists K > 0 such that
AW |ly+ < K forally € B.

Here C(ry;-) : Ry — Risa continuous function for each 71 > 0 and such that 7=1C/(ry; 7r2) —
— 0as7 — 40V ry,r2 > 0and |- [}, is a (semi-)norm on Y, that is compact with respect to
I [[w on W and continuous with respect to || - ||y on Y'!

Remark 3.1. The idea of passing to subsequences in the latter definition was adopted from
Skrypnik’s work [7].

LetY = Y1 NYa, where (Y1, | - ||y;) and (Y2, || - ||y, ) are some Banach spaces.

Definition 3.3. A pair of single-valued maps A : D(A) C Y1 — Y{"and B : D(B) C Y, —
— Y is called s-mutually bounded, if for each M > 0 and each bounded set D C Y there exists
K > 0 such that from

y € D(A)ND(B)ND and (A(y),y)v; + (BY),y)v, < M,

we have
or AWllyy < K or [|By)lly; < K.

Remark 3.2. A bounded map A : Y — Y™ satisfies property (x) and property (IT); a -
pseudomonotone on W map is Ag-pseudomonotone on W. The converse statement is true for
bounded single-valued maps.

If one of the operators of the pair (A; B) is bounded, then the pair (4; B) is s-mutually
bounded. Moreover, if a pair (A4; B) is s-mutually bounded, then the operator C = A+ B :
X — X* has property (II).

If a pair of operators is s-mutually bounded and each of them satisfies condition (IT), then
the sum of the given operators also satisfies condition (II).

Now let W = W N Wy, where (W1, || - ||w,) and (Wa, || - |lw,) are Banach spaces such that
W; C Y; with a continuous embedding.

Lemma3.l. Let A : Y, — Y"and B : Yo — Y5 be s-mutually bounded \o-pseudomonotone
operators on Wy and Wo, respectively. Then the map C' := A+B : Y — Y*is \g-pseudomonotone
onW.

Remark 3.3. If a pair (A; B) is not s-mutually bounded, then the above proposition takes
place only for maps that are A-pseudomonotone on W; and Wy, respectively.
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Proof. Let y,, — yo in W (it means that y,, — yo in Wy and y,, — yo in Wa), C(y,) — dp in
Y* and inequality (3.1) hold. Since the pair (A; B) is s-mutually bounded, from the estimate

(C(yn), yn)y = (AYn) + Byn)s yn)y = (AWn), Un)vi + (B(Wn), yn)y, < k

we have that either ||A(y,)|
necessary, we claim that

vy < Cor | B(y)|lyy < C.Then passing to a subsequence if

A(yn) — dyinYy" and B(y,) — dj in Yy (3.3)
From inequality (3.1) we have

lim (B(yn), yn = ¥0)vo + 1m (A(Yn),yn — vo)vi < Hm (Cyn), yn — vo)y <0,

n—oo

or, symmetrically,

im (A(yn), yn — yo)vi + m (B(yn), ¥n = ¥0)vs < Hm (C(Yn),yn — o)y < 0.

n—:oo

Let us consider the last inequality. It is obvious that there exists a subsequence {ym}m C
C {Yn}n>1 such that

n—oo N—00

> lim <B(ym)v Ym — QO>YQ + lim <A(ym)v Ym — y0>Y1- (34)
m—oo m—oo
Hence, it follows that

either  lim (A(Ym), Ym —Yo)y; <0 or  Lim (B(Ym),Ym — Yo)v, < 0.

m—0o0 m—0o0

Without loss of generality we assume that lim (A(ym), ¥m — Y0)y; < 0. Then, from (3.3) and
m—00
Ao-pseudomonotony of A on W7, it follows that there exists {ym, }x>1 in {ym }m such that

Em (A(Ymy)s Ym, — V)vi = (Ao) v —v)y;, Yo € YN Wi, (3.5)

k—o00

If we take in the last relation v = yo we obtain that (A(Ymy.)s Yme — Y0)v; — 0 as k — +oo.
Then, due to (3.4), klim (BYmy), Ymy, — Yo)vs < 0.

In virtue of \p-pseudomonotony of B on W5, passing to a subsequence {ym;} C {Ymy to>15
we find

im (B ), Ymy, — w)ve = (B(yo),yo —w)y, Yw € YN Wa. (3.6)

k—o0
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Then from relations (3.5) and (3.6) we finally obtain

lim <C(ym%),ym% - 33>Y > lim <"4(ym}€)7ym§c - x>Y1 + lim <B(ym;€)7ym2 - J,‘>Y2 >

k—o00 k—o0 k—o00

> (A(yo), %0 — 2)y; + (B(¥0),%0 — )y, = (C(yo), %0 — )y Vx € WNY.

The lemma is proved.

Lemma 3.2. Let A : Yy — Y and B : Yo — Y5 be coercive maps, that satisfy condition
(k). Then the operator C := A+ B :' Y — Y™ is coercive.

Proof. We obtain this statement arguing by contradiction. Let {z,},>1 C Y with z,, # 0

and ||z, |ly = ||znllvy + || Znlly, — +00 asn — oo, but
C
supM < +o0. (3.7)
n>1 lzally
A B
Let ~4(r) := inf M, vp(r) := inf M, r > 0. We remark
oy, =r  lvliv; lwliv,=r  [Jw]ly

that v4(r) — 400, vp(r) — +o00 asr — +oc. In the case ||zy,|y; — 400 as m — oo and

A
lzmlly, < ¢ ¥m > 1, we get (Alzn), Zn)y, > 7A(||acn\|yl)HI"HY1 — 400 asm — +oo and,
moreover |Znlly znlly
(B(@n),zn)yy o lznllvs

— 0 asn — oo,

a1y [znly

where ¢; € Ris a constant as in condition (k) with D = {y € Y5 | ||y|ly, < c}. Consequently,

(C(zn),zn)y  (AlTn), Tn)y; n (B(xn), Tn) v, — 400 as n — oo.

e R % lznlly

This is in contradiction with (3.7).
If |znlly, < ¢ Vn > 1and ||z,]y, — o0 asn — oo the reasoning is the same.
When ||z, ||y, — oo and ||zy|y, — o0 asn — oo, we get the contradiction

[EZ310%

(C(xn), Tn)y

+00 > sup > valllzn|ly,
S zally (Ul e s+ TianTvs
el o
s (leallv) > min (ya(lzallvs), 15 (lenllva)} — +oo.

[Znllyy + [[znlly,

The lemma is proved.

Remark 3.4. Under the conditions of the latter lemma, it follows that the operator C =
= A+ B:Y — Y*is weakly coercive.

Definition 3.4. An operator L : D(L) C'Y — Y™ is called
monotone, if for each y1,y> € D(L) (Ly1 — Ly2,y1 — y2)y = 0;
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maximal monotone, if it is monotone and from (w — Lu,v — u)y, > 0 for allw € D(L) it
follows that v € D(L) and Lv = w.

Remark 3.5. If the reflexive Banach space Y is strictly convex with its conjugate then [2]
(Lemma 3.1.1) the linear operator L : D(L) C Y — Y™ is maximal monotone and densly
defined if and only if L is a closed unbounded operator such that

(Ly,y)y >0 Vy e D(L) and (L'y,y)y >0 Vy e D(L"),

where L* : D(L*) C Y — Y™ is the conjugate operator of L in the sense of the theory of
unbounded operators [8§].

4. Auxiliary statements. From (2.1) and (2.2),V = V1NV, C H with a continuous and dense
embedding. As V is a separable Banach space, there exists a complete in V', and consequently
in H, countable system of vectors, {h;};>1 C V.

Let for each n > 1, H, = span{h;};",. On H, we consider the inner product induced
from H that we again denote by (-,-). Let P, : H — H,, C H be the operator of orthogonal
projection from H on H,, i.e.,

Vh € H: Py,h = argmin|h— h,|#.
h”LEH'I'L
Definition 4.1. We say that a triple ({h;}i>1; V'; H) satisfies condition (7y) if sup || Pp| £(v,vy <
n>1

< 400, Le., there exists C > 1 such that

Yo e VVn>1: |Pywl|v <Clvly.

Remark 4.1. When the system of vectors {h;};>1 C V is orthogonal in H, condition ()
means that the given system is a Schauder basis in the space V' (in particular in V; and in V%)
[9]-

Remark 4.2. Since P,, € L(V,V), its conjugate operator P; € L(V*,V*) and || Pl zv,v) =
= ||Pyllz(v=v+)- Itis clear that for each h € H P,h = P;h. Hence, we identify P, with P.
Then condition () means that for eachv € Vandn > 1, ||Pyv|yv+ < C - [[v]|v=.

Due to the equivalence between H* and H, it follows that H} = H,. Foreachn > 1
we consider the Banach space X,, = L,,(S;H,) C X, where py := max{ry,r2} with the
norm || - || x,, induced from the space X. This norm is equivalent to the natural norm in L, (S;
H,) [1].

The space Ly, (S; Hy) (g5 " +py ' = 1) with the norm

o)l o Do,

Ifllx; = sup =
sex oy 171X exoqoy 2lx,

is isometrically isomorphic to the conjugate space X of X,, (further the given spaces are identi-
fied); moreover, the map

X, xXp 3 fix — /(f(T),.CU(T))HndT = /(f(T),:U(T))dT = (f,x)Xn
S

S
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is a duality form on X;; x X,,. This is true due to X7, = L, (S; Hy) C Lgo(S; H) C Ly (S; H) +
+Lr/2(S; H)+Lg (S; Vi) +Lg, (S; V5) = X* (see [1]). Let us remark that (- |X*XX = {,)x,-

Proposition 4.1. For eachn > 1, X,, = P, X, i.e, X,, = {Py() | y(-) € X}, and we have
(f: Pry) = (f,y) Vy e X and [e X,
Moreover, if triples ({h;}j>1;Vi; H) , i = 1,2, satisfy condition () with C = Cj, then

|Poyllx < max{Ci,Co}-|yllx Vye X and n>1.

Proof. For each y € X let y,(-) := Pyy(-), i.e., yo(t) = Pyy(t) for almost all (a.a.) ¢t € S.
Since P, is linear and continuous on Vi, Vo and H, we have that y, € X,, C X. It follows
from condition (v) and the definitions of || - ||z, (s;v;) and || - ||z, (s;m) that [[ynllz, (siv;) <

< CillyllL,, s;vi) and [lynllr,, (s:mr) < [l (s;m)- Thus [lyn[lx < max{C1, Co} |yl x-
Now we prove that for all f € X (f,yn) = (f,y). As f € Ly (S; Hy,), we have

/(f ,yT)dT—/(f nyT)dT—/(f )y (T)dr = (f, ),

since foralln > 1,h € Handv € H,, (h — P,h,v) = (h — Pyh,v)g = 0.

The proposition is proved.

For each n > 1 we denote by I,, the canonical embedding of X, in X (Vz € X, I,z = x),
I¥ + X* — X its conjugate operator. We remark that

Ml 20, 110 L HIx0) = R lleees, 1 s (X e ) = 1

Proposition 4.2. For eachn > land f € X*, (I f)(t) = P,f(t) fora.a. t € S. Moreover, if
triples ({h;};>1;Vi; H), 1 = 1,2, satisfy condition () with C = C;, then

forall f € X*andn >1  ||I'f]

x+ < max{Cy, Co}|| fllx~,

Le.,
sup || I || o (x+; x+) < max {C1, Ca}.
n>1

Proof. Letn > 1and f € X* be fixed. Let us show that for a.a. t € S, (I f)(t) = P, f(t).
From Remark 4.2 it follows that for each x € X,

<I:Lf?x> = <f7 $> = /(f(7)7.23(7'))d7' =

:/(f(T)Pnf dT+/Pf / T))dr,  (4.1)
S
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PERIODIC SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS WITH W, ,-PSEUDOMONOTONE MAPS 195

since for allu € H, andv € V*, (v — Pyv,u) = 0.

Let us prove the last equality. For each v € V* there exists a sequence {vy}r>1 C H such
thatvy, — vin V*ask — oo. Itis clear that for each k > 1, (vy, — Ppvk,u) = (vp — Pyvg,u)g =
= 0. From the continuity of (-,-) on V* x V, it follows that (v — P,v,u) = klijgo(vk — Pyvg,u) =
= 0. From (4.1) it follows that for a.a. t € S (I} f)(t) = P, f(¢).

Now we prove the second part of this proposition. Let condition (v) be true, f € X* and

n > 1 be arbitrary and fixed. Then from Remark 4.2 and condition (7) it follows that for each
fo € Ly (S; H) and f; € Ly, (S;V;*) such that f = fo + fi + f2, we have

15 foll gy (s:0) + MnfillLy, (siv) + I Tnf2ll Ly, (svy) =

1
q1 a2

(‘I/ll*dT + /||Pnf2(7)||g/22*d7' <
S

- / IPufolr)ar |+ | [ 1P
S S

IN

1 1

q0 q1
[1amigar ) o [Inmigar | woal [Ipoige] <
S S S

< max {C1, Ca} (HfOHLqO(S;H) + 1 fillLg, (s5v5) + Hszqu(s;v;)) ;
as C1,Cy > 1. Hence, from the definition of || f|| x~ it follows that
7 fll x>+ < max {C1, Co}|| fl|x

The proposition is proved.
From the last two propositions and properties of I}, we immediately obtain the following
corollary.

Corollary 4.1. For alln > 1, X)) = P, X* = I X, ie,

Xp =APuf ()| f() € X7} ={I;f | f € X7}

Proposition 4.3. The set | ) X, is dense in (X, || - || x)-
n>1

Proof. 1. At first we prove that the set Lo, (S; V') is dense in the space (X, || -||x). Letz € X
be arbitrary and fixed. Then for each n > 1 we consider

z(t), z@®)llv < n,

Ty (t) = { (4.2)

0, otherwise.
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Obviously foralln > 1, z, € Ly (S;V). From (2.2) it follows that there exists v > 0 such that,
according to (4.2),as i = 1,2 and for a.a. t € S, we get

[2n(t) =2z < llzn(t) —z(@)]lv — 0,

[z (t) = x(®)llv; < [lza(t) —z()ly — 0 as n — oo, (4.3)

len@lla < lle@®llas lea®)lv; < @]l (4.4)

Further let
Oh(t) = llzn(t) — 2@y, oV, (#) = llza(t) — @)
Hence from (4.3) and (4.4) we obtain

Py (t) — 0, 7. (t) — 0 asn — oo, (4.5)

05 @) < 27zl = eu(t), |ov@)] < 27 [z@)|F; =: dvi(t) (4.6)
fora.a.t € S. Asz € X, we have ¢, év,, ¢v, € L1(5). So, because of (4.5) and (4.6), we can
apply the Lebesgue theorem with integrable majorants ¢, ¢y, and ¢y, , respectively (see [10]).
Hence it follows that ¢ — 0and ¢}, — 0in L;(S) asi = 1,2. Consequently, ||z, — z[x — 0
asn — 0o.

2. Further, let for some linear variety L from V'

T(L) := {y € (S — L) | yis asimple function}
(see [1, p. 152]). Let us prove that the set T (V) is dense in the normed space (Lo (S, V), || - || x)-
Every arbitrary fixed element z € L (S, V') is measurable, according to Bochner, as a function
from the class (S — V). So, there exists a sequence {z, },>1 C Y(V) such that

n(t) — xz(t)inV asn — oo fora.a.teS. 4.7)
Since x € Lo (S, V) it follows that esssup ||x(t)|[y =: ¢ < 4o00. For each n > 1 we introduce

tes
za(t), [on(t)llv < 2

Yn(t) :== (4.8)
0, otherwise.

From (4.7) and (4.8) it follows that y,, € T(V) asn > 1 and, moreover,
Yn(t) — z(t)inV asn — oo foraa.t € S.
Hence, taking into account (2.2), we obtain that asi = 1,2 and for a.a.t € S

yn(t) — z(t)in H, y,(t) — z(t)inVy, yu(t) — x(t)inVy asn — oc.
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As in item 1, assuming

¢u = ¢y = Py, = max{(3¢)™, (3¢)”, (3¢7)} € L1(9)),

we obtain that y,, — zin X asn — oo. So, Y(V) is dense in (Lo (S, V), | - || x)-
3. Since the set span{h, },>1 = |J Hyisdensein (V.| - ||y) and (2.2) holds, it is clear that

n>1
theset Y(J Hy) = U Y(Hy)isdensein (Y(V),| - |lx)-
n>1 n>1
In order to end the proof we remark that for eachn > 1, Y(H,) C X,,.

The proposition is proved.

Proposition 4.4. Let L : D(L) C X — X* be a linear maximal monotone operator. Then
the normed space D(L) with the graph norm ||y py = llyllx + | Lyl|x+ is complete (hence, it is
weakly complete).

Proof. Let {y, },>1 C D(L) be a Cauchy sequence. Since X is a Banach space, there exists
y € X such that

yp — y inX asn — oo. (4.9)
Analogously there exists x € X* such that
Ly, — x inX" asn — oo. (4.10)
Now we prove that

(x — Lu,y —u) >0 for each uw € D(L).

Letu € D(L) be arbitrary and fixed. In virtue of (4.9), (4.10) and since L is monotone on D(L),
it follows that foreachn > 1

0 < (Lyn — Lu,yn —u) — (x — Lu,y —u) asn — oo.

Consequently, from the maximal monotony of L, the required statement follows.
The proposition is proved.

5. Faedo - Galerkin method. For eachn > 1letusset L, := I;LI, : D(L,) = D(L)N
NX, C X, —» X}, A, .= }AL, : X, —» X}, B,, == I!BI,, - X;, = X}, fn = I}f € X.

Remark 5.1. We will also denote by I} the operators conjugate to the canonical embeddings
of X,, in X; and of X,, in X», because these operators coincide with I;; on X} N X3 which is
dense in X7, X3, X*.

Now we consider D(L) as a normed space with the graph norm [|y|[p(zy = llyllx + [[ Lyl x+
for each y € D(L). We remark that if the linear operator L is closed and densely defined, then
(D(L), || - llp(z)) is a Banach space continuously embedded in X.

In addition to the problem (2.3), (2.4) we consider the following class of problems:

Lnyn + An(yn) + Bn(yn) = fns (51)71
Yn € D(Ly,). (5.2),
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Remark 5.2. We consider on D(Ly,) the graph norm ||y, || p(r,.) = [¥nllx, + [|Lnynllx; for
eachy, € D(Ly,).

Definition 5.1. We say that a solution to (2.3), (2.4) y € D(L) is obtained via the Faedo —
Galerkin method, if y is the weak limit of a subsequence {yn, }r>1 from {yn}n>1 in D(L), where
foreach n > 1, vy, is a solution to the problem (5.1),, (5.2).

6. Choice of the basis. As it is well-known from [11] there exist separable Banach spaces
that do not have a Schauder basis. Hence we need to introduce some constructions of a basis to
satisfy condition ().

Definition 6.1. We say that a system of vectors {h; }i>1 of a separable Hilbert space (V; (-, -)v ),
continuously and densely embedded in a Hilbert space (H; (-,-) ), is a special basis for the pair
of spaces (V; H) if it satisfies the following conditions:

{hi}i>1 is orthonormal in (H, (-, ) u);

{hi}i>1 is orthogonal in (V, (-, )v);

Vi >1 (hi,’U)V = /\i(hi,v)H VYo € V, where 0 < )\ < )\2,...,/\]‘ — 00asj — oQ.

Lemma 6.1. IfV is a Hilbert space, compactly and densely embedded in a Hilbert space H,
then there exists a special basis {h;};>1 for (V; H). Moreover, for an arbitrary such system, the
triple ({hi}i>1; V'; H) satisfies condition () with the constant C' = 1.

Proof. From [12, p. 54-58], under these assumptions, it is well-known that there exists a
special basis {h;};>1 for the pair (V; H). So, in order to complete the proof it is enough to show
that the triple ({h;};>1;V; H) satisfies condition (y) with the constant C' = 1 for an arbitrary
special basis {h;};>1 for (V; H). Therefore, let H,, = span{h;}}_, and let us denote by P, the
operator of orthogonal projection from H to H,,. Obviously, P,,, € L(V; V).

Further let us prove that for alln > 1

[Pahlly < kv Vhe | Hn (6.1)

m>1

Letn > 1befixed. Thenh € |J Hp = 3Img > n+1:h € Hy,. Whence, since {h;};>; is

m>1
mo n
orthonormal in H, we have h = > (h, h;)ghi, P,h = > (h, h;)gh;. In order to obtain (6.1)
i=1 i=1
it is necessary to show that P,h is orthogonal to (h — P,h) in V. In fact, (P,h,h — P,h)y =
n mo n m
= | X (hhi)ghi, 32 (hohj)phi | = >2 X2 (hhi)u(h hj)a(hi, hi)v = 0, since {h;}i>1
i=1 j=n+1 v i=lj=ntl

is orthogonal in V. So, from continuity of P, on V we have that foralln > landv € V
[Pavlly < [loflv
The lemma is proved.

Now let us make the same for Banach spaces. We consider that [ is a subset of R.

Let {Z,}qcr be a family of Banach spaces such that

forall vy, € I, n < g, Zy, C Z,, With a continuous embedding;

there exists a set ® such that for all « € I, ® is dense in Z,;

forallag € Iandx € @, |[z[z, — |z[z,, asa — ap, a € I.

We also consider a Banach space H such that Z, C H with continuous embeddings for all
a € I and the set @ is dense in H.
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Let {h;};>1 C ® be a system of vectors.

Proposition 6.1. Let the above assumptions be true. If for some oo € I the triple ({h;}j>1;
Za,; H) satisfies condition () with the constant C > 1, then the set of o € I for which the triple
({hj}j>1; Za; H) satisfies the same condition with the same constant is closed in 1.

Proof. For an arbitrary o € I, statement G(«) means that the triple ({h;};>1; Zo; H) sati-
sfies condition (y) with the constant C.
We denote

I, ={ae€l|G(a)istrue} and I_=1T1\I;.

Let a € I be an arbitrary cluster point of 7. Then there exists {c,},>1 C I such that
an, — a. For each fixed element x € ®, by using the definition of I,

Ym>1 Vred Vn>1: | Paz|lz,,, < Cllzl 2.,
and passing to the limit as m — +o0 in the last inequality, we obtain
| Poxllz, < C|lx|z, Ve e ® Vn > 1.

Then from density of ® in Z, and continuity, P,, on Z,, statement G(«) follows. So, « € I,i.e.,
the statement G(«) is true.
The proposition is proved.

Now we consider one application of the above proposition. But at first we need to give some
definitions from the interpolation theory.

For an interpolation pair Ay, A; (i.e., Banach spaces Ay and A; that are continuously embed-
ded in some linear topological space) let us consider the functional

K(t,z) = inf (lxollag + tllz1llay) t>0, e Ag+ A

r=x0+x1: ToEAQ, T1E€EAL

For fixed x € Ag + Aj, this map is a monotone increasing, continuous, concave function of the
variable ¢t > 0 (see [9], Lemma 1.3.1).
For 6 € (0,1) and 1 < p < +oo0 let us consider the following space:

“+o00
dt
(Ao, A1)gy = Lo € Ao+ Ay ‘ / [r%@,m}% < 400y (6.2)

0

1

+oo dt
(Ao, A1)g,p With ||z[le, = (/ 0K (t, mﬂp?) " it is a Banach space (for more details see
0
[9]) and this results in (see [9], Theorem 1.3.3):

AgNA; C (Ao,Al)g,p C Ag+ Ay Vo € (0, 1) Vl<p< 40 (63)

with dense and continuous embeddings.

Definition 6.2. Let 1 < r < 2. We say that a filter of Banach spaces {Zy}p>r, a Hilbert space
H, and a system of vectors, {h;}i>1, complete in Z, \'p > r satisfy the main conditions, if
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a)pa > p1 > r Z,, C Zy, C H with continuous and dense embeddings;

1 1-6 0
b)p2 > p > p1 > 1 (Zp, Zpy)op = Zp, where § = 6(p) € (0,1) o *

R p p2
¢) Zy is a Hilbert space;

d) for some C > 1 the triple ({h;}i>1; Z2; H) satisfies condition () with a constant C, the
set 1. (C) = {p > 2| the triple ({hi}i>1; Zp; H) does not satisfy condition (vy) with the constant
C'} (if it is not empty) contains its minimal element and the set I_(C) = {p € [r;2] | the triple
({hi}ti>1; Zp; H) does not satisfy condition (vy) with the constant C'} (if it is not empty) contains
its maximal element.

Lemma 6.2. Let1 < r < 2, {Z,},>, be a filter of Banach spaces, H a Hilbert space H,
and a system of vectors, {h;};>1, complete in Z, N'p > r satisfy the main conditions. Then, for all
p > rthe triple ({h;}i>1; Zp; H) satisfies condition ().

Remark 6.1. In the case Z, C H with compact a embedding, due to Lemma 6.1, as the
vector system {h; };>1 we can choose a special basis for the pair (Z,; H). In particular, the above
result means that the special basis for (Z,; H) is a Schauder basis for an arbitrary space Z,, as
r<p<2

Proof. Let N > 2and M € (r,2) be arbitrary fixed numbers. Now we apply Proposition
6.1withI = (M,N), a9 = 2,® = Zy. In order to do this, it is sufficient to prove that

||x||Zq — ||| 7z, a q—pl(q¢€ I) VpelVx e Zy. (6.4)

Let p be an arbitrary element of I (hence there exists  such that [p — §,p+ 6] C I),x be a
fixed element of the space Zy. From (6.2) and the main condition b) for {Z,},>, and H, for all
q € [p—9,p+ 0] it results in

+o0o 1
_ adt\ ¢
lellz, = Wellznn, = ([ [*5wo)]' )" (65)
0
where 1/q = (1 —6(q))/M +6(q)/N,i.e.,
11 SENS U R
M M — M
0(q) = T—7 € 0(p—0),0(p+9)] = [ 1 1_pT} C (0,1).
M N M N M N

The following relations prove (6.4). Denote
1
f(tv Q) = t_e(q)K(t7 .T) qE V(t, Q) S (07 +OO) X [p - 6)p + 6]
From (6.2) and (6.5) it follows that for each ¢ € [p —J,p + J], we have f(-,q) € L1[0,+00);

moreover, for each ¢ € (0, +00), f(t,-) € C([p — d,p + d]). Furthermore, noticing that for each
t>0andq € [p—0d,p+4],

[t‘e(Q)K(t,x)}q% < max{[t—e(pd)[((t’x)}p_é, [t—G(P—5)K(t,:v) p+6,
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[f@(p“)f((t,x)r*é, {t’e(er‘s)K(t,x)]pM}% — g(b),

and having in mind that (6.3) holds and = € Zy = Zj; N Zy, we have

+oo +o00
-0

/ g(t)dt < 4max / 0Dkt 2)] %

0 0
T 0(p—9d ptodi o 0(p+6 p=ddt
/ [t_ (= )K(t,x)} —, / [t_ (p+ )K(t,x)} @«

¢ t

0 0

700 [tiﬁ(pM)K(t, x)}p—i—(;% = 4max {
0

p+o
Hx”(ZJ\{vZN)Q(p 8)p—5’ Hx”(ZM,ZN)o(p—é),pH’

p+o
(|2 ||(ZA41ZN)9(p+5)p 5 ||x||(ZMva)9(p+6)¢p+5}.

Thus, the theorem of continuous dependence of the Lebesgue integral on a parameter [13]
(Theorem 8.1.1) assures the convergence (6.4).

To finish the proof we remark that the set {p > 2| the triple ({h;}i>1;Zp; H) does not
satisfy condition () with the constant C'} contains its minimal element (respectively, the set
I_(C) = {p € [r;2] | the triple ({hi}i>1; Zp; H) does not satisfy condition () with the constant
C'} contains its maximal element), which contradicts Proposition 6.1.

Corollary 6.1. Let V', V3 be Banach spaces, continuously embedded in the Hilbert space H.
Let us assume that for some filter of Banach spaces {Z;}pZT'm ri € [1;2),1 = 1,2, there exists
p; > 1; such that V; = Zpss within to equivalent norms. Moreover, there exists a Hilbert space
Z C Vi N Va, compactly and densely embedded in H, such that for a special basis {h;};>1 for
the pair (Z; H) with {h;};>1 C ﬁp>TiZ;,f0r some 0 < py < po,...,pj — ooasj — oo and
si > 0,1=1,2,

o0
Zi = {u € H‘ Z,uji(u, hj)? < +oo}
j=1
is a Hilbert space with the inner product

(u,0) g5 = Z,u “(u, hj) (v, hyj);

{Z,}p>r; together with H and the system of vectors {h;};>1 satisfies the main conditions. Then
the triple ({h;};>1;V;; H) satisfies condition ().

Proof. Having in mind the proof of Lemmas 6.1 and 6.2, it is enough to show that {h;};>1
is a special basis for (Z; H). In fact, since {h;};>1 is orthogonal in H we have

1, r=s,

Vrs>1:  (hyhs) g % (hy, hy) (hsy hy) =
by = ) =i {
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Vr>1: (Bryv) 75 Z;ﬁz hey b)) (v, ) = pi(hy,v) Yo € Zi.

The corollary is proved.

Remark 6.2. In what follows we may assume that the triple of spaces Vi, V5 and H satisfies
the conditions of Corollary 6.1!

7. The main resolvability theorem.

Theorem 7.1. Let L : D(L) C X — X*, A: Xy — X{,and B : X9 — XJ be maps such
that

1) L is linear maximal monotone and satisfies the following conditions:

(L1) for eachn > 1 and x,, € D(L,) = X, N D(L), Lz, € X}';

(L2) for each n > 1, the set D(Ly,) is dense in Xp;

(L3) for eachn > 1, L,, is a maximal monotone operator;

2) there exist Banach spaces W1 and Wy such that W, C X1, Wo C X9, and D(L) C WiNWs
with a continuous embedding;

3) Ais N\o-pseudomonotone on Wy and satisfies condition (I1);

4) B is \o-pseudomonotone on Wy, and satisfies condition (11);

5) the pair (A; B) is s-mutually bounded and the sum C = A+ B : X — X" is finite-
dimensionally locally bounded and weakly coercive.

Furthermore, let {h;};>1 C V be a complete system of vectors in Vi, Vo, H such that for
i = 1,2 thetriple ({h;};>1;Vi; H) satisfies condition ().

Then for each f € X* the set

Ky(f) == {y € D(L) | y is a solution to (2.3), (2.4),
obtained via the Faedo — Galerkin method }

is nonempty and we have the representation

Ku(f) = N[ U Enlfa)] - (11)

n>1 m>n v

where for each n > 1,

K, (fn) = {yn € D(Ly) | yn is a solution of (5.1),, (5.2)n}
and [-]x,, is the closure of an operator in the space X with respect to the weak topology.
Moreover, if the operator A+ B : X — X* is coercive, then Ky (f) is weakly compact.

Remark 7.1. A sufficient condition for getting the weak coercivity of A + B is the following:
A is coercive and satisfies condition (k) on X7, B is coercive and satisfies condition (k) on Xs
(see Lemma 3.2).

Remark 7.2. From condition Ly on the operator L and from Proposition 4.3, it follows that
L is densly defined.
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Proof. By Lemma 3.1 and Remark 3.2 we consider a A\yp-pseudomonotone on W7 N W5 (and
hence on D(L)), finite-dimensionally locally bounded, weakly coercive map,

X3y —Cy) = Ay) + B(y) € X7,

which satisfies condition (II). Let f € X* be fixed. Now we use the weak coercivity condition
for C. There exists R > 0 such that

Cy)—f,y) 20  VYyeX: |lylx =R (72)

7.1. Resolvability of the approximating problems.
Lemma 7.1. For all n > 1 there exists a solution of the problem (5.1),, (5.2)n, yn € D(Ly,)
such that ||y, |lx < R.

Proof. In order to obtain this result we need to prove that foreachn > 1C, := A, + B, =
= I}(A+ B) : X,, — X satisfies the following:

i1) Cy, satisfies condition (IT);

i2) Cy, is Ag-pseudomonotone on D(L,,), locally finite-dimensionally bounded;

i3) (Cn(Yn) — fmyn) >0 Vyn € Xp : HynHXn = R.
Let us consider i;). Let B C X,, be some nonempty bounded subset and k& > 0 be a
constant such that

(Cn(y),y) < k foreachy € B.

Since for each y € X,,, (Cy(y),y) = (I:C(y),y) = (C(y),y), we have
(C(y),y) <k foreachy € B.

Since C satisfies condition (II), there exists K > 0 such that
IC(y)||x- < K forally € B.

Consequently,
sup [|Cn (y) [ x- < K[ Il oxexg) < 400
yeB

Now we consider i2). Because of the boundedness of I,, € £(X,,; X), I;; € L(X*; X}) and
the locally finite-dimensional boundedness of C' : X — X*, it follows that C,, on X, is locally
finite-dimensional bounded.

Now we prove the Ap-pseudomonotony of C;, on D(L;). Let {ym}m>0 C D(Ly) be an
arbitrary sequence such that y,,, — yoin D(L,),Cp(ym) — d € X} asm — +oo and inequality
(3.1) hold. As D(L,,) C D(L) with continuous embedding,

Ym — Yo in D(L) as m — +o0. (73)

Since forallm > 1
(InC(Ym), Ym — vo) = (C(Ym), Ym — Yo),
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we have

im (C(ym), ym = vo) = Hm (Cn(ym), Ym — o) < 0. (74)

m—o0

Hence,

lim (C(ym), ym) < T (Co(Ym), ym — yo) + Tim (Cr(ym), o) < (d, o) < +00.

m—0o0

Since C satisfies condition (IT), we have that the sequence {C(y,)}m>1 is bounded in X*.
Hence, for a subsequence,

C(ym) — gin X" asm — oc.

Consequently from (7.3) and (74), we get the existence of a subsequence {yp, }x>1 C {Um tm>1
such that for allw € X

lim <C(ymk)7ymk - w> > <C(y0)vy() - w>

k—oo

This means that for each w € X,

lim <On(ymk)7ymk - w> > <Cn(y())7y0 - ’LU>

k—o00

So, C), is A\p-pseudomonotone on D(L,,).

Condition i3) holds thanks to (72).

Now let us continue the proof of the lemma. From [14] (Theorem 2.1) withV = W = X =
=X,,A=0C,B=0,L =1L, DIL) = D(L,), f = fn,r = R and the properties i) —
ig) for C,, Ly — Ls for L, it follows that the problem (5.1),, (5.2),, has at least one solution
yn € D(Ly) such that ||y,||x < R.

The lemma is proved.

Let us remark that under condition (IT) imposed on C,, it is easy to find the next estimate
(7.7) from which it is possible to use the \o-pseudomonotony for C on D(L,,).

7.2. Passing to limit. Due to the Lemma 71 we have a sequence of Galerkin approximate
solutions {y, }»>1 that satisfies the next conditions:

Vn>1: yallx <R, (75)

Vn>1: wy, € D(L,) C D(L), Lpyn+ Cpn(yn) = fn. (76)

In order to prove the above theorem we need to obtain an important result.

Lemma 7.2. Let, for some subsequence {ny },>1 from the natural scale, the sequence {yn, }r>1
satisfy the next conditions:

forallk > 1, wy,, € D(L,,) = D(L)N Xp,;

forallk > 1, Ly, yn, + Cn\(Yn,) = fris

Yn, —yin X ask — oo forsomey € X.
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Then, y € Ky (f).
Proof. From the definitions of L,,, , C,, and f,, for each k > 1, it follows that

(Cr Wni)s Yni) = (fue = LogYni> Yni) = (f = Lyng, Ynp) <

< N llxs sup flyn, llx =: K1 < +oo,
k>1

where K is a constant which does not depend on & > 1. Hence, due to property (II) of the
operator C, it follows that there exists Ko > 0 such that for each & > 1

1C (Y|l x+ < Ko < +o00. (77)
Using the condition L; for L and Proposition 4.2, that for all £ > 1

ILynllxe = Lm0 = M, (f = Clyni)) |- <

< max {C1, Co} (|| fllx+ + K2) =t K3 < +o0, (78)
where K3 is a constant which does not depend on k£ > 1. Hence, for each & > 1,

”ynkHD(L) = HynkHX + HLynkHX* < i‘ilzl)HynkHX + K3 = K4 < 400,

where K, is a constant that does not depend on k£ > 1. Consequently, due to (77), Proposition
4.4 and Banach — Alaoglu theorem, there exists a subsequence {y,, } of {yy, } such that for some
y € D(L) and d € X* the next convergence takes place:

Ym — yin D(L), C(ym) — din X*. (79)
1. Let us prove that

Jim (Lym + C(Ym), ym — y) = 0. (710)

Since the set |J X, is dense in X, for each m there exists u,, € X,, (for example u,, €
n>1
€ argmin ||y — vy, || x) such that u,, — yin X. So, due to (7.8), (77) we obtain that for each m
VmE€Xm

{(Lym + C(Ym)s Ym — | < [ Lym + C(Ym)s Ym — tm)| + [{Lym + C(Ym), um — y)| <

< (s Ym — um)| + (K3 + K2) - [|ly — umllx — [{f,y —y)| = 0.
2. Now we obtain that

lim <C(ym)7ym - y) <0. (711)

m—00
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From (710), (79) and from monotonicity of L, we have

m (C(ym),ym —y) = lm (Lym + C(Ym), ym —y) = Im ((Lym — Ly, ym — y)+

m—00 m—o00

+ (LY, ym —y)) <0+ Iim (= (Lym — Ly, ym — y)) + Lim (Ly,y — ym) < 0.
m—00 m—0o0

It follows from (7.9) and (711) that we can use the A\g-pseudomonotonicity of C on D(L). Hence,
there exists a subsequence {yx }x from {y,, }.» such that

Vwe X lim (Clyr) g —w) = (C(Y),y —w). (712)

k—oo

We remark that the last relation is true as implied by Proposition 4.3. In particular, from (7.11)
and (712) it follows that

kh_)HSO (Clyr)sye —y) = 0.

3. Let us prove that

Vue DIL)(\(|J Xn) :  (f—d—Ly+ Lu,u) > 0. (713)

n>1

In order to prove (7.13) it is necessary to obtain that

Vu e DIL)(\(|J Xn) :  lim (Lyx — Ly + Lu,u) > 0. (714)

n>1 k—oo

Since L is monotone and using (79), for each u € D(L) (U X») we have

n>1

lim (Lyy — Ly + Lu,u) > lim (Ly; — Ly,u) = 0.

k—o00 k—o0

Further let w € D(L)(( U X») be arbitrary and fixed. Then there exists ng > 1 such that
n>1
u € D(L)N X,, and, for each k : k > ny,

(Ly, u) = (Liyr, w) = T (f = Clyw)),w) = (f = Clyk), ) — {f — d,w). (715)

So, (713) directly follows from (714) and (715).
4. Now we prove that Ly = f — d. Let us use (713). We obtain that for each ¢ > 0 and

ueD(L)ﬂ(ngn),
: (f—d—Ly,t-u) > —(t-Lu,t u),

which is equivalent to
(f —d—Lyu) > —t-(Lu,u).
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Hence,

Vue DIL)((|JXn): (f—d—Ly.u) >0,

n

and, by the Proposition 4.3, the last relation is equivalent to Ly = f — d.
5. In order to prove that y € D(L) is a solution to (2.3), (2.4) it is enough to show that
d = C(y). Because of (711), (712) and (79), it follows that for eachw € X

<C(y)vy_w> < hirn <C(yk)7yk _w> <

k—oo
< k@ (C(yk),yk — y) + lim (Cyk),y —w) < (d,y —w),

which is equivalent to the required statement. So, y € Ky (f).
The lemma is proved.

Using (75), (7.6), Lemma 72, the Banach — Alaoglu theorem and the topological property of
the upper limit [15] (Property 2.29.1V.8) we see that

o # N|U Enlfn)] € K.

n>1 m>n

The converse inclusion is obvious; it follows from the same topological property of the upper
limit and from D(L) C X with a continuous embedding.

Now let us prove that K (f) is weakly compact under the coercivity condition on the
operator C = A+ B : X — X* Because of (71) it is enough to show that the given set
is bounded. We obtain this statement arguing by contradiction. If {y,}n,>1 C Kp(f) is such
that

lynllx — +00 as n — oo,
we obtain the contradiction

1 1

[1ynllx Iyl x

(Lyn + C(Yn), yn) =

1
= m(ﬁyn) < |[fllx* < +o0.
n

8. An Application. 8.1. On searching the periodic solutions of differential-operator equati-
ons via the Faedo — Galerkin method. Let A : X; — X and B : Xy — X; be single-valued
maps. We consider the next problem:

Y + A(y) + B(y) = (8.1)
y(0) = y(T) (8.2)
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in order to find solutions via the Faedo — Galerkin method in the class W = {y € X |y € X*},
where the derivative ¢’ of an element y € X is considered in the sense of the scalar distributions
space D*(S;V*) = L(D(S); V), with V = Vi N V,, V! equal to V* and the topology o(V*,V)
[16]. On W we consider the norm ||y|lw = |lyllx + ||¥/||x+ for each y € W. We also consider
the spaces W; = {y € X; |y € X*},i =1,2.

Remark 8.1. 1t is clear that the space W is continuously embedded in C'(S; V*). Hence, the
condition (8.2) makes sense.

Together with the problem (8.1), (8.2) we consider the next class of problems in order to
search for solutions in W,, = {y € X,, |y € X;:}:

Z/;z + An(yYn) + Bu(yn) = fu, (8.3)n

Yn(0) = yn(T), (8:4)n
where the maps A, B,, f, were introduced in Section 5, the derivative y/, of an element y,, €

€ X, is considered in the sense of D*(S; Hy,).

Let Wyer := {y € W | y(0) = y(T) },letusintroduceamap L : D(L) = Wpey C X — X*
in such way that Ly = g/ for each y € We,.

The main solvability theorem gives the next corollary.

Corollary 8.1. Let A : X1 — X{ and B : X2 — X3 be maps such that

1) A is \g-pseudomonotone on Wy and satisfies condition (I1);

2) B is \o-pseudomonotone on Wy and satisfies condition (II);

3) the pair (A; B) is s-mutually bounded and the sum C = A+ B : X — X" is finite-
dimensionally locally bounded and weakly coercive.

Furthermore, let {h;}j>1 C V be a complete system of vectors in Vi, Vo, H such that, as
i = 1,2, the triple ({h;};>1; Vi; H) satisfies condition ().
Then for each f € X* the set

K¥(f) == {y € W |y is a solution to (8.1), (8.2),
obtained via the Faedo — Galerkin method }

is nonempty and we have the representation

K = N[ U B )]

n>1 m>n

where for eachn > 1

KP(fn) = {yn € Wy, | yn is a solution to (8.3),, (8.4),} .

per

Moreover, if the operator A+ B : X — X* is coercive, then Ky, (f) is weakly compact.

Proof. At first let us prove the maximal monotonicity of L on Wye,. Forv € X, w € X*
such that, for each u € Wy, (w — Lu,v—u) > 0is true, let us prove that v € Wy, and v/ = w.
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If we take u = hpx € Wy with ¢ € D(S), 2z € V and h > 0, we get

0< (w—¢hz,v—phx) = (w,v)—
- (/S(Lp'(s)v(s) + go(s)w(s))ds,hx) + (' hx, phx) =

= <wvv> + h<vl(90) - w(ap),x>,

where v'(p) and w(p) are values of the distributions v" and w on ¢ € D(S). So, for each
¢ € D(S)and z € V, (V'(¢p) — w(p),z) > 0 is true. Thus we obtain v'(¢) = w(yp) for all
¢ € D(S). It means that v = w € X*. Now we prove v(0) = o(T). If we use [1] with
u(t) = v(T') € Wper, We obtain that

0< @ —Lu,v—u) = —u,v—u) =

= 5 (1) = @)l 0(0) ~ o)) = =5 0(0) ~ o)y < 0

and then v(0) = (7).
In order to prove this statement, it is enough to show that L satisfies the conditions L; — L.
The condition L; follows from the next proposition.

Proposition 8.1. For each y € X and n > 1, P,y = (P,y)’, where the derivative of an
element x € X has to be considered in the sense of D*(S; V™).

Proof. 1t is sufficient to show that for any ¢ € D(S), P,y (¢) = (P.y)'(¢). In fact, from the
definition of the derivative in the sense of D*(S; V*) we have

P/ (9) = —Pay(y) = —Pa / y(r)g (r)dr =

- _ / Poy(r)¢! (r)dr = —(Pay)(¢) = (Pay)' () Vi € D(S).

The proposition is proved.

Condition L follows from [1] (Lemma VI.1.5) and from the fact that the set C!(S; H,,) is
dense in L, (S, H,) = Xp.

Condition L3 follows from [1] (Lemma VI.1.7) withV = H = H, and X = X,,.

The corollary is proved.

8.2. Example. Let us consider a bounded domain 2 C R™ with a sufficiently smooth
boundary 92, S = [0,7],Q = Q x (0;7), I'r = 02 x (0;7). Let,as i = 1,2, m; € N,
Ni(respectively Ni) by the number of derivatives respect to the variable z of order < m; —
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—1 (respectively m;) and { A (z,t,n,& )}\al -,,, be a family of real functions defined on @ x
x RN x RN3. Let

DFu = {DPu,|B| = k} be the differentiations with respect to z,

Siu = {u, Du, ..., D™ 1y},
Al (z,t,6;u, D™iv) : x,t — Al (x,t, 6;u(z, t), D™iv(z,t)).

Moreover, let ¢ : R — R be a convex coercive function belonging to C'(R) with bounded
derivative /.
Let us consider the next problem with Dirichlet boundary conditions:

8y(8:z’t) T Z (_1)‘a|Da(A(11(x7t761y)Dmly))+ Z (_1)‘a|Da(Agz(x?tv 62nym2y))+
la<ma la|<ma
+¢'(y(z,1) = flz,t)  inQ, (8.5)
y(x,0) = y(z,T) in Q, (8.6)
D%%(z,t) =0 onl'ras|al <m;andi = 1,2. (8.7)

Let us assume that H = Ly(2) and V; = W7 (Q) with p; € (1,2] such that V; C H with
a continuous embedding. Under suitable conditions on the coefficients A’ , the given problem
can be written as

v+ Ai(y) + A2y) +ocly) = f, y(0) = y(T), (8.8)

where f € X* = Ly(S; La(2))+Lg, (S W04 () + Ly, (S; W% (Q)) (p; ' +¢; '+ = 1), ¢l
is the Gateaux derivative of the functional ¢(y) = fQ ¥ (y(z,t))dzdt in the space La(S; L2(Q2)).

Each element y € W that satisfies (8.8) is called a generalized solution to the problem (8.5) -
(8.7).

Choice of basis. Due to Corollary 6.1 and [9] (Theorem 4.3.1.2), under the main condition
d), for the complete system of vectors in the spaces W,""" (), we can take the special basis for

the pair (HI{"™™23 () 1,(Q)) with a suitable £ > 0.

Definition of the operators A;. Let Al (x,t,1,¢),defined on Q x RN1 x RN2, satisfy the next
conditions: A ‘

for almost all z,t € Q, the map 1, & — A% (x,t,7,€) is continuous on RN x RNz;

for all , &, the map x,t — Al (x,t,7,€) is measurable on Q; (8.9)

forallu,v € LPi(0,T;V;) = V;, Al (z,t,0;u, D™u) € LU%(Q). (8.10)
Then for each v € V; the map

w — a;(u,w) = Z / Al (x,t, 0;u, D™iu) D*wdxdt

la|<m; ¢
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is continuous on V; and also

there exists A;(u) € V; such that a;(u, w) = (A;(u), w).

Conditions on A;. Similarly to [2] (Sections 2.2.5,2.2.6, 3.2.1) we have
Ai(u) = Ai(u,u),  Ai(u,v) = A (u,v) + Aip(u),

where
(A (u,v),w) = Z Al (z,t, 6;u, D™iv) Dwdzdt,

laj=m: g

(Aip(w),w) = > Al (z,t, 8;u, D™iw) Dwdzdt.
|o¢\§mi—1 Q

We add the next conditions:

(An (u,u),u —v) — (A1 (u,v),u —v)y >0 Yu,v € V;;

if uj = winV;, ) — o in V) and if (4;1(uj, uj) — An(uj,u),u; —u) — 0,

J

then Af (z,t,0u;, D™u;) — Al (x,t,6u, D™u) in L9 (Q);

coercivity.

211

(8.11)

(8.12)

(8.13)

(8.14)

Remark 8.2. Similarly to [2] (Theorem 2.2.8), sufficient conditions for getting (8.12), (8.13)

are

: 1
Z Aé(%t%f)faW — +o0 as [{] — oo

la|=m;

for almost all z,¢ € @ and |n| bounded;

> (A, t,n,€) — Al(2,t,0,))(6a — &) > 0as & # &

lor|=m;

for almost all z,¢ € @ and 7.
The next condition allows for coercivity:

Z Al (2,t,n,8)€, > cl€|P' for sufficiently large |€|.

|| =m;
A sufficient condition to get (8.10) (see [2, p. 332]) is

A4 (z,t,0,€)] < cllnfP ™ + [P + k(x,t)], k€ Lq (Q).
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By analogy with the proof of [2] (Theorem 3.2.1 and Statement 2.2.6) we get the next
proposition.

Proposition 8.2. Let the operator A; : V; — VI, i = 1,2, defined in (8.11), satisfy (8.9),
(8.10), (8.12), (8.13) and (8.14). Then A; is pseudomonotone on W,. Moreover it is bounded if
(8.15) holds.

Due to the last statement and to Corollary 8.1, it follows that under the listed above conditi-
ons, for all f € X* there exists R > 0 such that Ky (f) := {y eWw ] y is a generalized solution
to the problem (8.5) - (8.7), obtained via the Faedo— Galerkin method } is nonempty, weakly
compact in the closed ball from the space X with the center in the origin and radius R, and also
representation (7.1) holds.
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