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In this paper we treat the planar frictionless motion induced by a starting pulse on a two-body, four degrees
of freedom system, consisting of two equal rods hinged together. A full discussion of all the possible planar
forceless motions is given, and the hyperelliptic functions are found to be necessary. A particular case,
namely the asymptotic one, in its two kinematic variants (open/closed) is faced. It is ruled by the nonlinear
differential equation

ϕ̇ = sign ϕ̇0

√
3A sinϕ√

(1 + 3 cos2 ϕ)
(
1 + 3 sin2 ϕ

) , ϕ(0) = ϕ0,

whose integration provides a link between the time and the Lagrangian coordinate ϕ by means of elliptic
integrals of the I, II, III kinds.

The other (angle) coordinate θ, has been drawn to the quadratures by knowing ϕ.

Розглянуто плоский рух двох тiл, що утворюють систему з чотирма ступенями волi i скла-
даються з двох однакових з’єднаних мiж собою стержнiв, iндукований початковим iмпульсом.
Розглянуто всi можливi рухи системи при вiдсутностi впливу сил та виявлено необхiднiсть ви-
користання гiперелiптичних функцiй. Зокрема, розглянуто асимптотику у двох кiнематичних
випадках (вiдкритому та замкненому), що описується диференцiальним рiвнянням

ϕ̇ = sign ϕ̇0

√
3A sinϕ√

(1 + 3 cos2 ϕ)
(
1 + 3 sin2 ϕ

) , ϕ(0) = ϕ0,

iнтегрування якого визначає зв’язок мiж часом та лагранжевою координатою ϕ за допомогою
елiптичних iнтегралiв I, II та III типiв. Iнтегрування iншої (кутової) координати θ зводиться
до квадратур пiсля знаходження ϕ.

1. Introduction: our problem. Euler and Lagrange have established a mathematically sound
foundation of the Newtonian Mechanics. After them, Jacobi has imported (1837) from Optics
to Classical Mechanics the Hamilton’s formalism based on the least action, and arrived to a new
formulation of it, now referred to as the Hamilton – Jacobi theory.

Nevertheless the number of cases in which the ordinary differential equation (ODE) of
the analytical Dynamics can be integrated in closed form, or even reduced to quadratures,
is quite limited. It was then made a crucial step in arriving at the concept of ”integrability”,
developed by Liouville, whose definition (1855) of integrable n-Hamiltonian system in the
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FRICTIONLESS PLANAR MOTION OF A COUPLE OF HINGED RODS 49

unknown functions xj(t), j = 1, . . . , n, is based on the so called ”first integrals”, namely some
special (supposed known) functions Φ (x1, x2, . . . , xn) of the n variables xj , j = 1, . . . , n, that
are constants when the Lagrangian coordinates x1, x2, . . . , xn satisfy the motion’s ODE.

A n-system is then considered (fully) integrable if one succeeds in knowing n first integrals
of it.

Liouville’s definition of integrable systems covered many classical examples. Among them
we find the Keplerian motion, the armonic oscillators solved by trigonometric functions, the
rigid bodies (spinning tops) of the Euler – Poinsot, and of the Lagrange type, needing the elliptic
functions. Among the other famous items of the Classical Mechanics we recall the pendulum,
which many special functions are employed for. Namely, the elliptic ones for treating its large
oscillations (and its complete revolutions!), or for the centrifugal governor (see [1]); the Bessel
functions for the variable length pendulum; and finally, the Mathieu functions for the pendulum
oscillating from a vibrating base.

At a higher level we can put the mentioned geodesic motions over an ellipsoid, or the one-
dimensional heat conduction through a radiating wire, or the Kovalevskaya’s case on the rotati-
on of a rigid body about a fixed point, all needing the hyperelliptic functions.

Our article treats a problem that is direct, namely: given nothing but the acting forces (which
could be a statically equilibrate system) and the initial conditions of position and speed, the
motion is required.

Following our own recent researchs [1 – 3], we consider a two-body mechanical system S, wi-
thout (dry) friction and in vacuum (no air resistance), four degrees of freedom. We will perform
its closed form integration with the help of some special function of the Mathematical Phy-
sics. The recent progress in their evaluation by computer algebra allows to easily calculate the
motions (see our sample problems).

2. System description. Our system consists of a couple of homogeneous rods, each having
a mass m, frictionlessly hinged at the point O. They are launched in vacuum on a polished
horizontal plane: the weights and the relevant reactions are all directed normally to the motion
plane, and other forces are not considered capable to affect the movement, which therefore
means that no force is acting, and it is pulsed by the initial conditions only.

The S ’s degrees of freedom are four: in fact it would be always possible to determine its
configuration knowing the three degrees of the first rod, plus the angle of the second with the
first one.

Nevertheless a different practical parameters’ choice (ξ, η, θ, ϕ) has been deemed more to
fit (see Fig. 1). The system centre of mass, say G, coincides with the middle point of the straight
segment connecting the central pointsM andN of the rodsOA andOB. Its position during the
time will be known by its Cartesian coordinates ξG(t) and ηG(t). Afterwards, for defining the
whole system position with respect to G, the angle θ formed by GO with the axis Gξ′, always
parallel to Ωξ, will be given. Finally, as a fourth variable, the half-angle ϕ in O is assumed.

We will start by computing the system kinetic energy T , adding the amounts of the single

rods. To each rod of length 2`-whose barycentric moment of inertia is
1

3
m`2, we will apply the

König theorem, obtaining

T = m
(
ξ̇2G + η̇2G

)
+

1

3
m`2

[
ϕ̇2
(
1 + 3 cos2 ϕ

)
+ θ̇2(1 + 3 sin2 ϕ)

]
(2.1)
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50 G. MINGARI SCARPELLO, D. RITELLI

Fig. 1. Sketch and geometrical elements of S.

(see Fig. 1, and for a different approach [4, p. 340], where our problem is proposed without an
explicit solution).

Of the four Lagrangian parameters, only ϕ appears in the kinetic energy, which is algebrai-
cally depending on the time derivatives of all of them.

Not being there any conservative force field, the Lagrange function will then coincide with

T = T
(
ϕ; ξ̇G, η̇G, ϕ̇, θ̇

)
.

3. System motion equations in vacuo. As a consequence of above, the Lagrange equations
will be 

d

dt

(
∂T

∂ξ̇

)
= 0,

d

dt

(
∂T

∂η̇

)
= 0,


d

dt

(
∂T

∂θ̇

)
= 0,

d

dt

(
∂T

∂ϕ̇

)
− ∂T

∂ϕ
= 0.

(3.1)

They have to be solved for the four unknown functions with eight initial conditions prescribing
the starting values for them and for their first derivatives,

ξ(0) = ξ0,

η(0) = η0,

ϕ(0) = ϕ0,

θ(0) = θ0,


ξ̇(0) = ξ̇0,

η̇(0) = η̇0,

ϕ̇(0) = ϕ̇0,

θ̇(0) = θ̇0.

Let us settle the ranges and the initial values for ξG, ηG, θ, ϕ.
The motion can, without any restriction, be located all on the first quadrant of ξΩη, and then

the barycentre coordinates ξG, ηG will be always greater than zero during the time, possibly
starting by the values ξG0 = 0, ηG0 = 0.
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Let us go to the angle coordinates.
We establish a positive orientation on the straight line from the centre of mass G to the

hinge O, and evaluate positively the counterclockwise angle θ formed by GO and the oriented
axisGξ′, always parallel to Ωξ. Then θ has the meaning of polar anomaly of the compasses’ axis,
and 0 ≤ θ ≤ 2π. For the initial value, there will be no problem in assuming that S will start up
with its own axis superimposed on Ωξ then θ0 = 0. To this end, another initial condition on the
derivative shall be added, like (e. g.) θ̇0 = +1 (leaning up) or θ̇0 = −1 (leaning down).

During the motion, we select as compasses’ ”opening” the convex angle formed by the rods,
always ≤ π. Then for the half-opening ϕ we will have 0 ≤ ϕ ≤ π/2.

Among the∞2 possible starting conditions on the opening, we will examine the following
remarkable kinematic variants:

i) start with rods tendency to joining, namely ϕ̇0 < 0,

ii) start with rods tendency to broadening, namely ϕ̇0 > 0.

Of course theϕ0 value is not critical, because each possible value could be taken as a starting
one without any impliance on the next behaviour, but in order to avoid tedious classification
of the goniometric subcases, due to the inversion of the sine, in the first occurrence we take
0 < ϕ0 <

π

2
, while in the second

π

2
< ϕ0 < π. Then we could assume ϕ̇0 = −1 for i) and +1

for ii); for both cases any ϕ0 could be taken such that sin2 ϕ0 > 0.

In order to obtain the Lagrange equations, recalling the kinetic energy (2.1), by (3.1), we
have

ξ̇ = C1, η̇ = C2, θ̇2 =
C

1 + 3 sin2 ϕ
, (3.2)

with C1, C2, C being three constant values depending on the initial conditions. By the first two
formulas of (3.2) we see that

dηG
dξG

= const,

then a straight line will be the trajectory of the centre of mass, whose motion will be uniform,
according to the first two of (3.2).

On the contrary, the angle coordinates are coupled since by the third of (3.2), of course, we
need another equation.

The last Lagrange one could be obtained by injecting the T expression (2.1) in the fourth
of (3.1), and handling it. But one arrives much sooner at the same conclusion by seeing that,
due to the problem nature and to the links, the kinetic energy must be invariant with respect
to the time (the fourth first integral, in the sense of Liouville). Then, by setting the energy (3.2)
a constant, remembering the first two of (3.2), we obtain the fourth ODE, namely, a further
relationship between the angles and their time-derivatives,

ϕ̇2
(
1 + 3 cos2 ϕ

)
+ θ̇2

(
1 + 3 sin2 ϕ

)
= const. (3.3)

To the above constant, surely greater than zero, the form A2 can be given, namely,

A2 = ϕ̇2
0

(
1 + 3 cos2 ϕ0

)
+ θ̇20

(
1 + 3 sin2 ϕ0

)
.
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52 G. MINGARI SCARPELLO, D. RITELLI

By the third of (3.2), we have

C = θ̇20
(
1 + 3 sin2 ϕ0

)
> 0.

Dividing the third of (3.2) to the (3.3) and putting

ν2 =
ϕ̇2
0

θ̇20
, sin2 ϕ0 = x0,

we obtain

4− 3x0

(1 + 3x0)
2 ν

2 +
1

1 + 3x0
=
A2

C2
, (3.4)

useful for the next discussion, and showing that the initial condition on θ0 has no influence on
the motion nature, because θ0 does appear neither in A2 nor in C2.

Furthermore, if the third of (3.2) is replaced in (3.3), we have a highly nonlinear ODE in
the unknown function ϕ(t),(

dϕ(t)

dt

)2

=
3A2 sin2 ϕ(t) +A2 − C2

(1 + 3 cos2 ϕ(t))
(
1 + 3 sin2 ϕ(t)

) ,
(3.5)

ϕ(0) = ϕ0.

Separating the variables in (3.5), we get

t = ± 1

A
√

3

ϕ∫
ϕ0

√
(1 + 3 cos2 φ)

(
1 + 3 sin2 φ

) (
δ + sin2 φ

)−1
dφ,

where

δ =
A2 − C2

3A2
Q 0,

and the ± sign means that when ϕ̇0 is positive, we will take the + sign, while the minus sign has
to be taken when ϕ̇0 < 0. From now on, we will suppose ϕ̇0 > 0 (it is easy to switch to the case
ϕ̇0 < 0).

We make the change sin2 φ = x > 0 and so, if 0 < ϕ0, ϕ <
π

2
,

dφ =
1

2
√
x(1− x)

dx, (3.6)

while, of course, the sign has to be changed when
π

2
< ϕ0, ϕ < π. Therefore we obtain

t =
1

2A
√

3

sin2 ϕ∫
sin2 ϕ0

√
(4− 3x) (1 + 3x)√
x (1− x) (x+ δ)

dx. (3.7)
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Now it is convenient to rewrite the integrand in (3.7) (all the factors are nonnegative since
0 ≤ x ≤ 1), as√

(4− 3x) (1 + 3x)√
x (1− x) (x+ δ)

=

√
(4− 3x)2 (1 + 3x)2

x (1− x) (x+ δ) (4− 3x) (1 + 3x)
=

=
(4− 3x)(1 + 3x)

3
√
x (1− x) (x+ δ)

(
4
3 − x

) (
1
3 + x

) , (3.8)

for brevity the polynomial under the square root in the last expression of (3.8) will be denoted
by:

P5(x) = x

(
x− 4

3

)(
x+

1

3

)
(x− 1) (x+ δ)

to stress the fact that P5(x) is a quintic. Then

t =
1

6A
√

3

sin2 ϕ∫
sin2 ϕ0

(
4√
P5(x)

+
9x√
P5(x)

− 9x2√
P5(x)

)
dx. (3.9)

In such a way the integrand will have four fixed poles located at −1

3
, 0, 1 and

4

3
. The remaining

moving pole will be described by δ, and namely via the inequality

A2 Q C2.

When δ 6= 0, namely A2 ≶ C2, by (3.9) we have the time as a sum of three hyperelliptic
integrals, what will be a matter of a next paper. In this article we will restrict to a comparative
analysis of the three motions A2 Q C2, and to solve the case A2 = C2.

4. Three possible motions: A2 Q C2. First of all, following [4], we analyze the different
motions taking place in the three cases, i.e.,

(i)
A2

C2
> 1, (ii)

A2

C2
< 1, (iii)

A2

C2
= 1.

(i) Equation (3.5) then shows that ϕ̇2 is never zero, and so ϕ̇ will be either positive, or
negative. Then ϕ will either always increase, or always decrease, without inversions; this means
that the rods will be becoming closer (if ϕ̇0 < 0) or farther (if ϕ̇0 > 0): the motion is then
aperiodic. By (3.4) we obtain the inequality

F (x0) = 9x20 + 3x0(2 + ν2)− 4 ν2 < 0.

Its quadratic resolvant has one variation, and then only one positive and acceptable root (the
variable x0 must always be positive), say x∗0:

x∗0 =
−
(
2 + ν2

)
+

√
(2 + ν2)2 + 144 ν2

18
.
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54 G. MINGARI SCARPELLO, D. RITELLI

The condition

A2 > C2

will be then satisfied if F (x0) < 0, and then 0 < x0 < x∗0. This last condition then links the
initial values ϕ0, ϕ̇0, θ̇0 for having an aperiodic motion.

The positiveness of x∗0 gives a further condition,

ε4 − ε2 + 144 ε− 288 > 0, (4.1)

being

ε = 2 + ν2 = 2 +
ϕ̇2
0

θ̇20
> 0,

which involves the quadratic ratio of the starting angular speeds.
(ii) In this case we can put

C2 −A2 = 3A2 sin2 α;

then the right-hand side of (3.3) takes the form

3A2(sin2 ϕ− sin2 α).

The motion will be possible if and only if sin2 ϕ > sin2 α; therefore ϕ shall move between α
and π−α. Then we are faced with an oscillatory motion of each rod as to OG. This will happen
if x0 > x∗0, whilst (4.1) keeps its validity.

(iii) In this case we have

t =
1

A
√

3

ϕ∫
ϕ0

√
(1 + 3 cos2 φ)

(
1 + 3 sin2 φ

) dφ

sinφ
.

If ϕ goes to zero (or to π), t → +∞, namely: varying ϕ always in the same sense, the
rods tend to be superimposed, but without joining. This condition then concerns an asymptotic
motion.

It will happen if x0 = x∗0, whilst (4.1) keeps its validity.

5. The asymptotic case: A2 = C2. In this particular (asymptotic) case, by (3.9), assuming
0 < ϕ0 <

π

2
and ϕ̇0 < 0 (tendency to joining) we see that

−6A
√

3t =

sin2 ϕ∫
sin2 ϕ0

(
4

x
√
P3(x)

+
9√
P3(x)

− 9x√
P3(x)

)
dx,

with

P3(x) =

(
x− 4

3

)(
x+

1

3

)
(x− 1) .
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Then we have to consider the following integrals:

I1 =

sin2 ϕ∫
sin2 ϕ0

dx

x
√
P3(x)

, I2 =

sin2 ϕ∫
sin2 ϕ0

dx√
P3(x)

, I3 =

sin2 ϕ∫
sin2 ϕ0

x dx√
P3(x)

.

All the integrals Ij can be brought to a combination of Legendre elliptic standard integrals of
I, II, III kinds. Taking into account (e. g.) the tendency to joining, there is no loss of generality
to assume

sin2 ϕ0 > 0, sin2 ϕ = y ≤ 1.

In these hypotheses we can develop a deeply symmetrical treatment of all the Ij , which will
enable us to provide a link between the time and the Lagrangian coordinate ϕ by means of I,
II, III kinds elliptic integrals.

(a) The simpler integral I2 can be drawn back to the standard integral

y∫
c

dz√
(a− z)(b− z)(z − c)

,

where
c < y0, y ≤ b < a

(we have c = −1/3, b = 1, a = 4/3). Then

I2 =

y∫
y0

dz√
(a− z)(b− z)(z − c)

=

=

y∫
c

dz√
(a− z)(b− z)(z − c)

−
y0∫
c

dz√
(a− z)(b− z)(z − c)

.

Let us recall [5, p. 72] (formula 233.00)

y∫
c

dz√
(a− z)(b− z)(z − c)

= gF (ψ(y), k) = g u1(y),

with

g =
2√
a− c

, k =

√
b− c
a− c

, sinψ(y) =

√
y − c
b− c

where F (ψ, k) is the incomplete elliptic integral of first kind of amplitude ψ, and modulus k,

u1 = F (ψ, k) =

ψ∫
0

dζ√
1− k2 sin2 ζ

.
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Therefore,

I2 = g [F (ψ(y), k)− F (ψ(y0), k)] =

=
2√
a− c

[
F

(
arcsin

√
y − c
b− c

,

√
b− c
a− c

)
− F

(
arcsin

√
y0 − c
b− c

,

√
b− c
a− c

)]
=

=
2
√

15

5

{
F

(
arcsin

√
1 + 3 sin2 ϕ

2
,
2
√

5

5

)
− F

(
arcsin

√
1 + 3 sin2 ϕ0

2
,
2
√

5

5

)}
. (5.1)

(b) With the same meaning for all the symbols, we can now evaluate both I1 and I3. We
start with I1:

I1 =

y∫
y0

dz

z
√

(a− z)(b− z)(z − c)
=

=

y∫
c

dz

z
√

(a− z)(b− z)(z − c)
−

y0∫
c

dz

z
√

(a− z)(b− z)(z − c)
. (5.2)

Now we apply formula 233.18 of [5, p. 74],

y∫
c

dz

z
√

(a− z)(b− z)(z − c)
=
g

c

u1(y)∫
0

du

1− c− b
c

sn2 u

, (5.3)

where, as usually snu denotes the Jacobi elliptic function, sine amplitude,

sinϕ = sin am (u, k) = snu.

Finally, we recall formula 336.01 of [5, p. 201]

u1(y)∫
0

du

1− c− b
c

sn2 u

= Π

(
u1(y),

c− b
c

, k

)
, (5.4)

where Π (ψ, α, k) denotes the third kind incomplete elliptic integral of amplitude ψ, parameter
α, and modulus k,

Π (ψ, α, k) =

ψ∫
0

dζ(
1− α sin2 ζ

)√
1− k2 sin ζ

.
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Now by (5.3) and (5.4), we can evaluate the elliptic integrals arising in (5.2),

I1 =
g

c

[
Π

(
u1(y),

c− b
c

, k

)
−Π

(
u1(y0),

c− b
c

, k

)]
=

=
g

c

[
Π

(
arcsin

√
y − c
b− c

,
c− b
c

,

√
b− c
a− c

)
−Π

(
arcsin

√
y0 − c
b− c

,
c− b
c

,

√
b− c
a− c

)]
=

= −6

5

√
15

[
Π

(
arcsin

√
1 + 3 sin2 ϕ

2
, 4,

2
√

5

5

)
−Π

(
arcsin

√
1 + 3 sin2 ϕ0

2
, 4,

2
√

5

5

)]
.

(5.5)

(c) To evaluate I3, we start by decomposing, as previously, the interval of integration (all
the symbols once again keep their previous meanings):

I3 =

y∫
y0

z dz√
(a− z)(b− z)(z − c)

=

=

y∫
c

z dz√
(a− z)(b− z)(z − c)

−
y0∫
c

zdz√
(a− z)(b− z)(z − c)

.

By [5, p. 74], we use formula 233.17, and afterwards formula 331.01 (p. 201),

y∫
c

z dz√
(a− z)(b− z)(z − c)

= g c

u1(y)∫
0

(
1− c− b

c
sn2 u

)
du =

=
g c

k2

[(
k2 − c− b

c

)
F (ψ(y), k) +

c− b
c

E (ψ(y), k)

]
.

Of course E (ψ, k) is the second kind incomplete elliptic integral of amplitude ψ and mod-
ulus k,

E (ψ, k) =

ψ∫
0

√
1− k2 sin ζ dζ.
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Now we can easily evaluate I3; in fact we have

I3 =
g c

k2

[(
k2 − c− b

c

)
F (ψ(y), k) +

c− b
c

E (ψ(y), k)

]
−

− g c

k2

[(
k2 − c− b

c

)
F (ψ(y0), k) +

c− b
c

E (ψ(y0), k)

]
=

=

√
15

6

[
4E

(
arcsin

√
1 + 3 sin2 ϕ0

2
,
2
√

5

5

)
− 16

5
F

(
arcsin

√
1 + 3 sin2 ϕ0

2
,
2
√

5

5

)]
−

−
√

15

6

[
4E

(
arcsin

√
1 + 3 sin2 ϕ

2
,
2
√

5

5

)
− 16

5
F

(
arcsin

√
1 + 3 sin2 ϕ

2
,
2
√

5

5

)]
. (5.6)

The problem for the first angular varia ble ϕ is then solved, being the time (see (3.9)) known as
a function of ϕ by means of the elliptic integrals Ij ,

t = t(ϕ) = − 1

6A
√

3
(4I1(ϕ) + 9I2(ϕ)− 9I3(ϕ)) (5.7)

where, according to (5.5), (5.1), and (5.6), each Ij has been reduced to the Legendre reference
integrals F , E, Π.

Notice, finally, that in the situation of broadening we have to take the minus sign in (5.7):
in fact the first choice is +, due to ϕ̇0 > 0, but, being

π

2
< ϕ0, ϕ < π , the change of variable

introduced in (3.6) produces a further minus sign because the equation sin2 ϕ = x, in this case,
has the solution ϕ = π − arcsin

√
x.

6. The angle θ. For completing the integration, the fourth Lagrangian parameter θ has to
be found as a function of time.

If θ̇0 > 0, C > 0, and, by the third of (3.2), we see that θ is always growing. In any case, its
initial derivative’s sign is kept in the time. By the same formula we see that the time law for θ is
put back to the quadratures,

θ(t) = θ0 + C

t∫
0

dτ

1 + 3 sin2 ϕ(τ)
, (6.1)

with ϕ(τ) being the inverse of (5.7).

7. Two sample problems in the asymptotic case. We are now going to test our result by

considering the solution of (3.5) with the following values: θ̇0 = −1, ϕ̇0 = −1 and sinϕ0 =
1√
3

(tendency to joining). Notice that in this case we have the value:

arcsin

√
1 + 3 sin2 ϕ0

2
=
π

4
,
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for the elliptic amplitude of the constant elliptic integrals appearing in (5.5), (5.1), and (5.6).
For A =

√
5, (3.5) becomes

ϕ̇ = −
√

15 sinϕ√
(1 + 3 cos2 ϕ)

(
1 + 3 sin2 ϕ

) ,
(7.1)

ϕ(0) = arcsin
1√
3
.

The following plot (t, ϕ(t)) shows the behaviour of the exact solution provided by (5.7) with the
test values for θ̇0, ϕ̇0 and ϕ0. It resulted perfectly superimposed with the numerical output of
(7.1) independently obtained with the help of the VisualDSolve Mathematica R© package written
by [6] and the NDSolve function, implemented in Mathematica R©.

For the sake of completeness, we also treat the broadening case, where ϕ grows tending to

π as t → ∞. Taking ϕ0 = π − arcsin

√
2

3
, we get an elliptic amplitude

arcsin

√
1 + 3 sin2 ϕ0

2
=
π

3
,

for the constant elliptic integrals appearing in (5.5), (5.1), and (5.6).
With θ̇0 = −1, ϕ̇0 = 1 we find the differential equation

ϕ̇ =

√
15 sinϕ√

(1 + 3 cos2 ϕ)
(
1 + 3 sin2 ϕ

) ,
(7.2)

ϕ(0) = π − arcsin

√
2√
3
,

whose exact solution, provided by (5.7) is plotted below, and agrees perfectly with the independent
numerical output given by NDSolve and [6].

Fig. 2. Asymptotic tendency to joining.
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Fig. 3. Asymptotic tendency to broadening.

8. Conclusions. The barycentre of our four-degrees, two-bodies, planar system, not acted
by any force, but pulsed by the initial conditions only, is (of course!) moving uniformly on a
straight line.

On the contrary, the remaining Lagrangian parameters ϕ and θ are tightly tied each other.
The integration of the first ODE in the unknown ϕ(t) needs the hyperelliptic functions

for describing both system’s motions, aperiodic revolutions and oscillations as well. On the
contrary, the asymptotic motions are more tractable; they consist of the tendency-without get-
ting either to the full opening or to the closing by the pair of compasses. Such a couple of moti-
ons can be treated using some elliptic integrals (see (5.7)), of course reducible to the Legendre
reference standards F,E,Π.

The time law for the last Lagrangian parameter θ has been put back to the quadratures (see
(6.1)): but the relevant integral cannot be evaluated in any closed form for the impossibility of
knowing sinϕ(t) entering the integrand structure.

A sample problem of the asymptotic case (in its two variants) has been treated obtaining
t = t(ϕ) through F, E, Π. Furthermore, by a purely computational work, we arrived at our last
plots (Fig. 2 and 3) showing ϕ as function of t.

In both variants the asymptotic ϕ-behaviour has been found of absolute evidence.
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