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The generalized characteristics method is developed in the framework of the geometric Monge picture. The
Hopf- Lax-type extremality solutions to a wide class of Cauchy problem for nonlinear partial differenti-
al equations of first and higher orders are derived. The special Hamilton—Jacobi-type case is analized
separately. The exact extremality Hopf— Lax-type solution for Cauchy problem to the nonlinear Burgers
equation is received, its linearization to the Hopf— Cole expression and to the related Airy-type linear
partial differential equation is found and discussed.

Pozsunymo y3azaavbHeHull Memoo XapaKmepucmuk y pamkax 2e0Mempu4no20 nioxooy Mouxa. Ompu-
MAHO eKxcmpemanvhi po3s’asxu muny Xonga—Jlaxca wiupokoz0 kaacy 3aoay Kowii 0aa HeaiHiUHUX Ou-
eperyianbHUX pIBHAHD 3 YHACHUHHUMU NOXIOHUMU NEPULO20 MA BULUX NOPAOKIE. OKpemMO 00CAIONCEHO
cneyianvruil 8unadok muny lamiabmona —Ako6i. Ompumarno MoyHULL eKCMpemMatbHULL po38’A30K mMu-
ny Xonga-Jlaxca 3adaui Kowti 0aa Heainilino20 pisHanua Biopzepca. 3naiioeno ma npoananizosano
11020 AiHeapu3ayiio y euzaa0i supasy Xonga— Koyaa ma noe’azano20 3 Hum AiHiliHO20 Ougepenyianb-
HO?20 PIBHAHHA 3 YACMUHHUMU NOXIOHUMU muny ETipi.

1. Introduction. It is well known [1, 2] that solutions to linear partial differential equations can
be studied effectively by making use of many different approaches, such as the Fourier method,
the spectral theory and the Green function method. Nevertheless, all of them, regrettably, can
not be applied for analysing solution manifolds of general nonlinear partial differential equati-
ons even of the first and second orders. Since the classical Cauchy works on the problem, by
now there exist [2—4] only a few approaches to treating such equations, among which the
famous characteristics method that appears to be the most effective and fruitful. During the
last century this method was further developed by many mathematicians, amongst whom are
P. Lax, H. Hopf, O. A. Oleinik, S. N. Kruzhkov, V. Maslov, P. Lions, L. Evans, Blackmore [2,
4-10] and others. Still long ago it was observed that there is a deep connection between
the characteristics method and the Hamiltonian analysis, reducing the problem to studying
some systems of ordinary differential equations. This aspect had become prevailing in works
of H. Hopf, P. Lax, and O. Oleinik (see [2, 9, 11]), who described, doing this way, a wide class
of so-called generalized solutions to first order nonlinear partial differential equations. The
most known result within this field is attributed to H. Hopf and P. Lax, who have found for
the first time a very interesting variational representation for solutions of first order nonlinear
partial differential equations called a Hopf — Lax-type representation. Since these results were
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strongly based on some geometrical notions, it was natural to analyze the Cauchy characteris-
tics method from the differential-geometrical point of view, initiated still in the classical works
of G. Monge and E. Cartan. Within the framework of the Monge geometric approach to study-
ing solutions of partial differential equations we proposed in Part 1 [12] a generalization of the
Cauchy characteristic method for equations of first and higher orders, making use of the speci-
al tensor fields intimately related with them. These tensor fields appear very naturally within
the developed Monge approach as some geometric objects, generalizing the classical Hamilton-
type equations for characteristic vector fields. Moreover, this geometric approach jointly with
some Cartan’s compatibility considerations is naturally extended to a wide class of nonlinear
partial diffrerential equations of the second and higher orders. Namely, if for instance a first
order differential equation is given as

H(z;u,uy) = 0, (1L1)

where z € R", H € CY{(R" x R"™1;R), ||H,,|| # 0, the characteristics vector fields on the
related Monge hypersurface

Sg = {(z;u,p) € R" x R""' : H(z;u,p) = 0} (1.2)

are represented [12] as follows:

dx OH du d OH OH
ptedl OE D B e (1]1) ap _ (94 el
ar P oz’ dr <p, H 8H/8p> Todr H ( ox TP ou > ' (13)

Here 1) ¢ CY(R™! x R*;R" @ R") are some smooth tensor fields on Sy and 7 € R is
an evolution parameter. Vector fields (1.3) ensure [12] the tangency to the hypersurface Sy C
C R™ x R**! and the projection compatibility condition with the dual Monge cone K* upon
the corresponding solution hypersurface Sy C R™"! (see Fig. 1), generated by the characte-
ristic strips X C Sy through smoothly imbedded sets ¥ C Sy consisting of points carrying
the solutions to our problem (1.1). Similar results were obtained in [12] also for both partial
differential equations of higher orders and systems.

In general, the problem (1.1) is endowed with some boundary condition on a smooth hyper-
surface I', C R" like

ulp, = uo, (1.4)

where ug € C'(T,;R) is a given function. The hypersurface I', C R” can be, for simplicity,
defined as

'y :={z € R": ¢p(z) = 0}, (1.5)

where ¢ : R” — R is a smooth mapping endowed with some local coordinates s(z) € R" ! in
the corresponding open neighborhoods O.(x) C I',, of all points z € I', for some € > 0. Thus,
we are interested in constructing analytical solutions to the boundary problem (1.1), (1.4), and
(1.5) and studying their properties. This and related aspects of this problem will be discussed in
detail below.
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1

Fig. 1. The boundary I'2 ™" = {z0 € R™ : ¢(z0) = 0}, 20(s) € I} ', s € R**
are local coordinates.

2. Boundary problem analysis. Consider the set of characteristic equations (1.3) on the
hypersurface Sy C R x R™*! which start at points (zo;ug, po) € I', under the additional
condition that the corresponding projection ¥ — ¥ upon the subspace R"*! (see Fig. 2) coi-
ncides with the boundary set (I'y;ug) C R*™, that is,

Y = (Ty;uo), (2.1)

where ug € C(I'y;R) is our boundary condition. The condition (2.1) assumes evidently that
the set X C Sy can be defined as follows:

¥ = (Z;po) (2:2)

with py € C'(I',; R") being yet unknown smooth mappings. For it to be determined we need to
ensure for all points > C Sy the mentioned above compatibility condition, that is the condition

duls = (p,dz) |z, (2.3)

where ¥ C Sy is given by (2.2). As a result of (2.3) one finds easily that

o) (1,200

H{(zo(s); uo(s),po(s)) = 0

(2.4)
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Fig. 2. Geometric Monge method. The boundary conditions: L= (Fgfl7 uo) -
C Su,uo € C'(TL5R), Su = {(z,u) € R"" : uw = (z)} is the
boundary problem solution hypersurface.

for all points 2o = zo(s) € I',, s € R"1. Here we took into account that any point z € T,
is parametrized by means of the corresponding local coordinates s = s(xg) € R*!, defined in
the corresponding e-vicinities O (z) C I'y, e > 0.

The system of relationships (2.4) must be solvable for a mapping po : I'y) — R"™ at all points
zg € I'y, what gives rise to the determinant condition

Ozo(s) OH
det( s opo

<xo<s>,uo<xo<s>>,po<xo<s>>>) 40, 25)

owing to the implicit function theorem [13]. If the condition (2.5) is satisfied at points
(a;o;uo,p(()])) € Sy, where j = 1, N for some N € Z, and all points (xq;up) € X, the system

of equations (2.4) possesses exactly N € Z, different smooth solution péj ) € CHTy; R,
j = 1,N, thereby determining the corresponding Cauchy data (2.2) for the characteristic
vector fields (1.3). It is clear enough that our boundary problem (1.1), (1.4), and (1.5) possesses,
in general, many solutions of different functional classes, depending on the kind of chosen
boundary conditions. For instance, as it was studied and analyzed in [2, 14] this boundary
problem can possess also so-called generalized solutions, which allow at some additional condi-
tions the so-called Hopf—Lax inf-type extremality form, being often very useful for studying
their asymptotic and other properties.

Concerning this Hopf— Lax-type extremality solution problem for our equation (1.1) under
the boundary conditions (1.4) and (1.5) the meaning of the involved before in [12] tensor fields
ph e C1(R™ x R*1;R® ® R™) becomes more understandable. Namely, it consists in fin-
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ding solutions to (1.1), which will satisfy both the imposed boundary conditions and the related
Hopf - Lax inf-type extremality representation [2, 11, 14].

3. The Hopf-Lax inf-type extremality representation. Assume now that py €
€ C1(I',;R") is a smooth solution to the system (2.4), thereby defining completely the sought
Cauchy data ¥ C Sp for the characteristic vector fields (1.3). Thus, making use of suitable if
any methods for solving these ordinary differential equations in the space R” x R"! at some
appropriately chosen tensor field (11" ¢ C1(R" x R"*!;R" ® R™) one can find, in particular,
the function v € C?(R™; R) for each reachable point z = z(t) € R" in the form

wlt)) = uw(0) + <p(T),u“'1)%lZ(T)> o 3.1)
0

at any moment of “time” ¢ € R. As, by definition, 2(0) := zo(s) € I'y, and u(z(0)) =
:= ugp(z0(s)), s € R"L, the solution (3.1) can be rewritten

; OH
w(@(t)) = wolao(s)) + 0/ <p<r>,s<1'1>ap<7>> dr (32)

for any t € R, where the integrand function in (3.2) is assumed to be known.
Pose now the following “inverse” vector field problem for the equation

dx 0H
— (D)
ar " Op (33)
with the following ”inverse” Cauchy data
Tlr—yzy = ¢ € R",  zlr=0 = wo(s(z)) € Ty, (34)

for some s(z) € R"! at the moment of “time” t(x) € R corresponding to an arbitrary
reachable point z € R” as it is shown on Fig. 3. Respectively, for each found above point
zo(s(x)) € I'y, z € R", one can suitably determine the unique point py(s(z)) € R", z € R",
making use of the system (3.2). As a result, one can write down owing to the conditions (3.4)
the following expression:

t(x)

u(z) = uo(zo(s(x))) + / L(r|zo(s(x)); x)dr, (3.5)
0
where L is the so-called "Lagrangian” function:
OH
Elrlan(s(e)ia) = (o) M50 ) (36)
being defined by solutions to the equations (3.3), (3.4) and to the equation
dp _ _ . (OH  0H
ar = # Ox + ou (3.7)
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P
¥ =(X,po) /I/

(zo(s); uo(zo(s)),po(s))

(2%9(s), uo(zo(s

-

J—

[ ——

Fig.3. The geometric Monge method. The characteristic surface: Sy = {(z;u,p) €
€ R®"*' . H(x;u,p) = 0} and intial conditions for the vector field Ky : Sy —
— T(SH), satistying the Cartan’s compatibility conditions: du— < p, dx > Ky T 1=
_ _ e
= 0iff Sy||K™ and there exist data ¥ = (3, pg) defining the characteristic strip Xx.

under the corresponding “inverse” Cauchy data
Plr=0 = po(s(z)) € R" (3.8)
for any reachable point z € R".

By integrating the expressing (3.5) one finds the following solution to the boundary problem
(1.1), (1.4), and (1.5):

u(@) = uo (zo(s(x))) + P (zo(s(x)); 2), (3.9)

where zo(s(z)) € I'y, z € R", is, as above, any reachable by the vector field (3.3) point, and,
by definition, the “kernel”

t(x)
P(xo(s(x));x) := /E(T:Uo(s(x));:n)dT. (3.10)
0

The obtained solution (3.9) allows an additional interpretation strongly motivated by the previ-
ous Hopf — Lax-type results [2, 11, 14]. Namely, consider the expression (3.5) with the Lagrangi-
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an function given by the expression (3.6) and the following extremality problem:

t

du =0 | (uo(zo(z))) + /L'O (x(7);u(r),&(r)) dr| =0 (3.11)
0

under a fixed ending point z € R"™ and varying both a moment of ”"time” ¢t € R, and a point
zo(s) € I'y,. Here we put, by definition, & := dx/dr and

Lo (rlaols(@))i ) |syam o = <P(T)7M(11)%IZ> (3.12)

for all (z,p) € R" x R"and 7 € R.

By means of standard variational analysis calculations one gets easily that the condition
(3.11) is realized exactly upon solutions to the vector field (1.3) under the Cauchy data at points
in ¥ C Sy, defined by (2.2) and (2.3). Thus, one can formulate at some natural conditions the
following important theorem.

Theorem 3.1. The expression (3.9) at any reachable point x € R", for suitable points
zo(s) € Ty defined by the "inverse” Cauchy problem (3.3) and (3.4), solves the boundary
problem (1.4), (1.5) for the partial differential equation (1.1) and allows, under some natural
conditions on the tensor field i) ¢ C'(R" x R**1:R" ® R"), the following Hopf— Lax-type
extremality representation:

u(z) = yienpfg {uo(y) +P(y; )}, (3.13)

where the "kernel” P : R" x R™ — R is given by the analytical expression (3.10).

Proof. For the proof we need only to consider the extremum conditions (3.11), (3.12) and
ensure that the function [ug(-) + P(:;2z)] : T, — R attains its finite infimum at some point
y = zo(s(z)) € T'y, for all reachable points z € R". The latter depends, in particular, on the
functional properties of the boundary conditions (I'y;ug) := ¥ C R™"! and on a choice of
the tensor field p(M) ¢ CY(R™ x R**1;R® ® R"), defining our vector field (1.3), describing
correspondingly the set of reachable points z € R". Having assumed these natural conditions,
we find right away that the infimum (3.13) is attained exactly at the point zo(s(z)) € I', and
at the moment of "time” ¢(z) € R, satisfying the conditions (3.3) and (3.4), giving rise to the
found before solution (3.9) of the boundary problem (1.1), (1.4), and (1.5), that ends the proof.

The Hopf - Lax-type extremality property of the solution to boundary problem (1.1), (1.4),
and (1.5) appears to have a very interesting and important for applications form in the case of
Cauchy problems for generalized Hamilton — Jacobi-type equations, which will be discussed in
the section below.

4. The Hopf- Lax-type extremality solutions to generalized Hamilton - Jacobi equations.
Assume we are given the following generalized scalar Hamilton —Jacobi equation

ug + H(z, t;u,u,) = 0 (4.1)
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with a Hamiltonian function H € C?(R"*! x R"*1;R) and the related Cauchy data
ult=ty = uo, (4.2)

where ug € C1(R";R) and ¢y € R.
Having applied the results obtained above, one gets easily that the corresponding characteri-
stic vector fields on Sy are defined as

d OH  d OH _ OH
dz _ a9 P:_Muu)( 4 >

ar _H op’ dr 9z " Pou

du OH dt
= = A== N g 22—
dr <p, a dp > Todr ’

(4.3)

where p11M € C1(R™! x R**1; R @ R") is some suitable tensor field, allowing to solve the
following “inverse” Cauchy problem:

dr _ amd8

dr = ap , t=m, x‘*r:t = T, x’T:to = .%'(](ZC,t), (44)

where 7 € [ty,t] C R, z € R", is any reachable point of the vector field (4.4) in R and
xo(z,t9) € R™is the corresponding initial point at which our orbit = : [tp,t] — R" starts.
Thus, we can now write down a solution to the Cauchy problem (4.1), (4.2), making use of the
previous results (3.9) and (3.10),

u(z,t) = ug(xo(x,t)) + Pao(z,t), to; x, t), (4.5)

where, by definition, the "kernel”

P(xo(z,t),to;x,t) ::/[<p(7'),u(1|1)8ai[(r)>—H(w(T),t;u(T),p(T) dr (4.6)

to

is defined for any reachable point x € R™ and tg < ¢t € R. As the expression (4.5) solves
the Cauchy problem (4.1), (4.2) for some mapping zo : R"*! — R” defined by the “inverse”
Cauchy data, we obtain the following theorem.

Theorem 4.1. The Hopf— Lax-type extremality expression

u(w,t) = inf {uo(y) +Ply,to; 2,1)} (47)
y n
solves the Cauchy problem (4.1), (4.2), where the “kernel” P : R*"1 x R*"*1 — R is suitably
defined by (4.6) for any reachable point x € R" andt > ty € R in such a way that the infimum
for the mapping [uo(-) + P(-, to; x,t)] : R™ — R is attainable and finite.
It is to be mentioned here that the "resolving kernel” P : R"*! x R"*! — R, defined by the

expression (4.6), depends strongly on the choice of a tensor field (11" € C*(R* ! xR"*1; R"®
®@R"™), ensuring both the effective solvability of the ordinary differential equations (4.3) and the
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corresponding existence of the infimum of the expression (4.7). Concerning these aspects, the
related Cauchy data for (4.3) at 7 = ¢y € R are given, owing to (4.4) and (2.4), as follows:

$|T:t0 = $0($,t), p|T:t0 = pO('x:t)v (48)

where the point py(z,t) € R" satisfies the compatibility condition

8“0220’“ - <p0(:1:,t), ‘%08(;”’”> —0 (4.9)

for all reachable points x € R™ and moments of time ¢ € R. For the system (4.9) to be solvable,
the natural condition

det <W> £0 (4.10)

must be satisfied at all points (x,t) € R"™ x R.

As the existence of the infimum (4.7) depends implicitly also on the Cauchy data u : R" —
— R, it looks very suggestive to represent a wide class of Cauchy problems for the Hamilton —
Jacobi equation (4.1) in the Hopf-Lax-type form by choosing suitable tensor
fields (1Y e CY(R"! x R**1;R™ x R"). Concerning this aspect a very important yet too
complicated problem of finding the related relationships between the Cauchy data and suitable
tensor fields (11 e CT(R™*! x R*t!; R" @ R") at which the problem (4.7) is reasonably posed,
remains up to now to be unsolved. We can mention here also that results similar to those obtai-
ned above hold also for boundary problems posed for nonlinear partial differential equations
of higher orders and suitable systems.

S. An example: the Burgers nonlinear differential equation of the second order. Consider
the following Cauchy problem for the well known [15] Burgers differential equation

Up + Uz + Uty = 0, u‘t:0+ = Uo, (51)

where (z,t) € R? and it is assumed that u € CG?(R x R;R), ug € C?(R;R). The correspon-
ding Monge surface Sy is defined as

Sp = (z,t;u,p) € (RxRx ]Rﬁ) s H(z,t;u,p) = 0, (5.2)
where
p = (p(l,o),p(o,l)apu,o)7p(1,1),p(2,0)719(0,2)) € R6,
H(z,t;u,p) = p(o,1) + P2,0) + UP(1,0)- (5.3)

The projection upon the surface Sy C (R x R;) x R of solutions to (5.1) is given [12] by the
following Cartan compatibility conditions:

du = pa,0)dz + po,1)dt, dpao) = Peo)dT +padt,  dpoa) = pandr +peg)dt, (5.4)

for all points (z,t) € (R x R;). Put now
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dt
= ag(z,t;u,p),

d
d—w = G/H(Jz',t : u,p), d = g\,

- T (5.5)
dp,; du

G0 _ by (10, p), - = cg(z,t;u,p),

dr

where 7 € R, (j) € J := (j1,72) € {0,2x0,2}\(0,0), being the related characteristic fields on
the Monge hypersurface Sy, subject to which it remains to be invariant. This means that

dH oH 8H
_ ) , 5.6
dr oz M ot at ¢ cH -+ Z Op(]) (56)

for all 7 € R. Owing to the Cartan compatibility conditions (5.3) one gets that, along the vector

field (5.5), the equalities

cH = P1,0)eH +Po,1), bo,1) = Panen +po2)an, b = peo) +en +panan (5.7)

hold on Sy . Having substituted (5.7) into (5.6) one finds that the relationship

+ ——pa) +
Bz | By P10 Ip(1,0) P, Ip(,

(8H n 0H n o0H n oH ) n
—+ — a
ot ou P(o,1) 82?(1,0) Pa,1) ap(o,n P,2) | aH

oH oOH OH
b bo,2) =0

+ +
Ip(1,1) (Lt Ip(2,0) @0 Ip(0,2)

OH OH OH OH
P20 T )p(1 1) | e+t

(5.8)

is satisfied on Sy . This means [12] that

LI oH ap oH (1)
D By THeo Ip(2,0) i

_ ) OH a1 OH  _aa
o= Hay Ip(1,1) T Hz0) Ip(2,0) o) I 0,2)’ (59)

(1/1) <8H+8Hp N OH - OH . >

where j € J, |j| = 71 + jo = 2. Taking into account now the expression (5.2), on gets that
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_ o any - (11)
ag = N(270)7 ag = /~L(2’0)7

b(O,l) = Pa,1) Mg

CH = PQ,0) Mg (1)) + (0,1 /18%37 (5.10)

b = _“8!(1); <+P%1,0) + up(2,0) +P(1,1)) - Mg%g (+P(1,0) P(0,1) + uP1) + P02)) »

11
by = _”E1!1; (‘HU%LO) + up(2,0) +P(1,1)) )

bo,2) = —Mg(l)gg (+p%1,o) +up,0) + p(1,1)) - ﬂgé'ég (+p(1,0)P(0,1) +up(1,1) +P(0,2)) .

For proceeding further put, for convenience,

—0=|,0

(1 _ (1) (1]1)
Hoy) = o e =1 |u(j)"] 02~ 07 1HG) | 220)” (5.11)
Then from (5.10), (5.11), and (5.6) one gets the system
dx dt du
o = L, 7= = @Pao TP
dp(10 dp(o1 _
# = ape0) T P1,1) ch ) — ap,1) +Do,2)s
(5.12)
dp(Q,o) _ dp(l,o) dp(o 2)
4~ WPo) ~Poy tPeo, — o =0=——
dp(1,0 _ _
70(” L= —a up(1,0) — @P(0,1) T @P2,0) T P(1,1)
which reduces to the following three equations:
dp(1,0 _
# = —Qaup@,1) — @P,1) T AP2,0) T P(1,1)
(5.13)
dp(o,1) du

—4 = @a +D(2,0)> 7 o) T P,1)

where o € C'(R x R, x R%;R), the quantities P1,1) = P(,1), P(0,2) = P(o,2) and pa ) € Rare
real constants not depending on the evolution parameter 7 € R. For solving the system (5.13)
we will make use of the ambiguous choice of the function o € C'(R x R, x R% R). Namely, it
is convenient to put here

dp(1,0)

o=—4dar (5.14)
up(1,0y T P(0,1)
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forall7 € Rand some ¢ € R. Then we easily deduce from (5.13) and (5.14) that simultaneously
one gets two relationships,

a = w = —k (5.15)
P(2,0)
where k£ € R is some constant and
dp(1,0) du dpo,1) _ _
ar (UP(1,0) +P(0,1)) k+c, e —kp(1,0) + P(0,1) i —kp(1,1) + P(o,2)-
(5.16)
From (5.16) we find that
_ _ _ du
P,1) = (p(0,2) - k’p(l,l)) T+ Do) = q(T), A —kpa0) + q(7),
(5.17)
dp(0)
dr (up1,0) + P(0,1))k + ¢

where ¢ € C1(R;R) is some smooth function. The latter two equations can be reduced to the
following one:

2
a (u.r — ku) = ¢, — k*q — kugq + ke, (5.18)

which at the additional constraint ¢(7) = 0 for all 7 € R gives rise to

k 2
Ur — % = ket + cp, (5.19)

where ¢y € R is constant, and owing to (5.15), (5.17),

P(,2) pPaa — ¢

k - — — — B ﬁ(o,l) — 0 (520)
P@,1) P(2,0)
Put now, by definition,
2 d
u = —% % 1n¢, (5.21)

and substitute it into (5.19). We then find easily the second order linear ordinary differential
equation

Vrr + % (ke +co)p = 0, (5.22)

being the standard Airy differential equation, whose solutions allow the following [16] integral
representation:

o2
3k2c

€0

Y = o Aix (T]co, ¢, k) = ;ﬁ?/exp [ii (k:c

R

+ T) Y } d, (5.23)

ISSN 1562-3076. Heainitini koausarnns, 2005, m. 8, N> 4



ON THE STRUCTURE OF CHARACTERISTIC SURFACES... 541

with the norming constant parameter ¢y € C, and satisfying the boundary condition
lim ¢(7) =0if Fc > 0.

T——400

Return now back to our vector fields (5.12), taking into account the results obtained above,

Z—x =k, x|r=0 = zo(z,t), =x|= =2z, k=[z—xo(z,t)]/t,
T (5.24)
Fd 2 | ket?
u(x,t) = ug(zo(z,t),0) + / dﬁdT = ug(zo(z,t),0) + z /UQ(T)dT + CT + cot,
T
0 0
where the function ug € C*(R;R) must satisfy the compatibility condition like (4.9),
Oug(xo(x,t _ Oxg(x,t
D (ool 2550 ) 0 (529)

for all points (x,t) € R x R;. Meanwhile, from (5.23) we get the general solution to (5.22),
U(1) = Aiy (T]co, ¢, k) +1bo Ai_(T|co, ¢, k), (5.26)

whence from (5.21),

2 (Ai,—i-(T‘COa ¢, k) + JJU Al,— (7’607 ¢, k))
k (Aiy(tlco, ¢, k) + 1o Ai_(T|co, ¢, k))

(5.27)

forall7 € R. Asat 7 = 0 one has u|,—9 = ug(zo(z,t)), from (5.27) we derive the following
three relationships:

t — / — t
] At (0o, =2 ) od” (o, 2=
UO([EU(.Z',t)) - )
t _ — t
zo(@, Az+ (O|co, ¢, (=, )> + WoAi_ (0]00,0, W)
(zo(z,t) — ) ud(z0(,1)) 2t d?
= — In ¥ = 2
Co(x,t‘xo) 2 (.’E—LL’()(IE t)) d n ( )’7'707 (5 8)
2t2 d? 2ug(zo(z,t)) d?
t = 0—— (7)o + ———55 —5 In¥(7)|r=0,
o tieo) = Gy o ae Y=t T ) @ (=0
supplying us with before undetermined three functional parameters ¢ = co(z,t|zg), ¢ =

= c(z,t|wg) and 1o = o(x,t|zo) at zg = wo(z,t) € Rforall (z,t) € R x R,. Thereby, we can
substitute these functional parameters into the expression (5.27) having put 7 = ¢ € R, and
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obtain the following expression:

. T — o
A (teo(a, o). ez, tlro), = )+

oy +do(, tlog) Ail <t|co(x, tzo), cle, tlzo), T “"0)
u(z,t) = — L , (5.29)
07 (i (ot o).t o). T 70 +

+ &0($7t|$0)¢4i, (t|CU(ﬂf,t‘fL‘0), C(xaﬂﬁﬂo), x —t.l‘o)>

which is a solution of the Cauchy problem to the Burgers nonlinear differential equation (5.1)
completely defined by the functional parameter xyp = xo(x,t) € R for all (z,t) € R x Ry,
solving the before discussed “inverse” Cauchy problem for the vector field (5.1). As this problem
is, evidently, very hard and cumbersome, we can make use of the previously obtained results
and state that the solution (5.29) owing to Theorem 4.1 allows the following Hopf - Lax-type
extremality representation:

<Ai/+ <t|00(33>75\y),0(m7t|y)’ Q%L
or T oz, tly) Adl (t|00(x7t|y)’c($’t’y)’ :C;y)>
u(z,t) = inf (5.30)
yeR | y — x <A'L+ (t|CO($7t|y)’C($’t|y)’%)4—
+ Yo(z, tly)Ai_ <t|00(96‘,t|y), c(x,tly), :U;y)>

Thus, we can formulate the obtained result as the next final theorem.

Theorem 5.1. The inf-type expression (5.30) is the Hopf— Lax-type extremality solution to
the Cauchy problem (5.1) for the nonlinear Burgers equation.

The method used for finding the extremality solution (5.30) to the nonlinear Burgers equati-
on can be naturally applied to other nonlinear natural differential equations, including Korte-
weg —de Vries, nonlinear Schrédinger and other equations for which the problem of solving the
Cauchy problem represents serious difficulties.

Remark 5.1. 1t is useful here to make a remark concerning the linearization result (5.22) for
the solution (5.21) at 7 = ¢ € R,. Namely, this result means that by means of the mapping

d
(5.21), written in the invariant form v = I In ¥, our nonlinear Burgers partial differential
x

equation (5.1) transforms into the standard linear partial differential equation ¥, + ¥; = 0,
(z,t) € R x R, what is the classical Hopf— Cole result [15].

6. Conclusion. The results of the previous [12, 14] and this work convince us firmly that
the geometrical Monge approach to studying solution of a wide class of nonlinear partial di-
fferential equations of first and higher order, based on our generalized characteristic method, is
effective enough for many possible applications. The Hopf — Lax-type extremality representati-
on of the corresponding solutions of both boundary and Cauchy problems gives rise to fin-
ding many new, in some sense, generalized solutions for a wide class of boundary and Cauchy
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data. Another still weakly investigated aspect of this approach is related with its application to
analyzing suitable multidimensional symplectic reductions of boundary and Cauchy problems,
giving rise [17-20] to new types of associated purely Hamiltonian nonlinear dynamical systems
on functional manifolds of smaller spatial dimension. We plan to discuss this topic elsewhere.

Concerning the Burgers equation example (5.1), discussed in Section 5, we could see that
the developed generalized characteristic method works well also for nonlinear partial differenti-
al equations of higher order. We proved the classical Hopf— Cole result [15] about the lineari-
zation of the Burgers equation. The exact Hopf— Lax-type extremality solution (5.30) was rep-
resented here through the classical Airy function. In particular, we obtained as a by product a
little generalized linearization (5.21) and (5.22) of the Burgers equation (5.1), which can have
some additional applications. Similar results are also valid for another nonlinear partial di-
fferential equations of first and higher orders like Korteweg — de Vries, nonlinear Schrodinger
and other important nonlinear equations.
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