ВОЛЧОК Н.М., МИХАЙЛОВА М.Е., БЕЛАЯ Е.В., КАМЫШ Н.А., ТИХАНОВИЧ Н.И., МЕДВЕДЕВА Ю.В.

Институт генетики и цитологии НАН Беларуси, Республика Беларусь, 220072, Минск, ул. Академическая,27, e-mail: natavolchok@yandex.ru

(–1689) ПОЛИМОРФИЗМ ГЕНА АЛЬФА-ЛАКТАЛЬБУМИНА (α-*LA*) И ЕГО ВЗАИМОСВЯЗЬ С ПРИЗНАКАМИ МОЛОЧНОЙ ПРОЛУКТИВНОСТИ КРС

Известно, что количество белков в молоке и их структура имеют большое экономическое значение для перерабатывающей промышленности и в значительной степени определяют количество и технологические свойства молока. Одним из таких биологически значимых протеинов является многофункциональный белок — α -лактальбумин (α -LA), входящий в состав молочной сыворотки, наличие которого является важным признаком качества молока, характеризующим его полезные свойства.

 α -LA — небольшой глобулярный протеин, состоящий из 123 аминокислот и имеющий молекулярную массу 14 кД, играет важную роль в биосинтезе лактозы. При участии эпителиальных клеток молочной железы, α -LA в комплексе с галактозилтрансферазой участвует в формировании фермента лактозсинтазы, который, в свою очередь, синтезирует лактозу в аппарате Гольджи, а лактоза, затем, в комплексе с α -LA секретируется в молоко. Содержание α -LA и лактозы в коровьем молоке составляет около 1,5 г/л, что соответствует 5%. Лактоза, содержащаяся в секреторных везикулах эпителиальных клеток молочных желез, создает внутри клетки повышенное осмотическое давление, благодаря которому внутрь везикул поступает вода. Таким образом, повышение концентрации α -LA, являющегося ключевым регулятором синтеза лактозы, вызывает пропорциональное увеличение выхода молока [1].

Ген, кодирующий бычий α-лактальбумин (α-LA), локализован у КРС в 5 хромосоме и состоит из 2023 п.н., включая 4 экзона и 3 интрона. α-LA характеризуется наличием нескольких полиморфных вариантов: в позициях +15, +21, +54 [2] и −1689 [3], относительно точки старта транскрипции 5′ фланкирующего региона. Вариабельность в этом регионе может приводить к различной способности связывания РНК-полимеразы и факторов транскрипции, участвующих в регуляции экспрессии гена. Теоретически, замены в последовательности генетических регуляторных элементов в данном участке могут изменять степень экспрессии мРНК, кодируемой этим геном [1].

Данные полиморфизмы являются следствием точковых мутаций, в частности в позиции –1689, замена аденина на гуанин приводит к образованию двух аллельных вариантов гена. Аденин в этой позиции был обозначен как А-аллель, а гуанин — как В-аллель [2, 3]. Lundén A. с соавт. была показана взаимосвязь между (–1689) полиморфизмом и концентрацией лактозы

в молоке. Так у коров с АА-генотипом с 1кг молока выделяется лактозы больше на 0,08%, чем у особей с другими генотипами [4].

Таким образом, учитывая роль α-лактальбумина в биосинтезе лактозы и продукции молока в целом, ген α -LA может быть использован как потенциальный генетический маркер молочной продуктивности КРС, в частности удойности и белковомолочности.

Целью данного исследования было изучить (-1689) полиморфизм 52 фланкирующего региона гена α-лактальбумина, провести анализ генетической структуры популяций КРС некоторых животноводческих комплексов Беларуси по локусу α -LA, а также изучить взаимосвязь данного полиморфизма с признаками молочной продуктивности.

Материалы и методы

Исследования проводились на коровах и быках черно-пестрой породы, принадлежащих животноводческим комплексам Минской области. Для анализа были использованы образцы свежезамороженной спермы и крови. Выделение ДНК проводилось методом солевой экстракции по стандартной методике [5]. Выделенную ДНК ресуспензировали и измеряли ее концентрацию с помощью электрофореза в 0,8% агарозном геле, используя маркер молекулярного веса GeneRulerTM1 kb DNA Ladder.

С целью типирования аллельных вариантов гена α -LA использовали метол ППР с последующим анализом ПЛРФ. На основе данных о сиквенсе участка гена, в котором был обнаружен (-1689) полиморфизм [3], было синтезировано два олигонуклеотидных праймера, которые амплифицируют участок, размером 430 п.н., расположенный в пределах от –1803 до –1373, относительно точки старта транскрипции:

ALF-LAC1: 5'-aag agt tgg atg gaa tca cc-3'

ALF-LAC2: 5'-ttc aaa ttg ctg gca tca agc-3'

ПЦР проводили на программируемом термоциклере "Biometra" (Германия) в объеме 20 мкл, содержащем: 2 мкл10х ПЦР-буфера, 2 мкл MgCI (25 мМ), 0,5 мкл dNTP(10 мМ), по 1 мкл каждого из праймеров (10 пМ/мкл), 0,3 мкл Тад-полимеразы (5 еа/мкл), 2 мкл ДНК (20 нг/мкл). Вариант программы реакции амплификации состоял из следующих этапов: первичное плавление матрицы —5 мин — 94 °C; 30 циклов (30 с — 95 °C; 30 с — 63 °C; 30 с — 72 °C); синтез — 10 мин — 72 °C. Полученный таким образом амплификат подвергался гидролизу рестрицирующей эндонуклеазой Sdu 1 в соответствующем буфере [6]. Продукты рестрикции разделяли в 2% агарозном геле в течение часа при напряжении 40 в (в качестве маркера использовали 50 br DNA Lader (Fermentas)), визуализировали в УФ-трансиллюминаторе при длине волны 310 нм. И регистрировали с помощью цифровой фотокамеры Canon. Аллельные варианты гена α-LA определяли по количественным и качественным признакам ПДРФ. Наличие двух полос размером 328 и 102 пн. соответствовало генотипу АА; четырех полос размером 328, 211, 117 и 102 пн.— генотипу АВ, трех полос размером 211, 117 и 102 пн. — генотипу ВВ.

Результаты и обсуждение

Как отмечено в работах других исследователей наиболее предпочтительным генотипом, ассоциированным с повышенным содержанием лактозы в молоке, а, следовательно, с повышенным удоем, является генотип AA [2, 4]. Проведенный нами анализ генетической структуры популяций КРС по локусу α-LA выявил следующее распределение частот генотипов: AA — 45,9%; AB — 43,3% и BB — 10,8%. Частота встречаемости аллелей A и B в среднем составила 0,68 и 0,32 соответственно (табл. 1), что согласуется с данными, полученными зарубежными коллегами [2, 3]. Наибольшая частота предпочтительного A-аллеля была зарегистрирована в популяции РСУП "Минскплемпредрприятие", где она составила 0,73, а наименьшая в РУСПП "1-я Минская птицефабрика" — 0,54.

Для выяснения ассоциации аллельных вариантов гена α -LA с молочной продуктивностью KPC, а именно, общим удоем за 305 суток, процентным содержанием жира и белка в молоке, нами была проведена теоретическая оценка коров по данным признакам на основании информации, содержащейся в племенных картах. Полученные результаты были проанализированы и сопоставлены, с этой целью для каждого животного рассчитывались средние значения показателей вышеперечисленных признаков. Затем среднее значение каждого из показателей было рассчитано для отдельной группы генотипов (табл. 2).

Таблица 1 Генетическая структура популяций быков и коров белорусской черно-пестрой породы по локусу α -лактальбумина

	Коли-	Частота встречаемости				
Принадлежность		генотипов, %			аллелей	
-	особей (n)	AA	AB	BB	$A \pm Sp$	$B \pm Sp$
РСУП "Минск племпредрприятие"	148경	56,1	33,8	10,1	0,73±0,036	0,27±0,036
РУСП "Племенной завод Красная звезда"	50♀	40,0	46,0	14,0	0,63±0,068	0,37±0,068
СПК "Агрокомбинат "Снов"	290♀	47,6	45,5	6,9	0,70±0,027	0,30±0,027
РУСПП "1-я Минская птицефабрика"	98₽	28,6	50,0	21,4	0,54±0,050	0,46±0,050
Всего	586	45,9	43,3	10,8	$0,68\pm0,019$	0,32±0,019

Таблица 2 Средние показатели продуктивности коров по аллельным вариантам гена α -LA

	Удой (л) ±Sp	Жир (%)±Sp	Белок (%)±Sp
α - LA^{AA}	9517,4±106,8	$3,78\pm0,03$	3,17±0,01
α - LA^{AB}	9269,0±101,8	3,79±0,02	3,18±0,01
α - LA^{BB}	9006,2±179,8	3,88±0,02	3,17±0,01

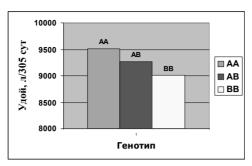


Рис. 1. Средний показатель удоя за 305 сут. лактации у коров разных генотипов

Из представленной диаграммы, очевидно, что наибольший уровень продуктивности по показателям общего удоя характерен для коров с генотипом α - LA^{AA} . Особи с генотипом α - LA^{BB} имеют по удою наименьшие показатели. В частности, рассчитано, что животные с генотипом α - LA^{AA} имеют в среднем, на 5,4% больший показатель по этому признаку по сравнению с особями, обладающими α - LA^{BB} генотипом (рис. 1).

Относительно показателей процентного содержания в молоке белка и жира нами не было выявлено статистически достоверных различий между обладателями α - LA^{AA} и α - LA^{BB} генотипов.

Таким образом, проведение генотипирования крупного рогатого скота по (-1689) полиморфизму гена α -LA, с целью выявления ценных аллельных вариантов, можно использовать в маркер-зависимой селекции, направленной на увеличение удоя.

Выводы

Проведено ДНК-типирование аллельного варианта А гена α -актальбумина в популяциях КРС, определены частоты данного аллеля в различных хозяйствах. Экспериментально доказана ассоциация (-1689) полиморфизма гена α -LA с признаками молочной продуктивности, в частности — положительная корреляция А аллеля с общим удоем. Показана возможность практического использования метода ПЦР-диагностики и генотипирования крупного рогатого скота по гену α -LA в маркер-зависимой селекции, направленной на увеличение продукции молока.

Литература

- 1. *Bleck G.T., Bremel R.D.* Correlation of the α-lactalbumin (+15) polymorphism to milk production and milk composition of holsteins // J. Dairy Sci.—1993.—Vol.76.—P. 2292–2298.
- 2. *Bojaroj-nosowicz B., Kaczmarczyk E., Bongarc E., MaBolepszy J.* Natural BLV infection and polymorphism within the 5' flanking region of the α-lactalbumin gene in black-and-white breed cattle // Bull Vet. Inst. Pulawy.— 2005.— Vol.49.— P. 439–442.
- 3. *Voelker G.R., Bleck G.T., Wheeler M.B.* Single-base polymorphisms within the 5' flanking region of the bovine α -lactalbumin gene // J. Dairy Sci.— 1997.— Vol.80.— P. 194–197.

- 4. Lundén A., Lindersson M. α-Lactalbumin polymorphism in relation to milk lactose // "Proc. VIth World Congr. on Gen. Appl. to Livestock Prod., Armidale, NSW, Australia, 11–16 January".— 1998.— Vol.25.— P. 47–50.
- 5. Зиновьева Н.А., Гладырь Е.А., Эрнст Л.К., Брем Г. Введение в молекулярную генную диагностику сельскохозяйственных животных.— Дубровицы.— 2002.— 112 с.
- 6. Kamiński S. Identification of Sdu I polymorphism within 5'flanking region of bovine alpha-lactalbumin gene // Anim. Sci. Pap. Rep.—1999.—Vol.17.—P. 23–27.

Резюме

Изучен (-1689) полиморфизм гена α -LA, проведен анализ генетической структуры популяций КРС по данному локусу α -LA, определены частоты ценного аллельного варианта А в различных хозяйствах РБ. Показана положительная корреляция А аллеля с общим удоем, а также возможность практического использования метода ПЦР-диагностики КРС по гену α -LA в маркер-зависимой селекции, направленной на увеличение удоя.

Polimorphism (-1689) of α -LA gene was studied, analysis of genetic structure of cattle populations for the given α -LA locus was made and frequencies of the valuable allelic variant A were determined in varions farms of the Republic of Belarus. A positive correlation of A allele to the total milk yield as well as the scope for practical application of PCR-diagnostics method in cattle for α -LA gene in marker-dependent breeding, aimed at an increase in milk yield, was shown.

ВОРОНКОВ А.С., АНДРЕЕВ И.М., ТИМОФЕЕВА Г.В., КОВАЛЕВА Л.В.

Институт физиологии растений им. К. А. Тимирязева РАН, Россия, 127276, Москва, Ботаническая ул., 35, e-mail: kovaleva l@mail.ru

ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ *IN VITRO* ПРОРАСТАЮЩЕГО МУЖСКОГО ГАМЕТОФИТА ПЕТУНИИ: МЕДИАТОРНАЯ РОЛЬ СА²⁺ И АФК В ИУК-ИНДУЦИРОВАННОЙ СТИМУЛЯЦИИ АКТИВНОСТИ Н⁺-АТФАЗЫ ПЛАЗМАЛЕММЫ

Прорастание пыльцевых зерен *in vitro* сопровождается заметными изменениями в уровне эндогенных фитогормонов и чувствительно к действию экзогенных фитогормонов [1–2]. В частности, показано, что экзогенные ауксин (ИУК), абсцизовая кислота (АБК) и гиббереллин (Γ K₃) способны существенно стимулировать прорастание пыльцы и рост пыльцевых трубок, выявлены существенные различия в гормональном статусе системы пыльцапестик после самосовместимого и самонесовместимого опылений [3]. Перечисленные факты указывают на активную роль фитогормонов в процессах прорастания мужского гаметофита, однако механизмы их действия остаются неисследованными. Практически ничего не известно, в частности, о возможной роли ион-транспортирующих систем плазмалеммы пыльцевого зерна в гормон-индуцируемой стимуляции прорастания и роста мужского гаметофита.