КОВАЛЬЧУК М.В., ГУЛЬКО Т.П.

Институт молекулярной биологии и генетики НАН Украины, Украина, 03143, Киев, ул. Заболотного, 150

ГЕНЕТИЧЕСКИЙ МОНИТОРИНГ ЛИНИЙ ЛАБОРАТОРНЫХ МЫШЕЙ

Использование животных в качестве биомоделей в медико-биологических исследованиях требует особенного внимания к чистоте линий. Для получения объективных и воспроизводимых результатов требуются не только стандартные условия проведения опыта, но и стандартизированный биологический материал. Использование генетически однородного материала, т.е. линейных или инбредных животных, их гибридов F1, селектируемых аутбредных популяций, обеспечивает воспроизводимость результатов.

Каждая инбредная линия — это один закрепленный инбридингом генотип. Однако чистота линий, их гомозиготность, могут нарушаться как естественным мутационным процессом, так и вследствие технических ошибок. Генетический мониторинг дает возможность подтвердить или определить генетическую однородность инбредных линий, а также охарактеризовать аутбредные популяции. Помимо методов реципрокной изотрансплантации кожных лоскутов, проверки генотипов окраски, мандибулярных методов, анализа специфических изоферментов, выявления гетерозиготности по рецессивным летальным генам, или генам, детерминирующим морфологические признаки, в настоящее время наблюдается тенденция к накоплению даных по генотипированию по главному комплексу гистосовместимости [1, 2].

Признаком генов главного комплекса гистосовместимости является их экстраординарный высокий уровень полиморфизма. Н2 локус генома мыши (главный комплекс гистосовместимости) содержит високополиморфный микросателит, включающий тандемные повторы (TR) из двух тетрануклеотидных единиц, TGGA и GGCA, локализованных на 3° конце второго интрона гена Eb, экспрессирующем антигены второго класса. На основании длины и нуклеотидной последовательности микросателита в 55 инбредных линиях мышей выявлено 11 TR аллелей. На линиях, несущих одинаковые и рекомбинантные H2 генотипы, подтверждена высокая стабильность TR аллелей [3, 4, 5].

Целью данного исследования было генотипирование линий лабораторных мышей по отдельным локусам главного комплекса гистосовместимости (H2), а также подбор животных для экспериментальной модели, где необходимо обеспечить генетическую стандартность, которая достигается использованием генетически контролируемых линейных животных. В основном, линии лабораторных мышей представлены гомозиготными животными и имеют уникальный гаплотип по H2 комплексу. ПЦР-генотипирование позволяет идентифицировать гомозиготные, гетерозиготные генотипы, а также по размерам и последовательностям ампликонов установить принадлежность к определенной линии [6].

Для генетического мониторинга экспериментальных животных использовался микросателлитный анализ локуса Eb. Выбор именно этого района был связан с тем, что ампликоны, полученные к данному локусу, могут значительно отличаться по размеру среди линий мышей (около 30 пар нуклеотидов) в отличие от ранее исследуемых нами локусов генов $Tnf\alpha$ и $Tnf\beta$ для маркирования линий (около 2–10 пар нуклеотидов) [7].

Материалы и методы

В экспериментах использовались половозрелые аутбредные мыши ICR (2–2,5 мес.), которые являются потомством аутбредной популяции, полученной в Институте онкологических исследований (США) и путем близкородственных скрещиваний животных и тщательной селекции по фенотипу опухоленосительства поддерживаются уже долгие годы (с начала 80-х) в виварии Института молекулярной биологии и генетики НАН Украины. Также были включены в эксперимент линии BALB/c, C57BL/6, C3H, CBA, содержащиеся в разных вивариях.

Микросателлитные локусы анализировали с помощью ПЦР. Забор периферической крови производили из хвостовой вены. Тотальную ДНК из лейкоцитов периферической крови отдельных мышей выделяли путем высаливания с 6M NaCl после инкубации с проназой в течение ночи. Выявление полиморфизма микросателита в локусе гена *Eb* проводили с использованием праймеров f(5'-CGACTGTAGAACCTTAGCCTG-3') и r(5'TGGAGCTGTCCTCCTTGTAG-3') [3].

Реакционная смесь для ПЦР содержала 10х буфер, 1,8 мМ хлорид магния, 0,20 мМ нуклеотидтрифосфаты, 0,25 мкМ праймеры и Таq-полимеразу "Fermentas" (Литва). Разделение продуктов амплификации проводили в 10% ПААГ с последующей визуализацией в ультрафиолетовом освещении с использованием бромистого этидия.

Результаты и обсуждение

Сравнительный анализ линий лабораторных мышей с использованием микросателлитного маркера в гене Eb показал, что Eb-микросателлиты отличаются по размеру в пределах тестируемых линий. Известно, что микросателлит второго интрона гена Eb, амплифицируемый в ПЦР-реакции, имеет размер 139 п.н. у линии мышей Balb/c c d-гаплотипом по H2 комплексу. Размер аналогичного ампликона у линии C57BL/6, имеющей b-гаплотип, составляет 107 п.н. [4]. Поэтому ДНК из крови мышей этих линий мы использовали как дополнительные маркеры для определения размеров ампликонов.

У линий СЗН, СВА размер полученных ампликонов был близким к 107 п.н., что характерно для линии С57BL/6. Исследуемые животные являлись гомозиготными по данному локусу. Аутбредные животные ICR в районе ампликона размером 107 п.н., характерного для b-гаплотипа, имели две близкорасположенные полосы на электрофореграмме.

Поскольку мыши BALB/с, C57BL/6 использовались для модели, требующей дальнейшего отслеживания аллелей, нам необходимо было подобрать доноров с H2 гаплотипами, размеры Eb-ампликонов которых значительно отличались бы от соответствующих ампликонов у аутбредных мышей ICR и отличие можно было детектировать как в полиакриламидных так и в агарозных гелях. К таким гаплотипам относится H2d, характерный для линии мышей BALB/c, размер соответсвующего сателлита у которых составляет 139 н.п. Электрофореграммы продуктов амплификации ДНК линий BALB/c, C57BL/6 и ICR, полученных с помощью праймеров к вариабельным последовательностям микросателлита на 3' конце второго интрона гена Eb представлено на рис. 1.

Для нашего эксперимента чистота линий представляла особую важность, поэтому мы генотипировали каждую мышь, используемую в эксперименте. При индивидуальном анализе животных из выборки, представленной как линия BALB/c, были детектированы, судя из размеров ампликонов, гибриды (2, 5, 7, рис. 2) и животные (1, 3, 6), гомозиготные по локусу Еb, но отличающиеся от линии BALB/c. Электрофореграммы продуктов амплификации ДНК отдельных особей, содержащихся в виварии как популяция линии мишей BALB/c, представлены на рис. 2.

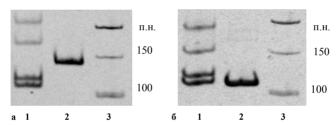


Рис. 1. Электрофореграммы продуктов амплификации ДНК линий мышей, полученных с помощью праймеров к вариабельным последовательностям локуса гена *Eb*: а) 1 — линия ICR; 2 — линия BALB/c (139 н.п.); 3 — маркер 50 bp DNA Ladder (Fermentas); б) 1 — линия ICR; 2 — линия C57BL/6 (107 н.п.); 3 — маркер 50 bp DNA Ladder (Fermentas)

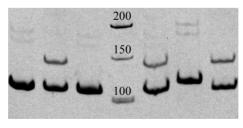


Рис. 2. Электрофореграммы продуктов амплификации ДНК отдельных особей, содержащихся как популяция линии мышей BALB/с, полученных с помощью праймеров к вариабельным последовательностям микросателлита на 3' конце второго интрона гена Eb: 1, 2, 3, 5, 6, 7 — отдельные особи; 4 — маркер 50 bp DNA Ladder (Fermentas)

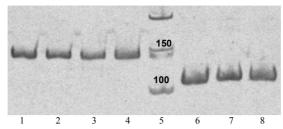


Рис. 3. Электрофореграммы продуктов ПЦР двух выборок мышей из различных источников, содержащихся как линии BALB/с, полученных с помощью праймеров к вариабельным последовательностям микросателлита на 3' конце второго интрона гена Eb: 1, 2, 3, 4 — отдельные особи I выборки; 6, 7, 8 — отдельные особи II выборки; 5 — маркер 50 bp DNA Ladder (Fermentas)

Другой пример анализа двух выборок мышей из различных источников, содержащихся как линии BALB/c, представлено на рис. 3. Особи 1, 2, 3, 4 (рис. 3) имели ампликон, который по размерам соответствовал ампликону у линии BALB/c и были гомозиготными по исследуемому локусу Eb гена.

Таким образом, генетический мониторинг линий лабораторных мышей по отдельным вариабельным локусам главного комплекса гистосовместимости, а именно, микросателлита второго интрона гена Eb позволяет не только проверить чистоту линейности мышей, полученных из различных источников, но и оптимально подобрать животных для исследовательских моделей, требующих дальнейшего отслеживания аллелей.

Литература

- 1. Smith W.P., Quyen Vu, Shuying Li S.S., Hansen J.A., Zhao L.P., Daniel E. Geraghty D.E. Toward understanding MHC disease associations: Partial resequencing of 46 distinct HLA haplotypes // Genomics.— 2006.— Vol.87, №5.— P. 561–571.
- 2. *Kumánovics A., Lindahl K. F.* Good copy, bad copy: choosing animal models for HLA-linked diseases // Current Opinion in Genetics&Development.— 2004.— Vol.14, №3.— P. 258–263.
- 3. Saha B.K., Shields J.J., Miller R.D., Hansen T.H., Shreffler D.C. A highly polymorphic microsatellite in the class II Eb gene allows tracing of major histocompatibility complex evolution in mouse // Proc. Natl. Acad. Sci. USA.— 1993.— Vol.90.— P. 312—316.
- 4. *Saha B.K.* Typing of murine major histocompatibility complex with a microsatellite in the class II Eb gene // J. Immunol. Methods.— 1996.— Vol.194.— P. 77–83.
- 5. Mapara M.Y., Kim Y.M., Wang S.P., Bronson R., Sachs D.H., Sykes M. Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras: a critical role for host antigen-presenting cells // Blood.—2002.—Vol.100.—P. 1903–1909.
- 6. Wood P.A., Hamm D.A. Survey of genomic repeat sequence-PCR that detect differences between inbred mouse strains // Genet. Res.—1995.—Vol.65.—P. 151–155.

7. Гулько Т.П., Ковальчук М.В. Изучение некоторых физиологических и молекулярно-генетических свойств мышей, предрасположенным к спонтанным новообразованиям // Матер. міжнар. конф.: "Фактори експериментальної еволюції організмів". Т.7.— 2009.— Київ.— С. 330–336.

Резюме

Показана можливість використання варіабельного мікросателіту гена *Eb* класу ІІ Н2 коплексу для диференціації гаплотипів та селекції гомозиготних і гетерозиготних мишей. За допомогою ПЛР ампліфікації було оптимизовано відбір тварин для досліду та перевірено чистоту використаних ліній мишей.

Показана возможность использования вариабельного микросателлита гена *Eb* класса II H2 комплекса для дифференциации гаплотипов и селекции гомозиготных и гетерозиготных мышей. С помощью ПЦР амплификации был оптимизирован подбор животных в опытах и проверена чистота используемых линий мышей.

A rapid screening method for discrimination of different MHC haplotypes, homozygous and heterozygous mice with using microsatellite in the class II *Eb* gene was shown. Appropriate animals could be selected by PCR genotyping. This method was properly used for verification of mice inbred strains pure.

КОМАХИН Р.А., КОМАХИНА В.В., МИЛЮКОВА Н.А., ФАДИНА О.А., КИНАШ Е.А., ЖУЧЕНКО А.А.*

ГНУ ВНИИ Сельскохозяйственной биотехнологии РАСХН,

Россия, 127550, г. Москва, ул. Тимирязевская, д.42,

e-mail: recombination@iab.ac.ru

*Институт общей генетики им. Н.И. Вавилова РАН,

Россия, 119991, г. Москва, ул. Губкина, д.3, ГСП 1

ГИБРИДЫ ТОМАТА, ЭКСПРЕССИРУЮЩИЕ ГЕНЫ recA И NLS-recA-licBM3, КАК МОДЕЛЬ ДЛЯ ИЗУЧЕНИЯ МЕЙОТИЧЕСКОЙ РЕКОМБИНАЦИИ У РАСТЕНИЙ

Гомологичная генетическая рекомбинация в клетках про- и эукариот необходима, прежде всего, для поддержания стабильности и целостности генома. Функционирование гомологичной рекомбинации основано на репарации двухцепочечных разрывов ДНК, которая является элементарным биологическим механизмом, обеспечивающим нормальную работу репликативных вилок (Сох et al., 2000). В мейозе гомологичная генетическая рекомбинация необходима для создания хиазм — крестообразных структур, которые физически удерживают гомологичные хромосомы, позволяя им правильно распределиться между дочерними клетками и обменяться гомологичными участками. Генетическая детерминированность кроссинговера при внутривидовых скрещиваниях и нарушение сегрегации хромосом у отдаленных