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Let

satisfying

/T(S);(S)ds<oo.

a

It is well known that, see [J. S. W. Wong, J. Math. Anal. and Appl. — 1999. — 231 — P. 235-240], if

Tom H(t) = — lim H(t) = oo,

t—o0 t—00

then every solution of
(r(t)z) +q(t)x = f(t)
is oscillatory.
In this paper we extend Wong’s result to delay differential equations of the form

(r(t)'(1))" + q(O)a(r(t)) = f(1).
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It is observed that the oscillation behavior may be altered due to presence of the delay. Extensions to
Emden — Fowler type delay differential equations are also discussed.

Hexaui

U40 3a0080NbHAE YMO8BY

/T(S);(S)ds<oo.

a

Bioomo (ous. [J. S. W. Wong, J. Math. Anal. and Appl. — 1999. — 231. — P. 235-240]), wio axuwo

T H(t) = — lim H(t) = oo,

t—o0 t—o0

mo KoxceH po36’a30K PIBHAHHA
AVA
(r(t)z')" +q()x = f(t)
€ OCUUNIOIOUUM.
Y uiti cmammi pezyavmam BoHea nowupero Ha OughepeHyianbHi piBHAHHA 3 3ANIZHEHHAM 8UAAQY

(r(®)2'(1) + q(z(7 (1) = f(1).

Bcmanosaeno, w0 ocuunauitina nogedinka moxce 3IMIHIO8AMUCL 34 PAXYHOK 3ani3HeHHA. Takox pos-
2AAHYMO Y3A2aAbHeHHA pieHAHb muny Emoena— @ayaepa.

1. Introduction. We begin with a well-known theorem by Wong [14].
Theorem 1. Let =z be a positive solution of the homogeneous equation

(rt)a’) +q(t)r =0, t> a,

such that
1
/7’(5)22(3) ds < oo.
If

lim H(t) = — lim H(t) = oo,

t—00 t—o0
where

H) = [ (S); 5 [=swyar ) s

then every solution of

is oscillatory.
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For some extensions of this theorem to impulsive differential equations, dynamic equations
on time scales, and nonlinear differential equations, see [8, 9, 15], respectively.

The main purpose of this study is to obtain an oscillation theorem analogous to Theorem 1
for second-order delay differential equations of the form

(r(®)2' ()" + q()z((t) = f(t), t = to, 1)

where to > 0,r € C([tg, ), (0,00)),q € C([to,0),[0,00)), f,7 € C([to,),R), 7(t) < ¢, and
limy_, 00 7(t) = o0.

It turns out that the delay term may cause solutions to oscillate. For instance, we will see
that the equation

22 (1)) + %tl/zq:()\t) = t%sin(Int), «a € <—;,0> )

is oscillatory when A € (0, 1) but nonoscillatory if A = 1.
Similar to [14] the main assumption is the existence of a nonoscillatory solution of

(rt)z") +qt)r =0, t>a. (2)

It turns out that a nonpricipal solution sufficies for our purpose. Recall that a nontrivial solution
u of Eq. (2) is called principal if for every solution v of Eq. (2), linearly independent of u, one
has

Such a solution v is called a nonprincipal solution of Eq. (2). It is known that if Eq. (2) is
nonoscillatory, then the principal and nonprincipal solutions exist, and that a principal solution
w is unique up to a multiplicative constant. For other characterizations of these solutions, see [5,
6]. Note that the function z employed in Theorem 1 is indeed a nonprincipal solution of Eq. (2).
The principal and nonprincipal solutions play important role for the investigation of oscillation
and asymptotic behavior of solutions of some related equations [1-14].

As usual it is tacitly assumed that Eq. (1) has a solution z(t) defined on an interval [t(, o)
and nontrivial on [T, co0) for any 7' > t(. Such a solution is called oscillatory if it has arbitrarily
large zeros, otherwise it is said to be nonoscillatory. Eq. (1) is called oscillatory (nonoscillatory)
if all solutions are oscillatory (nonoscillatory).

2. Main result. Let v denote a nonprincipal solution of Eq. (2) which is positive for ¢ > a.
Note that

o

ds
| o < ®)

a

The main result is the following theorem.
Theorem 2. Let v(t) be a positive solution of (2) satisfying (3), i.e., a nonprincipal solution.
Define

t s

k
Hol®) ::/T(s);(s) /q(k:)v(k) / r(lmdndkds

a a (k)
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and
t s k n
H(t) -—/1/ /1/ ydX\dn p v(k)dk ds
=) (3 (s) () 7 '
a a Tk; a
If
Jim Ho(t) < oo, gwwzngﬂwzm (4)

then Eq. (1) is oscillatory.
Proof. Suppose that there is a nonoscillatory solution z(¢) of Eq. (1). We may assume that
z(7(t)) > 0on [a,00) for some a > ty sufficiently large.

Put
_ =)
w(t) = o)’ t>a
It follows from (1) that w satisfies
(O (Ou(O) + 0w () = 50+ a(t) [ () ds. (5)

Integrating (1) from a to t, we see that

2(t) < i /f t>a,

where o = r(a)z’(a). Using this estimate in (5) leads to
(r(t) (Eu()) + r(End (B0 () < F(2) + aqlt / ds / T(ls) / f(k)dkds.  (6)
( a

Multiplying both sides of (6) by v(t) gives

ds

7”8

(rOv* ' (1)) < f(u(t) + aq(t

\“

(1 / Vdkds.  (7)

A\“

(t)

It is not difficult to see from (7) that
t
ds
w(t) < B4 [ L ata(t) + M)
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where 8 = w(a) and v = 7(a)v?(a)w’(a) are constants. Thus, in view of (4), from

7 ds
lim w(t) < 8+ /+alim’H t) + lim H(¢
AW =B ey T el + fig 7O
we have
lim w(t) = —oo. (®)
t—o00

Obviously, (8) contradicts the positivity of the nonprincipal solution v(t).

In case z(t) is eventually negative, a similar argument reveals that lim; ., w(t) = oo, which
again results in the same contradiction.

Theorem 2 is proved.

Remark 1. If 7(t) = 0, then Theorem 2 reduces to Theorem 1.

Example 1. Consider the delay differential equation

(22 (8)) + %tl/%()\t) — gin(lnt), ¢> 1, ©)

where a € <—;,O> and A € (0,1).

Let v(t) = t~'/? and a = 1, then we calculate that

t s o
Ho(t) = ;/33/2//k5/2 dk do ds — %(1 _ )\73/2)(1571/2 i tfl . 1)
1 1 Ao

By tedious calculations, we also see that
H(t) = {k1 sin(Int) + ko cos(Int)} t* T2 4 {ks sin(Int) + ky cos(Int)} t*+ (ks Int+ke)t /> +kr,

where k1, ..., ky are real suitable constants. It is clear that

: 2 3 T _ : - _
Jim Ho(t) = =5 (1 =A%) <o, lim () = oo, lim H(t) = —cc.

t—o00

Thus, condition (4) is also satisfied. By Theorem 2, we may conclude that equation (9) is osci-
llatory.
Note that if the delay is absent, then (9) takes the form

1
2" + 5tl/%c = t%sin(Int), t>1,

and this equation has the nonoscillatory solution z(t) = t*~/2sin(Int).
3. Nonlinear delay equations. In this section we extend our result to Emden—Fowler type
delay differential equations of the form

(r(®)' (1) + a(O) (7)) 2 (r(1)) = f(t), B> 1, (10)
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and

(r(t)y' @) = p@)ly(e @)~ y(o(t) = g(t), 0<y <1, (11)

where r, ¢, f, and 7 are as defined previously, p € C([ty,),[0,00)), 0, g € C([to,0),R),
o(t) < t,and limy_,o 0(t) = 00.
Following [9] we consider slightly more general equations

(rt)2' ()" + q() F(2(7(1) = f(t) (12)

and

(r(®)y' (1)) = p()G(y(e (1)) = g(t), (13)

where F' and G are continuous functions satisfying the following conditions:
(C1) uF(u) > 0and uG(u) > 0 for u # 0;
(C2) (@) limyy oo u ' F(u) > 1, limpyou™ ' F(u) < 1,
() limy oo w ' G(u) < 1, limy, o u 'G(u) > 1.
Using (C;) and (Cy), it is easy to see that there exist positive constants pg, v, 0o, o such
that

max[u — F(u)] = po, minfu—F(u)] = —ao,
(14)
max{u — G(u)] = do, minfu —G(u)] = —po.

The proofs of the theorems below are similar to the counterparts in [9] and the arguments
developed in the previous section. We omit the proofs.
Theorem 3. Let v(t) be a positive solution of (2) satisfying (3) and Hy be as in Theorem 2.

Define
t

Hi(t) = / ()1() / (F (k) + [RK) + pola(k)} v(k) dk ds

and
¢

Halt) == / ()12() / (7 (k) + [R(E) — aola(k)} o(k) dk ds,

a

where the constants pg, o are defined as in (14) and
t 1 s
t) == — k) dk ds.
RO = [ o [ s dias
7(t) a

1f
lim Ho(t) < oo, tlim H;(t) = — lim H;(t) = o0, j =1,2,
—00

t—ro0 t—00

then Eq. (12) is oscillatory.
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When F(z) = |z|?~12, 3 > 1, (12) reduces to the Emden — Fowler superlinear delay equati-
on (10). Then, we have the following result.
Theorem 4. Let v(t) be a positive solution of (2) satisfying (3). If

Jim Ho(t) < oo, @’Hﬂt) = — lim H_(t) = oo,
where
Helt) = [ o [ {00+ RO £ (8= 1070 )} ot di s,

then (10) is oscillatory.
Remark. If we take 7(¢) = t in (10), then Theorem 4 reduces to Corollary 2.3 in [9].
Theorem 5. Let

t s k
~ 1 N 1

and that

alt) = [ ()1() [ {o0) = Rk + dulotr) } o0) ks,

where 0(t) is a nonprincipal solution of
(r@)y) = p(t)y =0,

the constants i, g are as in (14), and

t s
~ 1
R(t) = / 5 / o(k) i ds
o(t) a
If
lim Ho(t) < oo (15)
t—o00
and
t—o00 t—00

then Eq. (13) is oscillatory.
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100 A.OZBEKLER, A.ZAFER
If G(y) = |y|""'y,0 < v < 1, then (13) reduces to the Emden —Fowler sublinear delay
equation (11). The following theorem is immediate.

Theorem 6. Let (15) hold. If

where
Re(t) = [ sz [ {at = [R) £ (1= 070 gt} (k) v,

then (11) is oscillatory.
Remark 3. If we take o(t) = ¢ in (11), then Theorem 6 reduces to Corollary 2.4 in [9].
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