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We establish new efficient conditions sufficient for the unique solvability of the Cauchy problem for two-
dimensional systems of linear functional differential equations with monotone operators.

Знайдено новi ефективнi умови, що є достатнiми для iснування єдиного розв’язку задачi Кошi
для двовимiрних систем лiнiйних функцiонально-диференцiальних рiвнянь з монотонними опе-
раторами.

1. Introduction and rotation. On the interval [a, b], we consider two-dimensional differential
system

u′i(t) = σi1 `i1(u1)(t) + σi2 `i2(u2)(t) + qi(t), i = 1, 2, (1.1)

with the initial conditions
u1(a) = c1, u2(a) = c2 , (1.2)

where `ik : C([a, b]; R) → L([a, b]; R) are linear nondecreasing operators, σik ∈
∈ {−1, 1}, qi ∈ L([a, b]; R), and ci ∈ R, i, k = 1, 2. By a solution of the problem (1.1), (1.2)
we understand an absolutely continuous vector function u = (u1, u2)T : [a, b] → R2 satisfying
(1.1) almost everywhere on [a, b] and verifying also the initial conditions (1.2).

The problem of solvability of the Cauchy problem for linear functional differential equa-
tions and their systems has been studied by many authors (see, e.g., [1 – 6] and references
therein). There are a lot of interesting results but only a few efficient conditions is known
at present. Furthermore, most of them are available for the one-dimensional case only or for
systems with the so-called Volterra operators (see, e.g., [2, 3, 5, 7 – 9]). Let us mention that
the efficient conditions guaranteeing the unique solvability of the initial value problem for n-
dimensional systems of linear functional differential equations are given, e.g., in [4, 10 – 13].

In this paper, we establish new efficient condition sufficient for the unique solvability of the
problem (1.1), (1.2) with σ11 = 1 and σ22 = 1. The cases where σ11σ22 = −1 and σ11 = σ22 =
= −1 are studied in [14] and [15], respectively.
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The integral conditions given in Theorems 2.1 and 2.2 are optimal in a certain sense which
is shown by counter-examples constructed in the last part of the paper.

The following notation is used throughout the paper:
(1) R is the set of all real numbers, R+ = [0,+∞[ ;
(2) C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R equipped with

the norm
‖u‖C = max

{
|u(t)| : t ∈ [a, b]

}
;

(3) L([a, b]; R) is the Banach space of Lebesgue integrable functions h : [a, b] → R equipped
with the norm

‖h‖L =

b∫
a

|h(s)|ds;

(4) L
(
[a, b]; R+

)
=
{

h ∈ L([a, b]; R) : h(t) ≥ 0 for a.a. t ∈ [a, b]
}

;

(5) an operator ` : C([a, b]; R) → L([a, b]; R) is said to be nondecreasing if the inequality

`(u1)(t) ≤ `(u2)(t) for a.a. t ∈ [a, b]

holds for every functions u1, u2 ∈ C([a, b]; R) such that

u1(t) ≤ u2(t) for t ∈ [a, b];

(6) Pab is the set of linear nondecreasing operators ` : C([a, b]; R) → L([a, b]; R).
In what follows, the equalities and inequalities with integrable functions are understood to

hold almost everywhere.

2. Main results. In this section, we present the main results of the paper. The proofs are
given later, in Section 3. Theorems formulated below contain the efficient conditions sufficient
for the unique solvability of the problem (1.1), (1.2) with σ11 = 1 and σ22 = 1. Recall that
the operators `ik are supposed to be linear and nondecreasing, i.e., such that `ik ∈ Pab for
i, k = 1, 2.

Put

Aik =

b∫
a

`ik(1)(s)ds for i, k = 1, 2. (2.1)

At first, we consider the case where σ12σ21 > 0.

Theorem 2.1. Let σ11 = 1, σ22 = 1, and σ12σ21 > 0. Let, moreover,

A11 < 1, A22 < 1, (2.2)

and
A12 A21 < (1−A11)(1−A22), (2.3)

where the numbers Aik, i, k = 1, 2, are defined by (2.1). Then the problem (1.1), (1.2) has
a unique solution.
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Fig. 2.1

Remark 2.1. Neither one of the strict inequalities (2.2) and (2.3) can be replaced by the
nonstrict one (see Examples 4.1 and 4.2).

Remark 2.2. Let H1 be the set of triplets (x, y, z) ∈ R3
+ satisfying

x < 1, y < 1, z < (1− x)(1− y)

(see Fig. 2.1). According to Theorem 2.1, the problem (1.1), (1.2) is uniquely solvable if `ik ∈
∈ Pab, i, k = 1, 2, are such that b∫

a

`11(1)(s)ds ,

b∫
a

`22(1)(s)ds ,

b∫
a

`12(1)(s)ds

b∫
a

`21(1)(s)ds

 ∈ H1 .

Remark 2.3. It should be noted that Theorem 2.1 can be derived as a consequence of Corol-
lary 1.3.1 given in [4]. However, we shall prove this theorem using the technique common for
both theorems given in this paper.

Remark 2.4. It follows from Corollary 3.2 of [16] that if σ11 = 1, σ22 = 1, σ12σ21 > 0, and

A11 + A12 < 1, A21 + A22 < 1, (2.4)

where the numbers Aik, i, k = 1, 2, are defined by (2.1), then the problem (1.1), (1.2) has
a unique solution (u1, u2)T . Moreover, this solution satisfies

u1(t) ≥ 0, σ12u2(t) ≥ 0 for t ∈ [a, b]

provided that c1 ≥ 0, σ12c2 ≥ 0, and

q1(t) ≥ 0, σ12q2(t) ≥ 0 for t ∈ [a, b].
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Fig. 2.2

On the other hand, if the assumption (2.4) is weakened to the assumptions (2.2), (2.3) then
the problem (1.1), (1.2) has still a unique solution but no information about the sign of this
solution is guaranteed in general.

Now we consider the case where σ12σ21 < 0.
Theorem 2.2. Let σ11 = 1, σ22 = 1, and σ12σ21 < 0. Let, moreover, the condition (2.2) be

satisfied and

A12A21 < 4
√

(1−A11)(1−A22) +

(√
1−A11 +

√
1−A22

)2

, (2.5)

where the numbers Aik, i, k = 1, 2, are defined by (2.1). Then the problem (1.1), (1.2) has
a unique solution.

Remark 2.5. The strict inequalities (2.2) in Theorem 2.2 cannot be replaced by the non-
strict ones (see Example 4.1). Furthermore, the strict inequality (2.5) cannot be replaced by
the nonstrict one provided A11 = A22 (see Example 4.3).

Remark 2.6. Let H2 be the set of triplets (x, y, z) ∈ R3
+ satisfying

x < 1, y < 1, z < 4
√

(1− x)(1− y) +

(
√

1− x +
√

1− y

)2

(see Fig. 2.2). According to Theorem 2.2, the problem (1.1), (1.2) is uniquely solvable if `ik ∈
∈ Pab, i, k = 1, 2, are such that
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 b∫
a

`11(1)(s)ds ,

b∫
a

`22(1)(s)ds ,

b∫
a

`12(1)(s)ds

b∫
a

`21(1)(s)ds

 ∈ H2 .

At last, we give consequences of Theorems 2.1 and 2.2 for the system with argument devia-
tions,

u′1(t) = h11(t)u1

(
τ11(t)

)
+ σ1h12(t)u2

(
τ12(t)

)
+ q1(t),

(2.6)
u′2(t) = σ2h21(t)u1

(
τ21(t)

)
+ h22(t)u2

(
τ22(t)

)
+ q2(t),

where hik ∈ L
(
[a, b]; R+

)
, τik : [a, b] → [a, b] are measurable functions, σi ∈ {−1, 1}, and

qi ∈ L
(
[a, b]; R

)
, i, k = 1, 2.

Corollary 2.1. Let σ1σ2 > 0 and let the conditions (2.2) and (2.3) be fulfilled, where

Aik =

b∫
a

hik(s)ds for i, k = 1, 2. (2.7)

Then the problem (2.6), (1.2) has a unique solution.

Corollary 2.2. Let σ1σ2 < 0 and let the conditions (2.2) and (2.5) be fulfilled, where the
numbers Aik, i, k = 1, 2, are defined by (2.7). Then the problem (2.6), (1.2) has a unique solution.

3. Proofs of the main results. In this section, we shall prove the statements formulated
above. Recall that the numbers Aik, i, k = 1, 2, are defined by (2.1).

It is well-known from the general theory of boundary-value problems for functional differ-
ential equations (see, e.g., [4, 11, 17, 18]) that the following lemma is true.

Lemma 3.1. The problem (1.1), (1.2) is uniquely solvable if and only if the corresponding
homogeneous problem

u′i(t) = σi1 `i1(u1)(t) + σi2 `i2(u2)(t), i = 1, 2, (3.1)

u1(a) = 0, u2(a) = 0, (3.2)

has only the trivial solution.

In order to simplify the discussion in the proofs, we formulate the following obvious lemma.

Lemma 3.2. (u1, u2)T is a solution of the problem (3.1), (3.2) if and only if (u1,−u2)T is
a solution of the problem

v′i(t) = (−1)i−1σi1 `i1(v1)(t) + (−1)iσi2 `i2(v2)(t), i = 1, 2, (3.3)

v1(a) = 0, v2(a) = 0 . (3.4)
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Lemma 3.3 ([19], Remark 1.1). Let ` ∈ Pab be such that

b∫
a

`(1)(s)ds < 1.

Then every absolutely continuous function u : [a, b] → R such that

u′(t) ≥ `(u)(t) for t ∈ [a, b], u(a) ≥ 0,

satisfies u(t) ≥ 0 for t ∈ [a, b].

Now we are in a position to prove the main results.

Proof of Theorem 2.1. According to Lemmas 3.1 and 3.2, in order to prove the theorem it
is sufficient to show that the system

u′i(t) = `i1(u1)(t) + `i2(u2)(t), i = 1, 2, (3.5)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (u1, u2)T is a nontrivial solution of the problem (3.5), (3.2).

If the inequality

ui(t) ≥ 0 for t ∈ [a, b] (3.6)

holds for some i ∈ {1, 2} then, by virtue of (2.2), the assumption `3−i i ∈ Pab, and Lemma 3.3,
we get

u3−i(t) ≥ 0 for t ∈ [a, b]. (3.7)

Consequently, the functions u1 and u2 satisfy one of the following alternatives.
(a) Both functions u1 and u2 do not change their signs. Then, without loss of generality, we

can assume that (3.6) holds for i = 1, 2.
(b) Both functions u1 and u2 change their signs.
Put

Mi = max
{
ui(t) : t ∈ [a, b]

}
, i = 1, 2, (3.8)

and choose αi ∈ [a, b], i = 1, 2, such that

ui(αi) = Mi for i = 1, 2. (3.9)

Obviously, in both cases (a) and (b), we have

M1 ≥ 0, M2 ≥ 0, M1 + M2 > 0. (3.10)

The integration of (3.5) from a to αi, in view of (3.8) – (3.10), and the assumptions `i1, `i2 ∈ Pab,
yield
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Mi =

αi∫
a

`i1(u1)(s)ds +

αi∫
a

`i2(u2)(s)ds ≤

≤ M1

αi∫
a

`i1(1)(s)ds + M2

αi∫
a

`i2(1)(s)ds ≤

≤ M1Ai1 + M2Ai2, i = 1, 2. (3.11)

By virtue of (2.2) and (3.10), we get from (3.11) that

0 ≤ Mi

(
1−Aii

)
≤ M3−iAi 3−i, i = 1, 2. (3.12)

Using (2.2) and (3.10) once again, (3.12) implies M1 > 0, M2 > 0, and

(1−A11)(1−A22) ≤ A12A21,

which contradicts (2.3).
The contradiction obtained proves that the problem (3.5), (3.2) has only the trivial solution.

Proof of Theorem 2.2. According to Lemmas 3.1 and 3.2, in order to prove the theorem it
is sufficient to show that the system

u′1(t) = `11(u1)(t) + `12(u2)(t), (3.13)

u′2(t) = −`21(u1)(t) + `22(u2)(t) (3.14)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (u1, u2)T is a nontrivial solution of the problem (3.13), (3.14),

(3.2). It is clear that u1 and u2 satisfy one of the following.
(a) One of the functions u1 and u2 is of a constant sign. According to Lemma 3.2, we can

assume without loss of generality that u1(t) ≥ 0 for t ∈ [a, b].
(b) Both functions u1 and u2 change their signs.
Case (a): u1(t) ≥ 0 for t ∈ [a, b]. In view of (2.2) and the assumption `21 ∈ Pab, Lemma 3.3

yields u2(t) ≤ 0 for t ∈ [a, b]. Now, by virtue of (2.2) and the assumption `12 ∈ Pab, Lemma 3.3
again implies u1(t) ≤ 0 for t ∈ [a, b]. Consequently, u1 ≡ 0 and Lemma 3.3 once again results
in u2 ≡ 0, which is a contradiction.

Case (b): u1 and u2 change their signs. For i = 1, 2, we put

Mi = max
{
ui(t) : t ∈ [a, b]

}
, mi = −min

{
ui(t) : t ∈ [a, b]

}
. (3.15)

Choose αi, βi ∈ [a, b], i = 1, 2, such that the equalities

u1(α1) = M1 , u1(β1) = −m1 (3.16)
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and

u2(α2) = M2 , u2(β2) = −m2 (3.17)

are satisfied. Obviously,

Mi > 0, mi > 0 for i = 1, 2. (3.18)

Furthermore, for i, k = 1, 2, we denote

Bik =

min{αi,βi}∫
a

`ik(1)(s)ds, Dik =

max{αi,βi}∫
min{αi,βi}

`ik(1)(s)ds. (3.19)

It is clear that

Bik + Dik ≤ Aik for i, k = 1, 2. (3.20)

According to Lemma 3.2, we can assume without loss of generality that α1 < β1 and α2 < β2.
The integrations of (3.13) from a to α1 and from α1 to β1, in view of (3.15), (3.16), (3.19), and
the assumptions `11, `12 ∈ Pab, result in

M1 =

α1∫
a

`11(u1)(s)ds +

α1∫
a

`12(u2)(s)ds ≤

≤ M1

α1∫
a

`11(1)(s)ds + M2

α1∫
a

`12(1)(s)ds = M1B11 + M2B12

and

M1 + m1 = −
β1∫

α1

`11(u1)(s)ds−
β1∫

α1

`12(u2)(s)ds ≤

≤ m1

β1∫
α1

`11(1)(s)ds + m2

β1∫
α1

`12(1)(s)ds = m1D11 + m2D12 .

The last relations, by virtue of (2.2) and (3.18), imply

0 <
M1

M2
(1−B11) +

m1

m2
(1−D11) +

M1

m2
≤ B12 + D12 ≤ A12 . (3.21)

On the other hand, the integrations of (3.14) from a to α2 and from α2 to β2, using (3.15),
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(3.17), (3.19), and the assumptions `21, `22 ∈ Pab, give

M2 = −
α2∫
a

`21(u1)(s)ds +

α2∫
a

`22(u2)(s)ds ≤

≤ m1

α2∫
a

`21(1)(s)ds + M2

α2∫
a

`22(1)(s)ds = m1B21 + M2B22

and

M2 + m2 =

β2∫
α2

`21(u1)(s)ds−
β2∫

α2

`22(u2)(s)ds ≤

≤ M1

β2∫
α2

`21(1)(s)ds + m2

β2∫
α2

`22(1)(s)ds = M1D21 + m2D22 .

The last relations, by virtue of (2.2) and (3.18), yield

0 <
M2

m1
(1−B22) +

m2

M1
(1−D22) +

M2

M1
≤ B21 + D21 ≤ A21 . (3.22)

Now, it follows from (3.21) and (3.22) that

A12A21 ≥
M1

m1
(1−B11)(1−B22) +

m2

M2
(1−B11)(1−D22) + 1−B11+

+
M2

m2
(1−D11)(1−B22) +

m1

M1
(1−D11)(1−D22) +

m1M2

m2M1
(1−D11)+

+
M2M1

m1m2
(1−B22) + 1−D22 +

M2

m2
. (3.23)

Using the relation
x + y ≥ 2

√
xy for x ≥ 0, y ≥ 0,

it is easy to verify that

M1

m1
(1−B11)(1−B22) +

m1

M1
(1−D11)(1−D22) ≥

≥ 2
√

(1−B11)(1−B22)(1−D11)(1−D22) ≥

≥ 2
√

(1−B11 −D11)(1−B22 −D22) ≥ 2
√

(1−A11)(1−A22) ,
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m1M2

m2M1
(1−D11) +

M2M1

m1m2
(1−B22) ≥ 2

M2

m2

√
(1−D11)(1−B22) , (3.24)

M2

m2
(1−D11)(1−B22) + 2

M2

m2

√
(1−D11)(1−B22) +

M2

m2
=

=
M2

m2

(√
(1−D11)(1−B22) + 1

)2
,

and

m2

M2
(1−B11)(1−D22) +

M2

m2

(√
(1−D11)(1−B22) + 1

)2
≥

≥ 2
√

(1−B11)(1−D22)
(√

(1−D11)(1−B22) + 1
)
≥

≥ 2
√

(1−B11 −D11)(1−B22 −D22) + 2
√

(1−B11)(1−D22) ≥

≥ 2
√

(1−A11)(1−A22) + 2
√

(1−B11)(1−D22) . (3.25)

Therefore, by virtue of (3.24), (3.25), (3.23) implies

A12A21 ≥

≥ 4
√

(1−A11)(1−A22) + 1−B11 + 2
√

(1−B11)(1−D22) + 1−D22 ≥

≥ 4
√

(1−A11)(1−A22) +
(√

1−A11 +
√

1−A22

)2
,

which contradicts (2.5).
The contradictions obtained in (a) and (b) prove that the problem (3.13), (3.14), (3.2) has

only the trivial solution.

Proof of Corollary 2.1. The validity of the corollary follows immediately from Theorem 2.1.

Proof of Corollary 2.2. The validity of the corollary follows immediately from Theorem 2.2.

4. Counter-examples. In this part, the counter-examples are constructed verifying that the
results obtained above are optimal in a certain sense.

Example 4.1. Let σik ∈ {−1, 1}, hik ∈ L
(
[a, b]; R+

)
, i, k = 1, 2, be such that

σ11 = 1,

b∫
a

h11(s)ds ≥ 1.
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It is clear that there exists t0 ∈ ]a, b] such that

t0∫
a

h11(s)ds = 1.

Let the operators `ik ∈ Pab, i, k = 1, 2, be defined by

`ik(v)(t) df= hik(t)v
(
τik(t)

)
for t ∈ [a, b], v ∈ C([a, b]; R), (4.1)

where τ11(t) = t0, τ12(t) = a, τ21(t) = a, and τ22(t) = a for t ∈ [a, b]. Put

u(t) =

t∫
a

h11(s)ds for t ∈ [a, b].

It is easy to verify that (u, 0)T is a nontrivial solution of the problem (1.1), (1.2) with qi ≡ 0 and
ci = 0, i = 1, 2.

An analogous example can be constructed for the case where

σ22 = 1,

b∫
a

h22(s)ds ≥ 1.

This example shows that the constant 1 in the right-hand side of the inequalities in (2.2) is
optimal and cannot be weakened.

Example 4.2. Let σik = 1 for i, k = 1, 2 and let hik ∈ L
(
[a, b]; R+

)
, i, k = 1, 2, be such that

b∫
a

h11(s)ds < 1,

b∫
a

h22(s)ds < 1, (4.2)

and
b∫

a

h12(s)ds

b∫
a

h21(s)ds ≥

1−
b∫

a

h11(s)ds

1−
b∫

a

h22(s)ds

 .

It is clear that there exists t0 ∈ ]a, b] such that

t0∫
a

h12(s)ds

t0∫
a

h21(s)ds =

1−
t0∫

a

h11(s)ds

1−
t0∫

a

h22(s)ds

 .
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Let the operators `ik ∈ Pab, i, k = 1, 2, be defined by (4.1), where τik(t) = t0 for t ∈ [a, b],
i, j = 1, 2. Put

u1(t) =

t∫
a

h11(s)ds +
1−

t0∫
a

h11(s)ds

t0∫
a

h12(s)ds

t∫
a

h12(s)ds for t ∈ [a, b],

u2(t) =

t∫
a

h21(s)ds +

t0∫
a

h21(s)ds

1−
t0∫
a

h22(s)ds

t∫
a

h22(s)ds for t ∈ [a, b].

It is easy to verify that (u1, u2)T is a nontrivial solution of the problem (1.1), (1.2) with qi ≡ 0
and ci = 0, i = 1, 2.

This example shows that the strict inequality (2.3) in Theorem 2.1 cannot be replaced by the
nonstrict one.

Example 4.3. Let σ11 = 1, σ12 = 1, σ21 = −1, and σ22 = 1. Let α ∈ [0, 1[ and h12, h21 ∈
∈ L

(
[a, b]; R+

)
be such that

b∫
a

h12(s)ds

b∫
a

h21(s)ds ≥ 8(1− α).

It is clear that there exist t0 ∈ ]a, b] and t1, t2 ∈ ]a, t0[ such that

t0∫
a

h12(s)ds

t0∫
a

h21(s)ds = 8(1− α)

and
t1∫

a

h12(s)ds =
1
4

t0∫
a

h12(s)ds,

t2∫
a

h21(s)ds =
1
2

t0∫
a

h21(s)ds.

Furthermore, we choose h11, h22 ∈ L
(
[a, b]; R+

)
with the properties

h11(t) = 0 for t ∈ [a, t1] ∪ [t0, b], h22(t) = 0 for t ∈ [t2, b],

and
b∫

a

h11(s)ds =

b∫
a

h22(s)ds = α.
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Let the operators `ik ∈ Pab, i, k = 1, 2, be defined by (4.1), where τ11(t) = t0, τ22(t) = t2 for
t ∈ [a, b], and

τ12(t) =

{
t0 for t ∈ [a, t1[,
t2 for t ∈ [t1, b],

τ21(t) =

{
t1 for t ∈ [a, t2[,
t0 for t ∈ [t2, b].

Put

u1(t) =



t0∫
t2

h21(s)ds

t∫
a

h12(s)ds for t ∈ [a, t1[,

1− α− 2

t∫
t1

h11(s)ds−
t0∫

t2

h21(s)ds

t∫
t1

h12(s)ds for t ∈ [t1, b],

u2(t) =


−(1− α)

t∫
a

h21(s)ds−
t0∫

t2

h21(s)ds

t∫
a

h22(s)ds for t ∈ [a, t2[,

−
t0∫

t2

h21(s)ds + 2

t∫
t2

h21(s)ds for t ∈ [t2, b].

It is easy to verify that (u1, u2)T is a nontrivial solution of the problem (1.1), (1.2) with qi ≡ 0
and ci = 0, i = 1, 2.

This example shows that the strict inequality (2.5) in Theorem 2.2 cannot be replaced by the
nonstrict one provided A11 = A22.
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