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The double singular perturbation for boundary-value problem for nonlinear system of ordinary differenti-
al equations is considered. For a formal asymptotic solution, constructed by the method of boundary
functions and generalized inverse matrices and projectors, we prove an asymptotic property of the formal
series.

Poseasinymo noositino cunzyaapre 30yperHA 2paHuyHOL 3a0a4i 04 HEeAIHIUHOL cucmemu 38UYALHUX
ougepenyianrbHux pisHanb. s GopmasbHO20 ACUMIIMOMUYHO20 PO36 A3KY, AKULL NOOYO0BAHO 34 Me-
MOOOM 2PAHUYHUX PYHKUIL mMa y3a2aabHeHUX 00ePHEHUX MAMPULUDL | NPOeKMOopis, 008e0eHO ACUMN-
MOMUYHY 8AACUBICIL POPMANBLHOZO PADY.

1. Introduction. In the paper we investigate the asymptotic behavior of the formal solution of
the boundary-value problem (BVP)

5% = Az +eF(t,z,e, f(t,e)) + p(t), t€ab], 0<e<l, (1)

Iz() = h, he R", 2)

where ¢ is a small positive parameter. The BVP (1), (2) will be considered under the following
conditions:

(C1) The (n x n)-matrix A with constant elements has p eigenvalues with negative real part,
and the remaining (n — p) eigenvalues have positive real part, i.e., \; € o(A), Re); < 0,
j=1pandRe); >0, =p+1,n.

(C2) The vector-function ¢(¢) is an n-dimensional vector-function of the class C*°([a, b]).

(Cs) The function F'(¢,z,e, f(t,e)) is an n-dimensional vector-function, having arbitrary
order continuous partial derivatives with respect to all arguments in the domain G = [a,b] x
x D, x[0,€] x Dy, where D, € R"™is some neighborhood of the solution () of the degenerate
system Axg(t) +¢(t) = 0, Dy € RPis a bounded and closed domain, 0 < € < 1. The function
f(t,e) is smooth of arbitrary order with respect to all arguments in the domain G; = [a, b] x (0, Z]
and its values belongs to Dy.

(C4) 1 is a linear n-dimensional bounded vector functional, I = col (I*,...,I"), | €
€ (Cla,b] - R™,R").
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS... 37

We assume that the function f from (1) contains singular elements (for example, f =
= f(exp(—t/e),sin(t/e))). Thus the system (1) has a double singularity. On the one hand, the
small parameter ¢ appears before the derivative, and, on the other hand, it brings in a singularity
of the function f.

The condition (C;) shows that we consider system (1) in a conditionally stable case [13, 14].

We seek to determine existence and uniqueness of a n-dimensional asymptotic solution
z(t,¢) of the BVP (1), (2) such that z(-,¢) € C([a,b]), z(t,-) € C((0,20]) and lim._,¢ x(t, &) =
= X (t)

The construction of the asymptotic solution of problem (1), (2) is based on the boundary
functions method (see, for example, [13, 14]). The initial research for a Cauchy problem with
double singularity is carried out in [9] in the case Re \; < 0Vi, \; € o(A). The BVP in this case
are analyzed in the papers [7, 11].

Primary research of the problem (1), (2) with conditions (C;)—-(Cy) is conducted in [5]
and [6]. In the papers [5, 6] the formal asymptotic solutions of the BVP (1), (2) have been
constructed in various cases. In [6] we considered the case which uses generalized inverse matri-
ces and projectors [1, 3, 10].

2. Preliminary results and problem formulation. In the paper [6] a formall asymptotic soluti-
on of the BVP (1), (2) was obtained after introducing a second parameter p and studyind the
BVP with two parameters ¢ € [0,2] and 4 € (0,2],0 < € < 1,

€z = AZ+€F(t,Z,€,f(t,/,L)) +90(t)7 te [aab]a

®)
lz(-) =h, he€R"
The solution of the BVP (3) be found in a unique formal expression of the form
- t—a t—b
2(t e, p) = Z%tu )+ (7, 1) + Qu(v, ) €, 7= , V= : 4
— € €

After the determination of zx (¢, 1), (7, 1), and Qx(v, 1), a solution of (1), (2) takes the
form

(2k(t,€) + Hi(1,€) + Qu(v, 1)) ¥

NE

x(t,e) =

e
Il

0

Using the condition (C;) it is easy to obtain functions zx (¢, <), which are elements of the
—a t—0
and Qk(’jnu)v V= —7)
£
were obtained by solving sequential linear differential systems. We will indicate some of the
operations made in the article [6] and necessary for the present work.
We substitute series (4) into system (3) and we represent the function F (¢, z, e, f(t, 1)) in
the form

. . . t
regular series. Elements of the singular series Il (7,¢), 7 =

F(u}:@&tw+4h@wo+QH%u»ﬁ¢mﬂtm>ZFW£40+HFﬁ£wO+QF@ﬁ4&

k=0
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38 L. L. KARANDZHULOV

where

F(t,e,p) = (t,izkt,us &, f(t, u))
k=0

F(r,e,u) = F (a + e, Z (zi(a + 7, p) + i(r, 1)) €%, ¢, f(a + e, ,u)) —
k=0

—F(a—I—ST,sz(a+6T,u)€k,6,f(a+€7',,u)> ) Q)

k=0

QF(V,E,/.L) =F <b+€V,Z(Zk(b+€l/,/J)+Qk(V,/L))€k,€,f(b+€l/,/.L)> -

k=0

- F (b—i—eu,zzk(b—i—su,,u)ak,a,f(b—i—eu,,u)) .

k=0

We decompose the functions F(t,e, u), LF(7,¢, 1), QF (v, ¢, 1) in Taylor series in a neighbor-
hood of the points (¢, 29(t), 0, f), (a, z0(a) + Ho(7),0, f), (b, 20(b) + Qo(v),0, f), respectively.
We get

t £, L) Z
k=0
where
F(t,20(),0, f(t, 1)), k=0,

Fk (ta :U’) = (6)

Fo(t, 20(2), 0, f (£, 1) 2 (£, 1)+
+9k (ZO(t)v s azk’—l(tuu)v f(tnu)) ) k= 1727 tee

In (6) the functions g;, contain derivative up to the (k—1)th order of the function F'(¢, z, €, f(t, 1))
with respect to z and ¢, calculated in the point (¢, zo(t), 0, f)

F(r,e,p) ZHFkT,U,

where

F(a, 20(a, ) +o(7),0, f(a, 1)) —
—F(a,zo(a,p),0, f(a,pn)), k=0,
I1Fy, (7, ) = (7
F(a, 20(a) +1o(7), 0, f(a, p) M (7, )+
+Gp (1, o(7), ..., U1 (7, ), fla,p)), k=1,2,....
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS... 39

The function G}, contain derivatives up to the (k — 1)th order of the function F'(¢, z, ¢, f(¢, 1))
with respect to ¢, z and ¢ in the point (a, zo(a) + IIo(7), 0, f(a, 1)), and the derivatives up to the
(k — 1)th order of the function z(t, ;) with respect to ¢ in the point (a, 1),

o

QF (v,e,p) = Y QFy(v, p)e*

k=0

where

—F(b, Zo(b),O,f( » [ )) k=0,

QF(v, ) = (8)
(b ZO( )+ QO(V)7O)f(b7 M))Qk(V; :u)+
+Ry (V QO(V)7 .- '7Qk—1(l/>u)vf(bﬂu)) , k=1,2,....

The functions Ry contain derivatives up to the (k — 1)th order of the function F'(¢, z, e, f(t, u))
with respect to ¢, z and ¢ in the point (b, 29(b) + Qo(v), 0, f(b, 1)), and the derivatives up to the
(k — 1)th order of the function zj(t, ) with respect to ¢ in the point (b, u).

A similar approach is used for the BVP (1), (2), which does not contain the function f(¢,¢),
in the articles [4, 8]. In these articles and in the article [6] Lemma 1 is essential. The problem
connected with condition (C;) for a differential equation in a Banach space is discussed, for
example, in [2].

Lemma 1. Let the matrix A satisfy the condition (Cy), P be a spectral projection on the left half
plane of the matrix A, and functions g(t) € C(0,+00), g(v) € C(—00,0) satisfy the inequalities

lg(T)|| € C*exp(—a*r), C*>0,a* >0, 72>0,

lgw)| < Cexp(@wv), C >0, a* >0, v<O0.
dx dy _
Then the systems = Az + g(7), 7 € [0,400) and i Ay +g(v), v € (—o0,0], have
T

particular solutions (L, g)(7) and (L, g)(v), respectively, in the forms

+oo 0
= /K(T,s)g(s)ds and (L,g)(v) = /K(V,s)g(s) ds
0 —0o0
satisfying the inequalities

I(Lrg)(T)]| < Cexp(—77), 7205 [(Lg)(v)l| < Cexp(v), v <0,

where C, C, ~y, 7 are certain positive constants, and

X(1)PX~1(s), 0<s5<7< 400,
K(t,s) =

—X(1)(I - P)X~Y(s), 0<7 <5< +oo,
- ~X)(I-P)XY(s), —c0o<v<s<0,
K(v,s) =

X()PX~1(s), —o0 < s<v<O.
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40 L. 1. KARANDZHULOV

d
Let the linear system d—f = Ax have a fundamental solution matrix X (¢) = exp(At),

X(0) = E, and B be an (nxn) nonsingular constant matrix such that B~'AB = diag (4., A_),
where A, is an (p x p)-matrix having eigenvalues with negative real parts, Re \; < 0,7 = 1, p,
and A_ is ((n — p) x (n — p))-matrix having eigenvalues with positive real parts, Re \; > 0,
1 =p+1,n.

d _
The system d—f = Az has stable manifold ST in the form ST:Z = HzZ, where H =

= By Byj' is an ((n — p) x p)-matrix, and unstable manifold S~ in the form S=: 7 = Hx,

where H = B12Bz_21 is an (p x (n — p))-matrix. The cells B;;, i,j = 1,2, are elements of the

block representation of the matrix B = < Bu - Buz ) .
By Ba

Let X,(7) = X(r) ( g ) be a (n x p)-matrix, Xn_p(v) = X(v) ( . > be a (n x (n—
n—p
—p))-matrix.
Let us introduce the following notations:

Di(e) = 1X,(-) = 1X,, <()E_a> isa (n x p)-matrix;

Di(e) = 1X5—p(-) = 1 Xn—p (O;b) isa (n x (n — p))-matrix;

D(e) = (D1(g)D2(2)) is a (n x n)-matrix.

Let D(e) = Do+ O (e?exp(—a/e)), Do be a (n x n)-matrix, with constant elements. In this
case rang Dy = r < n and Dy ! does not exist. But according to [1, 3, 10] we can use unite
Mur - Penrous pseudoinverse matrix of Dy, which is written as D . More details in connection
to pseudoinverse matrices can be found in the cited literature. Let Pp, and Pp; be (n x n)-
matrices (orthogonal projections) projecting R™ onto N(Dy) = ker Dy and onto N(Dj) =
= ker Djy, respectively, i.e., Pp,: R" — ker Dy, Pps: R" — ker Dj, Dy = D{, P = Pp,,
PI%S = Pp;. Having in mind that rang Dy = r < n, then rang Pp, = rang Pp: = n —
—r = q. There exists ¢ linearly independent columns in the (n x n)-matrix Pp, and ¢ linearly
independent rows in the (n x n)-matrix Pp:. By Pp,, we denote the (n x g)-matrix consisting
of ¢ arbitrary linearly independent columns of Pp,, and by PDSq we denote the (¢ x n)-matrix
consisting of ¢ arbitrary linearly independent rows of Pp;.

Theorem 1 [6]. Suppose that the following conditions are satisfied:

(Hy) (C1) = (Ca);

(Hg) the matrix D(c) has the representation D(e) = Dy + O (¢2exp(—a/e)),q € N,a > 0,
andrank Dy = r < n;

(Hg) Ppsho = 0, where hg = h +1 (A_IQO()) ;

(Ha) the nonlinear equation Ppxhi (e, 1, §) = 0 forall0 < ¢ < 2,0 < p < E has a unique
bounded solution with respect to £y = o(e, u) € RY, where

hl(&/t,go) = _lzl('v M) - Z(LTHFO)('>Ma£O) - Z(LVQFO)(W/%&O)

at HF0<7—7 M) = F(aa ZO(avu) + HO(T)v()?f(av:u)) - F(aazO(a>M)707f(a7M)) and QFO(VMU) =
= F(bv ZO(b) + QO(V)7O7f(b7 M)) - F(b7 ZO(b)707 f(bnu))
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS... 41
Then the principal part of the expansion (4) has the forms

20(t, ) = —A7 o(t),
Mo (1) = Xp(7)[Ppy,lptho(e, 1) + Xp(7)[Dg holy, 9
QO(V) = anp(y)[PDoq]nfp"vZ)O(E» ,U/) + anp(V) [D(J)rh()] n—p’

respectively.
We introduce the following notations:

hk(Eal’L?gk—l) = D1(€7:U‘)§k—1 + Sk—1(€7lu’)7 gk—l S qu k 2 27

Dy(e,p) = =1 (Fz (a, zo(a) +Tlp (OE_ a) 707f(avﬂ)) Xp(')[DOq]p +
()

+ . (aal®)+ Q0 (20 0,700 ) X OlD0g)s ).

Sk(E, M) = —le;-i,-l(‘, M) -1 (Fz (CL, ZO(G’) + HO(')? Oa f(aa /l))ak('agwu’)_}'
(b, 20(6) + Qo(-), 0, £ (b, 1)) k(-2 1)) —

—1 (Gk(,HO()7 ey Hk*l('a M)? f(anu’))+

+Rk('7QO(‘)7'"7Qk71('7:u)7f(baﬂ)))v k > 17 (10)

Oi(7, e, 1) = Xp(7) [D§ ], + (LITFR)(7, ),

Tp(v,e, 1) = Xnp(v) [Dg ], _, + (LLQF ) (v, ),
Ek = hk(€7/1’7£k—1) - hk(‘snu’a wk—l(&/i)) - Ek(57u)7
El(&ﬂ) = PDqul(gnu)?

Sk(e,n) = —Ppy Sk(e,p), k= 1.

It should be noted that in (10) D1 (e, i) is an (n x q)-matrix, Sy (e, i) is an n-vector, D1 (g, )
is a (¢ x q)-matrix and Sy (e, 1) is a g-vector. Besides, the functions G, contain derivative up to
the (k — 1)th order of the function a F(¢, z, ¢, f(t, u)) with respect to ¢, z, and ¢, in the point
(a, zo(a)+1p(7),0, f(a, i), and derivative up to the (k—1)th order of the function zj (¢, 1) with
respect to ¢ in the point (a, ). The functions R, contain derivatives up to the (k — 1)th order of
the function F'(¢, z, €, f(t, 1)) with respect to ¢, z, and ¢, in the point (b, zo(b) + Qo(v), 0, f(b, 1)),
and derivatives up to the (k— 1)th order of the function zj(t, ) with respect ¢ in the point (b, p).
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42 L.I. KARANDZHULOV

Theorem 2 [6]. Let the conditions (H;)— (Ha) of the Theorem 1 and the condition

(Hs) rank D1(g, 1) #0Y0 < e <5,0< pu <E
be fulfilled. Then the coefficients zy(t, u), I (7, 1), and Q. (v, u) for k > 1 of the series (4) have
the forms

1
k+l dk: dz 1
Zk(t7/~L) = = (A dtk E dtl Trie1 Fi— Z(t /’L)

Hk(7—7 :U’) = _XP(T)[PDOq]pE;1(57H)gk(gvu) +6k(776a M),

Qu(vs 1t) = ~Xnp()[Ppoyln—pDy (€, 1)Sk(e, 1) + Br(v, e, ).

Theorem 3 [6]. Let the conditions (Hy) — (Hs) of the Theorem 2 be fulfilled. Then
1) the functions zy(t, ), k > 0, are bounded, i. e., AMj, > 0: ||z(t, p)|| < My Vt € [a,b],
€ (0,g],k > 0;
2) the boundary functions (7, u) and Qx(v, ), k > 0, decrease exponentially at T — o0
and v — —oo respectively, u € (0,].
In the next section we will show that the obtained formal series (4) is asymptotic.
2. Main results. In BVP (3) we make a change of variables,

U(t,&,u) = Z(t,&,[t) 7Zn(t757:u)7 (11)
where Z,(t,e, 1) = Y p_o [26(t, 1) + (7, 1) + Qk(v, )] ¥ is the nth partial sum of the series
(4). Keeping in mind the expressions (9) in Theorem 1, the notations (10) and z, [Ty, Q, k > 1,
in Theorem 2 we obtain that the new variable u satisfy the BVP

ew = Au+ Hy(t,u,e,p), lu(-,e,pu) =0, (12)
where
H,(t,u,e,u) = eF(t,u+ Zp,e, f(t,pn)) + L(t, T,v,€, ). (13)
The expression L(t, 7, v, e, u) have the form

L(t77—71/757,u) = A1+A2+A37 (14)

where

k=1 k=0
n n d
k k
Ay =AY (1, p)e" — EHW’ )", (15)
k=0 k=0
s =AY Qe -3 L Q)
k=0 7 k=0 dv 7
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS... 43

For the function H,, (¢, u, e, ) from (13) we will prove three lemmas.

Lemma 2. Let u = 0 in (13). Then the function H,(t,0,e,u) with C > 0,t € [a,b], e €
€ (0,e1], u € (0,61],0 < &1 < &, satisfies the inequality | H,(t,0,¢&, u)|| < Cem*L.

Proof. By means of equalities (5) —(8) for the representation of H,(¢,0, e, 1) we obtain

Hn(t’ 07 67 /’L) = EF(tﬂ Zn7€7 f) —"_ L(t7 7_7 V? 67 /’L) =
n
=eF (t, Z [z + I + Qi ¥ e, f> + L(t, 1, v,e, 1) =
k

=0

= Ao+ A1+ Ay + Ag, (16)

where Ag = eF + cllF + eQF, and A;, i = 1,2, 3 it, are given by (15). For a representation of
the sums A; we use (5) for Ay, Theorem 2 for A;. For representation Ay and A3 we consider
receiving the boundary functions II, @ by linear BVPs, from which result of the boundary
function in Theorem 2,

dH;T(T) = Ally(7) + TTFy(T, ), 7 € [07 b:ﬂ » #e (04,
dQ;V(”) = AQx(v) + QFy(v,p), v € [“;bO] e 0],
z(nk <(')€_a’,u> + Qs (()E_l)u)) = { fil_(;,f(zoib)/;)) ]1:(1)2
F(1, p) = { %Fk1(7,u)7 Z _ (1)2
QF (v, 1) = { %Fk—1(7_>ﬂ)> 22?2

Thus we get

n n n
Ag = eF +€llF + eQF = kaekﬂ + Z Fe*! + Z QerkH,
k=0 k=0 k=0

n

“ d o d
Ay = A;zk(t, e — kz_o 7 2p(t, )t = — kZ_IFkl(t, p)ek — — z, et

n

n n
d _
_ k k __ k
Ay = A kE_O IIe” — kg_o e Il = — kg_l IMFg_1 (1, p)e”,

n n d n L
Ay = AkZOQka’“ - ;dyw =... = —;HQk_l(u,mE’“-
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44 L.1. KARANDZHULOV
We substitute A;, i = 0,1, 2,3, in (16) and obtain
H,(t,0,e, 1) = (—Az(t, ) + TIF, (7, 1) + QF, (v, ) ™.
Let the following inequalities be fulfilled:
|A] < Co, Co >0, |zu(t,p)] < M,, M,>D0.
On the other hand Theorem 2 shows that by the equalities (14) and (15) we have
ITF, (7, p)|| < Crexp(—ant), Cp >0, a, >0, 7>0,

|QF, (v, n)| < C, exp(anv), Cn>0, @, >0, v<0,

Then
1H (8, 0,6, )| = || = Az (t, ) + MEF (7, 1) + QFu (v, p)l|le™ <
< [ANza(t, @l + ITE (7, )| + [QFn(v, )] " <
< [C’oMn + Oy exp(—anT) + C, exp(@nu)} gntl,
Keeping in mind that at ¢ € [a,b], 7 = L ; a >0,v = ! ; b < 0, for the upper bound, we

finally obtain
|Hnlt,0,2, )| < |CoMy + Tl + Cp ] ™ = Cent,

where C = CoM,, + C,, + C,,.

Let us also estimate the function H, (¢, u, e, it).

Lemma 3. There exists a constant C* > 0 such that || H,(t,u,e, u)|| < C*e for ||ul]| < 2R,
R >0

Proof. From (13) we get

H,(t,u,e,u) = eF(t,u+ Zp,e, f(t,pu)) + L(t, T,v,€, ).
Then
H,(t,u,e,pu) = eF(t,u+ Zn,e, f(t,pn)) — eF(t, Zn, e, f(t, 1))+
+eF(t, Zn,e, f(t,p) + L(t, T, v, 6, 10) =
= e[F(t,u+ Zn, e, f(t,n)) — F(t, Zn, e, f(t, 1)+

+€F(t,Zn,E7f(t,,u)) + L(t7T7 V7€7M) =

1
. / Fu(t, Zn + Ou, e, F(t 1)) d0u + Hi(t, 0, &, 1),
0
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According to the condition (C3) and x = Z,, + fu the function F; is continuous with respect to
all arguments in the domain G, i. e., there exists a constant C > 0 such that || F,|| < C. Using
the last lemma we obtain the estimate

[ Hn(t, u,e, p)|| < E/IlFx(th+9u7€,f(t7u))\|d9HUI| + [ Hn(t, 0,6, p)|| <

< eCllul| + Ce™ < 2RCe + Ce™! < C*e,

where 2RC < C* < 2RC+C,0 < C < 1.

Lemma 4. Let, in the some neighborhood of the degenerate solution || z|| < 0, we have ||z|| <
<p<dandt € [a,b],e € [0,e1], u € (0,&1]. Then there is a positive constant K1 such that in
case of |[u|| < d and |[u]| < 5, where0 < 6 < §and 5+ p < 8, the function H,(t,u, ¢, p) satisfies
the inequality

|AH| = | Hat, e, 1) — Ho(t,T, e, )| < Kaela— .
Proof. From (13) we get
AH, = e [F(t,u+ zy,¢, f(t,p) — F(t, U+ zy,¢, f(t,1))] -
The estimate of the last difference is realized analogously to Lemma 3. Consequently,
IAH,|| < Kyella —all.
Let B be a (n x n)-matrix satisfying the condition B~'AB = diag (A, A_), where

Rei(A4) < 0,5 =1,p,ReXi(A-) >0, =p+1n.
In the system (12) we make a change of variables,

ult,e, 1) = B ( ”(t’z’/‘j) > ,

where n(t,e, 1) = (m1,...,np)%, 6(t, e, 1) = (01,--.,0n—p)T. Then (8) take the form

en(t,e,pm) = Ayn+ [fln(t,n,&au)}p,
(17)
ed(te, ;) = A5+ [ n(t,m,9,e u)] ,

n—p
n(t,e,p) \ _
(en ) o =
where

Hy(t,n,0,6,p) = B~ Hy(t,n,8,e,p1) =

= B leF (t,B ( Z > + Zn,s,f(t,,u)> + B UL(t, T, v, e, ). (19)
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The notations [f[n} and [f[n} are used to denote the first p and the later n — p elements of

P nep
the vector function H,, respectively.
According to Lemmas 2 and 4 it is possible to assert that for the equality (19) we have the

inequalities

||ﬁn(t777757‘€7u)” < 615n+17 51 > 07

~ ~ 20
|AH, | = 1Ha(t,7,3.2, 1) = Ha(t.7.0,2,0) < Cae (Il =77l + 15 = 8) .~ C1 > 0. >
The system of differential equations (17) transforms to a system of integral equations,
t
n(t,e,u) = W(t, s, e, pn(a, e, 1) + /W(t,s,a,,u)i [f[n(t,n,é,s,u)]pds,
1)

b
6(t,e ) = Wi(t,s,e,p1)d(b,e, pu +/ (t,s,6, )= [ﬁn(t,n,éjé,u)] ds,
t

n—p

where 7)(a, e, 1) and 0(b, £, 1) are arbitrary vectors depending on ¢ and x. In (21) the fundamental
matrices W (t, s, e, 1) and W (¢, s, €, i) are solutions of the systems

dé —
dt =A.n, W(s,s,e,u)=FE, and e = A_S, Wi(s,s,e,pu) = Epyp

respectively. If 0 > 0 and K, > 0, then the inequalities

IA
~
IN
S

t_
HWW@MﬁMﬂ%ﬂ's)aﬁs
£

(22)
|Wm@mmmﬂ4ﬂtﬂ,wwgga

are fulfilled. In consequence we will consider the iterative process

770(‘1,57,“) = 07 60(ba 5)”) = 07

t
n'(te,p) = W(t,s,e, m)n(a,e, p +/W (t,s,6,p)= [ﬁn (t,n"’l,éi’l,s,u)] ds,  (23)
p

n—p

b
5 (t,e, ) = W(t,s,e,pn)d(b, e, ) +/ (t,s,e, 1) [f]n (t, nifl,éi’l,g,u)} ds.
¢

Our further aim is to show that the integral system (21) has a uniquel and continuous soluti-
on. Therefore we introduce a Banach space M [12] which consists of the all continuous n-
dimensional functions

y(tﬂ &, M) = (771(75; & ,U’)? s 777p(t7 &€, M)u 51(t7 &, ,U’)? s 75n—p(t7 &, :u))T
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in the domain Gy = [a,b] x (0,2] x (0,2] = {(¢,e,p)|t € [a,b],e € (0,E],n € (0,2]} with the
norm

ly(t,e, )]l = Zmaxm(t eop |+Zmax|6 (toe,p)]
=1

and the distance between the elements
n—p
lya2(t,e, 1) — 11 (t, &, 1) Zmaxm (te, 1) — i (t,e, )] +ZI%a2X\5?(t,6,u) — 61 (t,e, )| -
i=1

The right-hand side of (21) we consider as an action of the operator L(-) on the vector
function
77('5 €, ,U) )
&, = 3
e = (000

t
17~
W(t,s,s,u)n(a,e,u)+/W(t7s,6,u) [Hn(t,n, &au)] ds

p
|- }
W(t,s,e,1)d(b,e, ) +/ (t,s,6, 1)~ [fIn(tm,&au)} ds
t

n—p

(24)

We will prove that the operator L(y) is a contractive operator.
Lemma 5. Let the conditions be fulfilled:

1)51 < ocand C* < o,
2)0< Ko< 1,

3)0< R

4 <€ 1-2K
)0<5_6<2KOC*( 0)R,

S) lInfa, e, )| < R, [|6(b,e, )| < R
Then the operator L(y) is a contraction.
Proof. Step 1. Primary we show that the operator L(y) maps the space M into itself,

t
1 r~
L) < e Wt 2ntaz) + [ Wies.ew? [Baltondiem] ds|+
2 p

b

—i—H(l;aX W(t,s, e, 1)d(b,e, +/ (t,s,6,1)— {ﬁn(t,n,é,e,u)} ds|| <
2 n—p
t

< Z1 + ZQ? (25)
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where
A = max W (t,s, &, wl In(a, e, ]l + W (t, s,e, w) || [16(b,e, )] ,

1 ~
By = g { [ W (e, N0, ) s+

+ max /r (1,52, 1 (s, m, 8.2, )}plds

Keeping in mind (22), the condition 4, 5 of the present lemma and Lemma 3 for estimates
of A; and A, we have

e
A

_ t— —1
< max [KO exp <—058> R+ K exp(—USE)R] < KoR(1+1) = 2KyR,
2

v
A

t b
— t— 1 —t\1
< maX/Kg exp <—as> - C%eds + max/Ko exp (—O’ i > —C*eds =
G2 € € Go € €
a t

t b
t— —t
= KoC" max /exp <—08> ds + /exp <—a i ) ds| =
G2 € €
a t

t— b—t 1
= KoC”* max € [1 — exp (—a a) — exp (—0’ > +1
Gy O € € |

- aﬂ < 2K C* =

g

IN

< KOC'*E 2 [1 — exp (—0
o

We substitute the estimates for Aj, A, in (25) and get

\m\

IL(y)| < A1+ Ay < 2K0R+2KOC*

Keeping in mind the condition 4, we get ||L(y)|| < R, that is, the operator L(y) maps the
space M into itself.

Step 2. We will estimate the difference L(y2) — L(y1) (see (24)). According to (22), second
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inequality in (20) and condition 4 we obtain

IL(y2) — L(y1)|| = [ gg;ﬁ; _ EE% } H -

t
/W(t,s,s,u)i [ﬁn (772752’3,5,/0 —H, (77175173,5,,@} ds
p

-p

b
/W(t,s,a,,u)i [f[n (772752,3,5,,@ —H, (,71’51’3,5,”)] ds
t

IN

t
[ e (<0 25) L a1 s
a

+ [ Koo (<o *21) Loue (o~ ) + 07 - 91 ds <

2KC —a 9Ky C
< 200 (1—exp(—a ))\yz—ylus 091 s — | <
g o
2K0517 2[(0611 o
< _ 1 —2K)R|ys — v1|| =
< Ellye — ]l < 2KOC*( 0)Rlly2 — 1]
Cy
= aw (1= 2K0)R|ly2 — w1l = Olly2 — .
~——_———
©

The conditions 1-3 of the lemma show that 0 < © < 1. Consequently, the operator L(y) is
a contraction.
We introduce the following notations:

D) = I ([ BuW(.a,) g”g(:’b’? D — (n x n)-matrix, (26)

/W(',S,z?)i [ﬁn(svna 67&/‘5)]]) ds
— (n x 1)-vector. (27)

ab
\/W<'7878)i: |:ﬁn<377]75787:u’>:| dS

—
~

Let D(e) = Do + O <£s exp (—g» , where Dy is a constant (n x n)-matrix.
€

ISSN 1562-3076. Heainitini koausanns, 2018, m. 21, N2 1



50 L. L. KARANDZHULOV

Theorem 4. Let the conditions (H1)— (Hs) (see Theorems 1 and 2), the conditions of Lemma 5,
and the conditions rank Dy = n, K3b||B|| < 2, where HﬁalH < Kz, K3 > 0, [[l(¥)] < ¥,
b1 > 0, be satisfied. Then there exist constants €* > 0, C* > 0 such that the problem (1), (2) has
a unique solution x(t, ) and it satisfies the inequality

lz(t,e) — Xu(t,e)| < C*e™t! (28)
fort € [a,bland ¢ € (0,e*].

Proof. To prove that (1), (2) has the only solution satisfying (28) means to prove that the
boundary problem (3) has a unique solution satisfying

12(t,€, 1) = Znlt e, )] < O
fort € [a,b],e € (0,e*] and p € (0,e*].
Therefore (3) we make the following replacement (11) and obtain the boundary problem

(12). To prove the theorem it is sufficient to show that (12) has a unique solution such that
llu(t,e, m)|| < C*e"*L. For system (12) we make a change of the variable

_ n(t,e, 1)
ulb.ep) = B ( 5(t,e, 1) > ’
wheren(t, e, 1) = (..., mp) T, 6(t,e,p) = (01, ...,0n—p)T, and consider the equivalent integral
equation (21).
Lemma 5 shows that system (21) has only a solution which does not go out of the area

Q= A{(tn,0,& plt € a,0], Il < R,[I]] < R,e € (0,€],p € (0,2]}

and depends on arbitrary constant vectors 7(a,e, ) and 0(b, e, ). The determination of the
vectors 7(a, e, 1) and (b, €, p) is performed using the algebraic system (18),

wom = (f)) <o

We substitute n and ¢ of (21) in the last equation, and according to the notations of (26),
(27) we find that n(a, €, ) and 4(b, €, p) satisfy the algebraic system

B n(a, e, p)
D(e) = g(e, p).
6(b,e, 1)

After dropping exponentially small elements in D(¢), we get the system
| nla,e,p)

Dy =9g(e, ). (29)
6(b,e, 1)
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Under the condition of the theorem, the system (29) has a solution
n(a, e, p)

5(b,e, )

= Dy g, ). (30)

An estimate of (30), according to the conditions of the theorem and the proof of a Lemma 5,
has the form

77(0“’ 67“) < Hi_lH = < - _ A <
| feetd || < [50"| toteun < Katate il = s 1132 < 28

In the latter inequality we used the estimate for A, (see step 1 of the Lemma 5) and the condi-
tion K3b1||B|| < 2. Thus for integral equations (21) we find the representation

t
a(ten) = Wits.em) [Dy gl +/Wtseu [Hatt.ns.e.)] ds
p

(1)

b
5(t,e, ) = W(t, s e, ) [Do gle u +/Wt S, €, IL) [ﬁn(t,n, 5@#)] ds.
t

For the integral equations (31) we apply the iteration process (23). For the first approximation
of (23), keeping in mind Lemma 3 and that u = (1y,...,7p,01,...,6,—p) We find

IN

[|ur — uol|

p n—p
Zmax}nil — 77?‘ + Zmax‘&il — (5?‘ =
i—1 i=1

= max||n' =" + max (|6’ —6°| <

IN

max W (t.a,e, wlllin(a, e, w)| + Wt b,e, w136, ] +

¢
1 _
+H1G%X{/“W(t’“’€’“)g {Hn(s,O,O,S,M)L ds +
b
/HWtbs,uHH[ (sOOs,u)} ds}:A1+Ag,
n—p
t
where
t
A9 = max / I/V(tseu)1 [ITI(SOOE,U,)} ds+
2 G2 99y <y c n y Uy Uy Cy »
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ds

—-p

b
. 11~
+/HW(t78,67u)|| . H[Hn(s,O,O,s,u)L
t

It is possible to prove that A; < Kle"tl K1 > 0, Zg < K?¢"t1 K? > 0. Consequently,
n+1 « _ n+1
llug — uol| < Ke or |jup —ul < 5 a= 2K,
With the help of the second inequalities in (20) we obtain
. - 1, i, -
e S
2

Therefore we have

(07 «

a
lur — ol < 3 lug —uq]| < 92

Then, in the domain G,

J
Huj(taeaE,U)H < Z Huk(t,s,,u) —Uk—l(t,EaM)H <
k=1

11 1 o -
Let lim; o0 uj(t,e,ep) = u(t,e,epn). Then (22) becomes an identify. Then there exist constants
C* > 0and ¢* > 0, e* < £ such that, in the region,

O = {(t,n,0,6,p)t € [a, 0], In]| < R, [[8] < R,e € (0,e"],u € (0,e7]}

we have

_[|[ ez | < gegn
Jutt,e. )l = H[ 5(b,e. 1) }H e

Theorem 4 shows that the obtained formal series (4) is asymptotic and lim._,o 2(t,&) = xo(t).
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