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In this paper, we give a classification of nonoscillatory solutions of the second-order neutral delay dynamic
equation on time scales

[2(t) = c(t)a(t =122 + f(t, (g1 (1)), - a(gm(1)) = 0, teT.

Some existence results for each kind of nonoscillatory solutions are also established.

Hasedeno kaacugikauiro HeKOAUBHUX PO36 A3KIE OUHAMIYHUX PIBHAHb OPY2020 NOPAOKY 3 HEUMpPAaab-
HUM 3ANI3HEHHAM HA YACOBIllL WKANL

[2(t) = c(®)a(t = 1) + f(t, (g1 (1)), - a(gm(D)) = 0, t €T,

a Mmakox 006e0eHO ICHYB8AHHA HEKOAUBHUX PO36’A3KI6 KOWCHO20 MUNY.

1. Introduction. The theory of time scales was introduced by Hilger [10] in 1988 in order to
unify continuous and discrete analysis. Recently, the study of dynamic equations on time scales
has received a lot of attention. The general idea is to prove a result for a dynamic equation
where the domain of the unknown function is a so-called time scale, which is a special case of
a measure chain. By choosing the time scale to be the set of real numbers, the general results
yields a result concerning a differential equation. On the other hand, by choosing the time
scale to be the set of integers, the same general result yields a result for difference equations.
However, since there are many other time scales than just the set of real numbers or the set
of integers, one has a much more general results. The monographs by Bohner and Peterson
[4, 5] and the survey on dynamic equations on time scales by Agarwal, Bohner, O’Regan and
Peterson [2] summarized some important work in this area. Recently, the oscillation of dynamic
equations on time scales has received much attention (see [6—8, 12— 18]). But the classification
and existence of nonoscillatory solutions of the delay dynamic equations on time scales received
much less attention.
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In this paper, we consider the second-order neutral delay dynamic equation on time scales

[(t) — e(t)z(t = )] + f(t, 2(01(2)), - ... 2(gm (1)) = O, (L.1)

where t € [ty,00) = Ty C T. With respect to (1.1), throughout we shall assume the following:

(Hi) 7 > 0,¢(t) € Cra(To,R4+), Ry = [0,00), there exists § € (0, 1] such that¢(t) <1 -9
fort € Tp.

(HQ) g; € Crd(To,R+), and lim;_, gi(t) =00, =1,2,...,m.

(Hs) f : To x R™ — R is right-dense continuous on 7} and continuous with respect to the
last m arguments, y1 f (¢, y1,...,Ym) > 0fory1y; > 0,7 = 2,..., m. Moreover,

|f(t,$1,...,:L‘m)‘ > |f(tvy1a--~aym)’

when |y;| < |x;| and z;y; > 0,7 = 1,2,...,m.
For convenience, we set

y(t) = z(t) — c(t)x(t — 7). (1.2)

In Section 3, we will study the existence and asymptotic behavior of nonoscillatory soluti-
ons of equation (1.1). More precisely, we give a classification of nonoscillatory solutions of
equation (1.1) according to their asymptotic behavior. Moreover, we established some existence
results for each kind of nonoscillatory solutions of equation (1.1). In particular, we obtain two
necessary and sufficient conditions for the existence of nonoscillatory solutions of (1.1).

2. Preliminaries. To understand the delay dynamic equations on time scales we need some
preliminary definitions (see [4]).

Let T be a time scale (i.e., a closed subset of the real numbers R) with sup7 = oco. We
assume throughout that 7" has the topology that it inherits from the standard topology on the
real numbers R.

Definition 2.1. Fort € T we define the forward jump operator o : T — T by
o(t) :=inf{s € T :s >t}
while the backwards jump operator p : T — T is defined by
p(t) :=sup{s € T : s < t}.
If o(t) > t, we say that t is right-scattered, while if p(t) < t we say that t is left-scattered. Points
that are right-scattered and left-scattered at the same time are called isolated. Also, if t < supT

and o(t) = t, then t is called right-dense, and if t > inf T and p(t) = t, then t is called left-dense.
Points that are right-dense and left-dense at same time are called dense.

Definition 2.2. Define the interval in T
[a,b] := {t € T suchthat a <t < b}.

Open intervals and half-open intervals etc. are defined accordingly. Note that |a,b]* = [a,b]
if b is left-dense and [a,b]* = [a,b) = [a, p(b)] if b is left-scattered.
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Definition 2.3. Assume f : T — Randlett € T (ift = sup T assume t is not left-scattered),
then we define f*(t) to be the number (provided it exists) with the property that given any € > 0,
there is a neighborhood U of t (i.e, U = (t — 6,t + §) N'T for some 6 > 0) such that

(o) = F($)] = FA(O)o(t) 8] < clo(t) |, forall seU.

We call f2(t) the delta (or Hilger) derivative of f at t.
It can be shown that if f : T — R is continuous att € T and t is right-scattered, then

If t is right-dense, then
£30) i 00) = 1)

s—t t—s

Lemma 2.1. Assume g : T — R to be differentiable and g™ (t) > 0. Then g(t) is nondecrea-
sing.

Definition 2.4. We say f : T — R is right-dense continuous on T provided it is continuous at
all right-dense points and at points that are left-dense and right-scattered we just assume the left
hand limit exists (and is finite). We denote this by f € C,q(T,R).

Lemma 2.2. Assume f : T — R to be differentiable at t, then f is continuous at t.

Definition 2.5. If F2(t) = f(t), then we define an integral by
t
/f(T)AT = F(t) — F(a).

Definition 2.6. If a € T and | € C,4([a,0), R), then we define the improper integral by

b

/f(t)At = bli)m f(t)At

a

provided this limit exists, and we say that the improper integral converges in this case. If this limit
does not exist, then we say that the improper integral diverges.

Lemma 2.3. Leta € TX b € T and assume f : T x TX — R is continuous at (t,t), where
t € TK witht > a. Also assume that f>(t,-) is rd-continuous on [a, o (t)]. Suppose that for each
e > 0 there exists a neighborhood U of t, independent of T € [a, o (t)], such that

\f(o(t), ) = f(s,7) — fAt,7)(o(t) —s)| < elo(t) —s|, forall seU,
where f denotes the derivative of f with respect to the first variable. Then

(i) g(t) = / F(t7) Ar implies g (1) — / FAE AT+ F(o(t), 1):
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b b
(ii) h(t) = /t F(t. AT implies K (1) = /t FA AT — (oD, D).

Definition 2.7. A solution of (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative, otherwise it is nonoscillatory.

3. Main results. First we show some lemmas which will be useful for the main results of this
section.

Lemma 3.1. Let 2:(t) be an eventually positive (or negative) solution of (1.1). If lim;_,~ z(t) =
= 0, then y(t) is eventually negative (or positive) and lim;_,, y(t) = 0. If limy_, o x(t) = 0 fails,
then y(t) is eventually positive (or negative).

Proof. Let x(t) be an eventually positive solution of (1.1). From (1.1), y*2(t) < 0 eventually.
Thus y(t) is decreasing and y~(t) > 0 or y>(t) < 0 eventually. Also, y(t) > 0 or y(t) < 0
eventually. If lim;_,» z(t) = 0, from (1.2) we have lim;_,, y(t) = 0. Since y(¢) is monotonic, so
lim; 0o 4™ (t) = 0, which implies that y®(t) > 0. Therefore, y(t) < 0 eventually. If
limy oo z(t) = O fail, then limsup,_,,, x(¢) > 0. We show that y(¢) > 0 eventually. If not,
then y(t) < 0 eventually. If x(¢) is unbounded, then there exists a sequence {t,} such that
limy, o0 tn = 00, z(tn) = maxy,<i<t, (t) and lim, o x(t,) = oco. From (1.2), we have

Y(tn) = x(tn) — c(tn)x(ty, — ) > x(tn)(1 — c(ty)). (3.1)
Thus lim,_,~ y(t,) = oo, which is a contradiction. If z(¢) is bounded, then there exists a
sequence {t,} such that lim, ,~t, = oo and lim,_,~ z(t,) = limsup,_ . z(t). Since the

sequences {c(t,)} and {z(t, — 7)} are bounded, there exist convergent subsequences. Without
loss of generality, we may assume that lim,,_,~, (¢, — 7) and lim,,_, ¢(¢,,) exist. Hence

0 > lim y(t,) = lim (z(t,) — c(tn)x(t, — 7)) > limsupz(t)(1 — lim c¢(¢,)) > 0

which is a contradiction again. Therefore, y(¢f) > 0 eventually. A similar proof can be given if
x(t) < 0 eventually.

Lemma 3.2. Assume that tlim c(t) = c € [0,1), and x(t) is an eventually positive (or negati-
—00

ve) solution of (1.1). If limy_,~ y(t) = a € R, then limy_, x(t) = 1L—c' If limy_, o y(t) = o0
(or—o00), then limy_, o 2:(t) = 0o (or —o0).

Proof. Let z(t) be an eventually positive solution of (1.1). Then z(¢) > y(¢) eventually. If
limy o0 y(t) = o0, then lim; o z(t) = oco. Now we consider the case that lim; o, y(t) = a €
€ R.Thus y(t) is bounded which implies that z(¢) is bounded (see (3.1)). Therefore, there exists

a sequence {t,} such that lim,_,~ ¢, = oo and lim,,_,o z(t,) = limsup, ., z(t). As before,
without loss of generality, we may assume that lim,,_, ¢(¢,,) and lim,,_,~ (¢, — 7) exist. Hence

a = lim y(t,) = lim =z(¢t,) — lim c(t,) lim (¢, —7) > limsupz(¢)(1 — ¢)

n—o00 n—00 n—o00 n—o00 t—00
i.e.,
> limsup z(t). (3.2)
1-c t—o0
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On the other hand, there exists {t,} such that lim,,_, 2(¢})) = liminf;_,~ 2(t). Without loss of
generality, we assume that lim,,_, ¢(¢),) and lim,,_,~, (), — 7) exist. Hence

7)) — lim ¢(t) lim z(t, — 7) < liminfz(¢)(1 — ¢)

. / . /
a = lim y(t,) = lim =(t
n—00 n—00 n—oo n—oo t—o00

or
< Tim
T = llggfx(t). (3.3)
Combining (3.2) and (3.3) we obtain lim;_, z(t) = ] i o A similar proof can be given if
x(t) < 0.

We are now ready to prove the following results.

Theorem 3.1. Assume that lim,_,~, c(t) = ¢ € [0,1). Let 2:(t) be a nonoscillatory solution of
(1.1). Let E denote the set of all nonoscillatory solution of (1.1), and define

B(0,0,0) = {a(t) € B+ Jim 2(t) = 0, lim y(t) = 0, lim (1) = 0},

t—o00

E(b,a,0) = {z(t) € E : lim z(t) = b = lim y(t) = a,tliglo Y2 (t) = 0},

t—o0 1—c'tooo

E(00,00,0) = {z(t) € E : lim z(t) = oo, lim y(t) = oo, lim y>(t) = 0},
t—o0 t—o00

t—o00

E(00,00,d) = {z(t) € E: lim x(t) = w,tlirgoy(t) = oo,tlijgloyA(t) =d # 0}.

—00

Then
E = E(0,0,0) U E(b,a,0) U E(c0,00,0) U E(c0, 00, d).

Proof. Without loss of generality, let x(¢) be an eventually positive solution of (1.1). If
lim; o0 2(t) = 0, by Lemma 3.1, lim;_,, %(t) = 0 and lim;_,, y>(¢) = 0, i.e., z(t) € E(0,0,0).
If lim; oo () = O fails, then by Lemma 3.1, y(¢t) > 0 eventually, and it is easy to see that
y2(t) > 0, y*2(t) < 0 eventually. If lim_,o y(t) = a > 0 exists, then limy_,oo y2(t) = 0, by

Lemma 3.2, and we have lim;_,, z(t) = % = b,i.e,z(t) € E(b,a,0). If lim;_,o y(t) = 00,
—c

then by Lemma 3.2 lim;_,o 2(t) = oo. Since y*2(t) < 0 and y®(t) > 0, we have
limyo y2(t) = d, where d = 0 or d > 0. Then either z(t) € E(occ,00,0), or z(t) €
€ E(00,00,d).

In the following we shall show some existence results for each kind of nonoscillatory soluti-
on of Eq. (1.1).

Theorem 3.2. Assume that lim;_,o c(t) = ¢ € [0,1). Then Eq.(1.1) has a nonoscillatory
solution x(t) € E(b,a,0)(b # 0,a # 0) if and only if

o0

/a(u)]f(u, bi,...,b1)|Au < co  forsome by # 0. (3.4)

to
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Proof. Necessity. Without loss of generality, let z(¢) € E(b,a,0) be an eventually positive
solution of (1.1). By Theorem 3.1 we know that b > 0, @ > 0. From (1.1) and (1.2) we have

yAA(t) = _f(tvx(gl(t))7 e 7m(9m(t)))‘

Integrating it from s to oo for s > ¢y we obtain

y>(s) = /f(uy$(g1(u)),...,m(gm(u)))Au.

Integrating it from t; to ¢ for ¢; sufficiently large, we get

t

y(t) = y(h) + / (o) — t1) (21 (), . (g (0))) Dt

t1

[e. o]

+ [t =) algr(w). ... algm(w)) A

t

NS

Since limy o0 2(gi(u)) = b > 0,7 = 1,2,...,m, there exists an t; > ¢y such that z(g;(u)) >
for ¢ > ¢,. Hence we have
t
JICOR
t1
which implies that (3.4) holds.

Sufficiency. Set by > 0and A > 0sothat A < (1—c¢)b;. From (3.4) there exists a sufficiently
large ¢; so that for ¢ > ¢; we have t — 7 > tp and g;(t) > to,7 = 1,2,...,m, and

f(u,g,...,g)‘Au<y(t)—y(tl)

o

AL+t /J(u)f(u, brroo b1 AU < 1. (3.5)

Let X denote the Banach space of all bounded rd-continuous functions x(t) on [ty, co) with the
norm ||z(t)| = sup;>y, |2(t)| < oo. Define a set 2 by

Q= {(t) € X|0 < a(t) < bi,t > to}
and an operator S on Q by
(A et)a(t — 1)
+ [ o ol alom ()t
(Sz)(t) = b (3.6)
+/t tf(u,z(gr(w)), ..., z(gm(w)))Au, if ¢t > ty,

. (Sx)(tl), if tg <t <t
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Clearly, for z(t) € Q,

o0

(S2)(t) < A+c(t)b1+/J(u)f(u,bl,...,bl)Au—i—/a(u)f(u,bl,...

t1 t

[e.e]

< At Db +/o(u)f(u,b1,...,b1)Au b, >t
t1

and
(S:z:)(t) = (S:c)(tl) S bl, to S t § tl,

ie., SQ C Q.
Define a series of sequences {zy(t)}, k¥ € Ny, as

2(t) = (Szp_n)(t), k€N, > to.
By induction, we can prove that
0 < ap(t) < apqa(t) < by, t>ty, ke Np.

Then there exists z(t) C €2 such that limy_, o 2 (t) = x(t), t > to.
In the following, we shall show that

[e.9] o0

k—o0
t t

In fact, by (3.4), for any ¢ > 0 there exists ¢; > to such that

[e.e]

/U(u)f(u,bl,...,bl)Au <e.

t1

Thus, for to > t; we get

to [e’e)

,bl)Au <

lim [ £ (w2401 (0), -, 24 gm (1)) Dt = / £ (w, 2(g1 (), ., 2(gm(w))) A

/tf(u, l‘k(gl(U))’---,wk(gm(U)))Au—/tf(u, 2e(91(w)), - -, e (gm(u))) Au| =

t t

< /U(u)f(u,bl,...,bl)Au < €.

to
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to

Hence,/ £F (s 2 (g1(W)), - - (g (1)) A — / £F (s 2 (g1(w)), - - -, 2 (g (1)) At uni-
t t
formly for k € N as to — oo. Therefore,

[e.o]

lim ([ ¢f(u2p(g0(w), s 2p (g () Au =

k—oo
t

to

= lim lim [ ¢f(u,2k(g1(w)), ..., 2k(gm(u)))Au =

k—o0 t2—00
t

to

= lim lim [ tf(u, 2k(91(w)), ..., 2k(gm(u)))Au =

to—00 k—o0
t

= lim [ tf(u,z(g1(w)),...,2(gm(u)))Au =

to—00
t

o0

— [ 1 (), . algn () Au

t

Let k£ — oo. Then (3.7) gives

A+c(t)x(t—7)+ / o) f(u,x(g1(w)), ..., x(gm(u)))Aut+

t1

2N [ et alan ) it ¢z 0

x(tl), if tg <t <t

Clearly, z(t) > 0 on [tg, 00). Therefore, z(t) is a positive solution of (1.1). Since 0 < A < z(t) <
< by, from Theorem 3.1, z(t) € E(b,a,0).

Theorem 3.3. Assume that lim; o, c(t) = ¢ € [0,1). Then Eq.(1.1) has a nonoscillatory
solution x(t) € E(00,00,d) (d # 0) if and only if

/\f(u,hgl(u),...,hgm(u))|Au < oo forsome h # 0. (3.8)
to

Proof. Necessity. Without loss of generality, let z(t) € E(oo, 0o, d) be an eventually positive
solution of (1.1). From Theorem 3.1, we have that d > 0. From (1.1) and (1.2) we have

yAA(t) + f(t,l’(gl(t)), e 7x(gm(t))) = 0.
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Integrating it from ¢; to ¢, we get
t
y3(0) =30 + [ f sl algm(w)du =0
Since lim; o0 ¥ (t) = d > 0, we obtain
[ g, algm(w))au < oo (3.9)
¢
and there exist d; > 0 and to > ¢; such that y(¢) > dyt for ¢ > t9. Therefore,

/f(u,w(gl(U))w--w(gm(U)))Au 2 /f(u,y(g1(U))7---,y(gm(U)))Au >

> /f(U, digi(u),. .., digm(u))Au. (3.10)
Choosing h = d; and combining (3.9) and (3.10), we get

/f(u7h91(U),---,hgm(u))Au < 0.

Sufficiency. Set h > 0. Letd > 0, B > 0. From (3.8) there exists a sufficiently large ¢; so
that for ¢ > t; we have t — 7 > tg and g;(t) > to,i = 1,2,...,m, and

d B

7 + — +c /f u, hgi(u), ..., hgm(u))Au < 1. (3.11)
Define a set €2 by

and a operator S on €2 by

t

B
d+ = +c(t)

+1/ o (u) f (, g1 (1) 2(g1(w)), - - -, Gim (1) 2 (gim (w))) Au-+ (3.12)

(S2)(t) =
/ Fu, g1 ()21 (W), - gm(w)2(gm (W) D, i £ > 1,

t), if tog <t <t
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Clearly, for z(t) € Q

(S2)(t) < d+ ? + c(t)h + % /U(u)f(u, hgi(u), ..., hgm(u))Au+

t1

—i—/f(u,hgl(u),...,hgm(u))Au <d+ ? + c(t)h+
t

+/f(u,hgl(u),...,hgm(u))Au < h, t>ty,
t1

and
(Sz)(t) = (Sz)(t1) < h, to <t <t

It is easy to see that (Sz)(t) > dfort > to. Hence, T2 C €. Define a series of sequences
{Zk(t)}v k € N, by
z20(t) =d, z(t) = (Szk—1)(t), t>to, k € No.

We can prove that
d < zu(t) < zpy1(t) < h, t>to, ke No.
Then there exists z(¢) € Q such that klim zp(t) = 2(t),t > topand d < z(t) < h. Clearly,
—00
z(t) = (Sz)(t) (t > to), e,

; Tz(t—7)+

r B
d+— +c(t)

+% / o () f (1, g1 (0)2(91.(1); . -, g ()2 (gin (1)) At
z(t) = t

+/f(u,gl(u)z(gl(u)),...,gm(u)z(gm(u)))Au, if t >t

Z(tl), if to <t < t.

Let z(t) = tz(t), t > to. Then we have

dt +tB +c(t)x(t — 1)+
+ [ ot sl ). . algm(w)dut

t1

(t) = - (3.13)
T / £ 2(g (@), .. 2(gm())Au, it > 1,

\ x(tl), if tg <t <t
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Hence, x(t) is a positive solution of (1.1). On the other hand, z(¢) > y(¢) > dt + B. Hence
limy_, 0 z(t) = oo and lim;_,+ y(t) = co. From (3.13), we have

<+ [ fuhgi(a),. .. hgn () Au

Hence, limy_,, y*(t) = d. Therefore, z(t) € E (00,00, d).

Theorem 3.4. Assume that lim;_,, c(t) = ¢ € [0, 1). Further, assume that

/|f(u, hgi(w), ..., hgm(u))|Au < oo for some h # 0 (3.14)
and
/a(u)\f(u, b1,...,b1)|Au = 0o for some by # 0, (3.15)

to

where bih > 0. Then Eq. (1.1) has a nonoscillatory solution x(t) € E(c0,00,0).

Proof. Without loss of generality, assume that &~ > 0 and b; > 0. From (3.14) there exists a
sufficiently large ¢; so that for t > t; we have t — 7 > g and g;(o(t)) > to,i = 1,2,...,m, and

—= +c /f u, hgi(u), ..., hgm(u))Au < 1. (3.16)

Define a set €2 by
Q={z(t) € X|0 < z(t) < h,t >t}

and an operator S on () by

bl+ ()t—

2(t —7)+

1 t
(Sz)(t) = +/ a(u)f(u, g1(w)z(g1(w)), - -, gm(w)2(gm(u))) Aut

/ F (g1 (@)1 (W), - g0 2(gm (W) Au, it > by,

t), if tog <t <t
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Clearly, for z(t) € Q,

t
(S2)(1) < %1 +e(t)h + % /J(u)f(u, hgr(w), - hgm (1)) Au-t

t1

+ /f(u, hgi(w), ..., hgm(u))Au < b?l + c(t)h+
t

+ / Ot hgi () hgm(W)Au < byt > 1,
t1

and (SZ)(t) = (SZ)(tl) < h, to <t < tq, i.e., SQ cC Q.
Define a series of sequences {z;(t)}, k € N, by

20(t) =0, 2zi(t) = (Szk—1)(t), t >to, k € No. (3.17)
By induction, we can prove that
0 < 2(t) < 2p41(t) < h, t>ty, keN.

Then there exists z(t) € Q such that limy_,, 2x(t) = 2(t),t > to.
Clearly, z(t) = (Sz)(t), t > to,i.e.,

%1 + e =T — )t
2(t) = +1/ o(u)f(u, gi(w)z(gi(w)), ..., gm(w)z(gm(uw)))Au+

T / " f g1 ()21 (), - g ()2 (gm () A, it > 1,

Z(tl), if tg <t<t.

Let z(t) = tz(t), t > to. Then we have

by + c(t)z(t — 7)+

+ [ ot sl ). o(gm(w) At

z(t) = o (3.18)
+/t tf(u,z(g1(w)), ..., x(gm(w)))Au, if ¢ > t,

.1‘(751), if tg <t<t.

Hence, z(t) is a positive solution of (1.1). On the other hand, from (3.18), we have z(t) > b;

and that
t

x(t) > y(t) = z(t) —c(t)x(t — 1) > /a(u)f(u, bi,...,b1)Au

t1
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which together with (3.15) imply lim;_,~ z(t) = oo and lim;_, o, y(t) = oco. By (3.18), we get

Hence

— 00

0< tlim Y2 (t) < tli}m /f(u, hgi1(w), ..., hgm(u))Au = 0,
t

i.e., limy_oo y™(t) = 0. Therefore, z(t) € F(oco,0,0).

Theorem 3.5. Assume that lim;_, c(t) = ¢ € [0, 1). Further assume that there exists d > 0
such that

/f(u,dl,...,dl)Au =00 forany d; € (0,d. (3.19)
to

Then every solution x(t) of Eq. (1.1) either oscillates or {x(t)} € E(0,0,0).

Proof. Let z(t) be an eventually positive solution of (1.1). By Lemma 3.1, if lim;_, o, 2(t) =
= 0, then lim;_, o () = 0and solim;_,», y>(t) = 0. Hence, z(t) € E(0,0,0). If lim;_,oo 2(t) =
= 0 fails, then y(¢) > 0 eventually. Since y>2(t) < 0, we have y>(t) > 0, eventually. Therefore,
there exists d € (0, d] such that 2(¢t) > y(t) > d. From (1.1) and (1.2), we have

yAA(t) = _f(ta$(gl(t))’ cee 7x(gm(t)))'

Integrating it from ¢, to ¢, we obtain
t t
v = (0) =~ [ fuwalg), . olam@)du < - [ fud...dau
to to

Lett — oo. Then we get f(u,d,...,d)Au < oo which contradicts (3.19) and completes
¢
the proof. ’
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The above results can be extended to the second order neutral equation

[z(t) — c(t)z(t — 7)]** = fFt,2(q1(t)), ..., 2(gm(1))). (3.20)

With respect to equation (3.20), we assume that conditions (H;), (Hs) and (Hs) hold. By the
same argument, we have the following theorems.

Theorem 3.6. Assume that lim;_, c(t) = ¢ € [0,1). Let z(t) be a nonoscillatory solution of

(3.20). Let S denote the set of all nonoscillatory solution of (3.20), and define

E(0,0,0) = {x(t) € E : lim x(t) = 0, lim y(r) = 0, lim y*(t) = 0},

—00

t—o0 1 —c¢c'toxo

E(b,a,0) = {x(t) € FE: limax(t)=0b= , lim y(t) = a,tligloyA(t) = 0},

E(c0,00,d) = {z(t) € E : lim x(t) = oo,tlim y(t) = oo,tlim y2(t) = d # 0},

—00

E(c0,00,00) = {z(t) € E : lim z(t) = oo, hr& y(t) = oo,tlirglo yA(t) = oo}

t—o0 t— —
Then
E = E(0,0,0) U E(b,a,0) U E(co,00,d) U E(00, 00,0).

Theorem 3.7. Assume that lim;_,, c(t) = ¢ € [0, 1). Further, assume that

o0

/a(u)\f(u,bl,...,b1)|Au < oo for some by # 0.
to
Then Eq. (3.20) has a nonoscillatory solution z(t) € E(b,a,0)(b # 0,a # 0).

Theorem 3.8. Assume that lim;_, c(t) = ¢ € [0,1). Then the following statements are true.
(i) If Eq. (3.20) has a nonoscillatory solution x(t) € E(oo,00,d), d # 0, then

[ee]

/|f(u,hgl(u),...,hgm(u))Au < 00, for some h # 0.

to

(i) If

o

/U(u)|f(u7 hgi(w), ..., hgm(u))|Au < oo, for some h # 0,

to
then Eq. (3.20) has a nonoscillatory solution x(t) € E(co,00,d),d # 0.

Theorem 3.9. Assume that lim;_,, c(t) = ¢ € [0,1). Further assume that there exists d > 0
such that

/f(u,dl,...,dl)Au =00 forany d; € (0,d].
to
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Then every solution x(t) of Eq. (1.1) either oscillates or x(t) € E(0,0,0), or z(t) € E(co,00,00).
In the following, we shall give some examples.

Example 3.1. In the case where T' = R, we consider the second order differential equation

" _1\3 43

<x(t) - éx(t _ T)> + 2(t(t—1)1)6t () = 0. (321)
(3.4) becomes

/uf(u,bl,...,b1)|du < oo forsome b; # 0. (3.22)

to
Itis easy to see that (3.22) holds. Therefore, (3.21) has a nonoscillatory solution z(t) € E(b, a,0),
1 1
b#0,a # 0.Infact,z(t) = 1 — n is such a solution, where a = 3 b=1.

Example 3.2. In the case where 7' = N, we consider the second order delay difference
equation

1 2—n—3
Az, — =y 5 = > 2 2
(m 1" 1) Fagmypt 70 = G2
for which (3.8) becomes
> 1F (G hgr(3), - - - hgm ()] < oo (3.24)
J=no

1
It is easy to see that (3.24) is satisfied. In fact, the sequence z,, = {n — 2"} is a nonoscillatory
4

Example 3.3. In the case where T' = hZ = {hk|k € Z} for h > 1, we consider the second
order delay dynamic equation

solution of (3.23) which belongs to the class S (oo, 00, 3) .

AA (1 _ o—hy(9—h 2
1 L_g-hyg=h _
[:L’(t) - ix(t — h)] + G )h(2 ) z(t—h) =0 (3.25)
1
for which condition (3.19) of Theorem 3.5 is satisfied. In fact, z(¢) = of is a nonoscillatory

solution of (3.25) which belongs to the class S(0,0,0).
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