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We study oscillatory properties of solutions for nonlinear impulsive hyperbolic differential equations and
find new necessary and sufficient conditions for oscillations are established.

Вивчено властивостi коливань розв’язкiв нелiнiйних гiперболiчних диференцiальних рiвнянь з
iмпульсами i знайдено новi необхiднi та достатнi умови для iснування коливань.

1. Introduction. The theory of differential equations can be applied to many fields, such as bi-
ology, population growth, engineering, medicine, physics and chemistry. In the last few years,
a few of papers have been published on oscillation theory of partial differential equations.
Many have been done under the assumption that the state variables and the system parameters
change continuously. However, one may easily visualize situations in nature where an abrupt
change such as a shock or disasters may occur. These phenomena are short-time perturbations
whose duration is negligible in comparison with the duration of the whole evolution process.
Consequently, it is natural to assume, in modelling these problems, that these perturbations act
instantaneously, that is, in the form of impulses. In 1991, the first paper on this class of equati-
ons [1] was published. The qualitative theory of this class of equations, however, is still in an
initial stage of development. For instance, on oscillation theory of impulsive partial differential
equations only a few papers have been published. Recently, Bainov, Minchev, Deng, Fu and
Luo [2 – 5] investigated the oscillation of solutions of impulsive partial differential equations
with or without deviating argument. But there is a scarcity in the study of oscillation theory of
nonlinear impulsive hyperbolic partial differential equations.

In this paper, we shall discuss the oscillatory properties of solutions for a class of nonlinear
hyperbolic differential equations with impulses (1), under the boundary condition (4). It should
be noted that the equation we discuss here is nonlinear. Up to now, we did not find a work on
oscillations for is kind of the problem. We consider the following:
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∂2u

∂t2
= a(t)h(u)∆u− q(t, x)f(u(t, x)),

(1)
t 6= tk, (t, x) ∈ R+ × Ω = G,

u(t+k , x)− u(t−k , x) = qku(tk, x), t = tk, k = 1, 2, . . . , (2)

ut(t
+
k , x)dx− ut(t

−
k , x)dx = bkut(tk, x)dx (3)

with the boundary condition

∂u

∂n
= 0, (t, x) ∈ R+ × ∂Ω. (4)

Here Ω ⊂ RN is a bounded domain with boundary ∂Ω smooth enough and n is a unit exterior
normal vector of ∂Ω.

Assume that the following conditions are fulfilled:
H1) a(t) ∈ PC(R+, R+), q(t, x) ∈ C(R+×Ω, (0,∞)); where PC denotes the class of functi-

ons which are piecewise continuous in t with discontinuities of first kind only at t = tk, k =
= 1, 2, . . . and left continuous at t = tk, k = 1, 2, . . . ;

H2) h′(u), f(u) ∈ C(R,R); f(u)/u ≥ C = const > 0, for u 6= 0; uh′(u) ≥ 0, and
qk > −1, bk > −1, 0 < t1 < t2 < . . . < tk < . . . , lim

t→∞
tk = ∞;

H3) u(t, x) and their derivatives ut(t, x) are piecewise continuous in t with discontinui-
ties of first kind only at t = tk, k = 1, 2, . . . , and left continuous at t = tk, u(tk, x) =
= u(t−k , x), ut(tk, x) = ut(t

−
k , x), k = 1, 2, . . . .

Definition 1. By a solution of problem (1), (4), we mean that any function u(t, x) which
satisfies the condition H3) and coincides with the solution of the problem (1), (2), (3) and (4).

We introduce the notations: Γk = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω},Γ =
⋃∞

k=0 Γk,

Γk = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω},Γ =
⋃∞

k=0 Γk, v(t) =

∫
Ω

u(t, x)dx, and p(t) = min q(t, x),

x ∈ Ω.

Definition 2. The solution u ∈ C2(Γ)
⋂
C1(Γ) of problem (1), (4) is called nonoscillatory

in the domain G if it is either eventually positive or eventually negative. Otherwise, it is called
oscillatory.

2. Oscillation properties of the problem (1), (4). The following is the main theorem of this
paper. The proof of the theorem needs the following lemmas.

Lemma 1. Let u ∈ C2(Γ)
⋂
C1(Γ) be a positive solution of the problem (1), (4) in G, then

the function v(t) satisfies the impulsive differential inequality

v′′(t) + Cp(t)v(t) ≤ 0, t 6= tk, (5)
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v(t+k ) = (1 + qk)v(tk), k = 1, 2, . . . , (6)

v′(t+k ) = (1 + bk)v′(tk), k = 1, 2, . . . . (7)

Proof. Let u(t, x) be a positive solution of the problem (1), (4) in G. Without loss of generali-
ty, we may assume that u(t, x) > 0 for any (t, x) ∈ [t0,∞)× Ω.

For t ≥ t0, t 6= tk, k = 1, 2, . . . , integrating (1) with respect to x over Ω yields

d2

dt2

∫
Ω

udx

 = a(t)

∫
Ω

h(u)∆udx−
∫
Ω

q(t, x)f(u(t, x))dx, t ≥ t0, t 6= tk.

By Green’s formula and the boundary condition, we have∫
Ω

h(u)∆udx =

∫
∂Ω

h(u)
∂u

∂n
ds−

∫
Ω

h′(u)|gradu|2dx ≤ −
∫
Ω

h′(u)|gradu|2dx ≤ 0.

From condition H2), we can easily obtain∫
Ω

q(t, x)f(u(t, x))dx ≥ Cp(t)

∫
Ω

u(t, x)dx.

It follows from the above that

v′′ + Cp(t)v(t) ≤ 0, t ≥ t0, t 6= tk, (8)

where v(t) > 0.
For t > t0, t = tk, k = 1, 2, . . . , we have∫

Ω

u(t+k , x)dx−
∫
Ω

u(t−k , x)dx = qk

∫
Ω

u(tk, x)dx,

∫
Ω

ut(t
+
k , x)dx−

∫
Ω

ut(t
−
k , x)dx = bk

∫
Ω

ut(tk, x)dx.

This implies

v(t+k ) = (1 + qk)v(tk), (9)

v′(t+k ) = (1 + bk)v′(tk), k = 1, 2, . . . . (10)

Hence we obtain that v(t) > 0 is a positive solution of differential inequality (5) – (7). This ends
the proof of the lemma.
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Definition 3. The solution v(t) of differential inequality (5) – (7) is called eventually positive
(negative) if there exists a number t∗ such that v(t) > 0 (v(t) < 0) for t ≥ t∗.

Lemma 2 (Theorem 1.4.1). Assume that
(i) m(t) ∈ PC1[R+, R] is left continuous at tk for k = 1, 2, . . . ;
(ii) for k = 1, 2, . . . , t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t), t 6= tk,

m(t+k ) ≤ dkm(tk) + ek, t 6= tk,

where p(t), q(t) ∈ C(R+, R), dk ≥ 0 and ek are real constants, PC1[R+, R] = {x : R+ →
→ R;x(t) is continuous and continuously differentiable everywhere except for some tk at which
x(t+k ), x(t−k ), x′(t+k ) and x(t−k ) exist and x(tk) = x(t−k ), x′(tk) = x′(t−k )}.

Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

 t∫
t0

p(s)ds

 +

t∫
t0

∏
s<tk<t

dk exp

 t∫
s

p(r)dr

 q(s)ds+

+
∑

t0<tk<t

∏
tk<tj<t

dj exp

 t∫
tk

p(s)ds

 ek.

From Lemma 2 we can obtain the following lemma (see also [5]).

Lemma 3. Let v(t) be an eventually positive (negative) solution of differential inequality (5) –
(7). Assume that there exists T ≥ t0 such that v(t) > 0 (v(t) < 0) for t ≥ T . If the following
condition holds,

lim
t→+∞

t∫
t0

∏
t0<tk<s

1 + bk
1 + qk

ds = +∞, (11)

then v′(t) ≥ 0 (v′(t) ≤ 0) for t ∈ [T, tl]
⋃

(
⋃+∞

k=l (tk, tk+1)), where l = min{k : tk ≥ T}.
Theorem 1. Let condition (11) and the following condition hold:

lim
t→+∞

t∫
t0

∏
t0<tk<s

1 + qk
1 + bk

p(s)ds = +∞. (12)

Then each solution of the problem (1) – (4) oscillates in G.

Proof. Let u(t, x) be a nonoscillatory solution of (1), (4). Without loss of generality, we can
assume that u(t, x) > 0 for any (t, x) ∈ [t0,∞) × Ω. From Lemma 1, we know that v(t) is a
positive solution of (5) – (7). Thus from Lemma 4, we can find that v′(t) ≥ 0 for t ≥ t0.

For t ≥ t0, t 6= tk, k = 1, 2, . . . , define

w(t) =
v′(t)

v(t)
, t ≥ t0.
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Then we have w(t) > 0, t ≥ t0, v
′(t) − w(t)v(t) = 0. We may assume that v(t0) = 1. Thus in

view of (5) – (7) we have that, for t ≥ t0,

v(t) = exp

 t∫
t0

w(s)ds

 , (13)

v′(t) = w(t) exp

 t∫
t0

w(s)ds

 , (14)

v′′(t) = w2(t) exp

 t∫
t0

w(s)ds

 + w′(t) exp

 t∫
t0

w(s)ds

 . (15)

We substitute (13) – (15) into (5) and can obtain the following inequality:

w2(t) + w′(t) + Cp(t) ≤ 0.

From (6), (7) we get

w(t+k ) =
v′(t+k )

v(t+k )
=

1 + bk
1 + qk

w(tk), k = 1, 2, . . . .

It follows that
w′(t) ≤ −Cp(t), t 6= tk,

w(t+k ) =
1 + bk
1 + qk

w(tk), t = tk.

By using Lemma 3, we obtain

w(t) ≤ w(t0)
∏

t0<tk<t

1 + bk
1 + qk

+

t∫
t0

∏
s<tk<t

1 + bk
1 + qk

(−Cp(s))ds =

=
∏

t0<tk<t

1 + bk
1 + qk

w(t0)−
t∫

t0

∏
t0<tk<s

1 + bk
1 + qk

Cp(s)ds

 .

Since w(t) > 0, the last inequality contradicts (12).
The proof of Theorem 1 is completed.
It should be noted that obviously all solutions of problem (1), (4) are oscillatory if there

exists a subsequence nk of n such that qnk
< −1, for k = 1, 2, . . . . So we only discuss the case

qk > −1.
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3. Necessary and sufficient conditions. In this section, we will establish necessary and suffici-
ent conditions for oscillation of an impulsive hyperbolic partial differential equation. We consi-
der the following linear problem:

utt = a(t)∆u + p(t)u(t, x),

t 6= tk, (t, x) ∈ R+ × Ω = G, (16)

u(t+k )− u(t−k ) = qku(tk, x), t = tk, k = 1, 2, . . . , (17)

ut(t
+
k )− ut(t

−
k ) = bkut(tk, x), t = tk, k = 1, 2, . . . , (18)

wiht boundary condition (4).

Theorem 2. A necessary and sufficient condition of oscillations in domain G for all solutions
of the problems (16) – (18), (4) is that all solutions of the following impulsive differential equation
(19) – (21) be oscillatory:

d2v

dt2
+ p(t)v(t) = 0, (19)

v(t+k )− v(t−k ) = qkv(tk), k = 1, 2, . . . , (20)

v′(t+k )− v′(t−k ) = bkv
′(tk), k = 1, 2, . . . . (21)

Proof. Sufficiency. We argue by contradiction. Let u(t, x) be a nonoscillatory solution of the
problem (16) – (18), (4). Without loss of generality, we may assume that there exists a t0 ≥ T
such that u(t, x) > 0 for any (t, x) ∈ [t0,+∞)× Ω.

For t ≥ t0, t 6= tk, k = 1, 2, . . . , integrating (16) with respect to x over Ω yields

d2

dt2

∫
Ω

udx = a(t)

∫
Ω

∆udx−
∫
Ω

p(t)u(t, x)dx.

By Green’s formula, we have ∫
Ω

∆udx =

∫
∂Ω

∂u

∂n
ds = 0.

Denote v(t) =

∫
Ω

u(t, x)dx. Then v(t) > 0. It follows that

d2v

dt2
+ p(t)v(t) = 0. (22)
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For t ≥ t0, t = tk, k = 1, 2, . . . , similarly to (9), (10) we have

v(t+k )− v(t−k ) = qkv(tk),

(23)
v′(t+k )− v′(t−k ) = bkv

′(tk), k = 1, 2, . . . .

Hence we obtain that v(t) > 0 satisfies equation (19) – (21). This means that the impulsive
differential equation (19) – (21) has a nonoscillatory solution. A contradiction. This ends the
proof of the sufficient condition.

Necessity. We still argue by contradiction. Let v(t) be a nonoscillatory solution of equation
(19) – (21). Without loss of generality, we may assume that there exists a t1 large enough such
that v(t) > 0 for any t ∈ [t1,+∞).

For t ≥ t1, t 6= tk, k = 1, 2, . . . , set u(t, x) = v(t), we have u(t, x) > 0 and then easily
obtain

∆u(t, x) = ∆v(t) = 0.

Making use of this result, from equation (19), we obtain

d2v(t)

dt2
+ a(t)∆v(t) + p(t)v(t) = 0.

This means that u(t, x) = v(t) satisfies equation (16).
For t ≥ t1, t = tk, k = 1, 2, . . . , from the conditions (22), (23), it is easy to see that the

function u(t, x) = v(t) satisfies (17), (18).

And because
∂v

∂x
= 0, x ∈ ∂ Ω, u(t, x) = v(t) also satisfies boundary condition (4). This

indicates that problem (16) – (18), (4) has a nonoscillatory solution. This is a contradiction. This
ends the proof of Theorem 2.

4. Remark. The results of this paper, from the practical standpoint, is very convenient because
these criterions depend only on the coefficients of the equations and the impulsive term. The
necessary and sufficient condition of oscillations reveals a relation between the impulsive parti-
al differential equation and the impulsive differential equation. It should be noted that the
equations we discuss here are nonlinear.
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