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In this paper the modulated wave train in nonlinear monoinductance LC circuit is studied. Using the
method of multiple scales in general form, we establish that the evolution of nonlinear excitations is
governed by what we called the Modified Ginzburg— Landau Equation (MGLE). Benjamin — Feir instabi-
lity for the MGLE is analyzed.

Busuaembca npoxo0xceHHa MOOYAbOBAHUX X8UAL Y HEAIHIUHOMY MOHOIHOYKmueHomy LC-aanurosi. 3
BUKOPUCMAHHAM MEMOOY KPAMHUX ULKAA OMPUMAHO, W0 eBOAIOUIA HEAIHIUIHUX 36Y0iceHb ONUCYEMbCA
30 00NOMO2010 PIBHAHHA, AKe MU HA3UBAEMO MOOUGDIKo8aruMm pieHAHHAM [ iH30ypea—Jlanoay (MPIJI).
AHnaanizyemucs cmabiavuicmo MPIJI y cenci Bernoxcamina— @etipa.

1. Introduction. Considering nonlinear transmission line as a convenient tool to examine wave
propagations in dispersive media, various physical systems have been studied [1-3]. Since the
pioneering works of Hirota and Suzuki [4, 5] in order to stimulate the integrable Toda lattice
[6] by electric circuits there has been an increased interest in the propagation of wave trains
in nonlinear-dispersive transmission lines, involving the phenomena such as Benjamin — Feir
instability [7-9], the formation of stationary localized waves, that is, the envelope solitons [10,
11] and the dark solitons [12, 13].

The Benjamin — Feir (or, as it is sometimes called, the modulational) instability is widespread
and plays an important role in various nonlinear wave phenomena. Simply put, if dispersion
and nonlinearity act against each other, monochromatic wave trains do not wish to remain
monochromatic. The sidebands of the carrier wave can draw on its energy via a resonance
mechanism with the result that the envelope becomes modulated. In one space dimension, this
envelope modulation continues to grow until the soliton shape is reached. At this point, nonli-
nearity and dispersion are in exact balance and no further distortion occurs [14, 15].

It is well known that the self-modulation of one space dimension waves in nonlinear di-
spersive systems can be described by the so-called Ginzburg-Landau equation (GLE) [16 -
18],

iy + Py + Q |ul® u = i, (1.1)

where the subscripts ¢t and = denote the partial differentiation with respect to ¢ and x, respecti-
vely. If PQQ < 0, a plane wave in this system is stable for the modulation and, otherwise, is
unstable. Especially in the later case there exist special families of solutions, which are called
envelope solitons and show various interesting phenomena [19, 20].
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Fig. 1. Asection for a distributed nonlinear-dispersive
transmission line.

Recently, there has been a progress towards a mathematical understanding of equation (1.1).
Kirchgassner [21] and Mielke [22 —24] restrict attention to steady-state equations and view the
single unbounded spatial direction as an evolution variable.

In this paper, we give a rigorous derivation of the full time-dependent Modified Ginzburg —
Landau Equation (MGLE). The Benjamin—Feir (modulational) instability for the obtained
MGLE is investigated.

2. Basic equations. In this section we derive a nonlinear wave equation for the electromag-
netic wave propagation in a nonlinear-dispersive transmission line shown in Fig. 1. By using the
method of multiple scales, we derive a MGLE.

2.1. The model equations. In the considered transmission line, Fig. 1, Cy is a nonlinear
capacitor such as a ”"VARICAP” or a reverse-biased p — n junction diode, the capacitance of
which depends on the voltage applied across it.

By applying the Kirchhoff’s voltage theorem and the current theorem we obtain

oI dp(V) ov oL 2V 1 B
+ =0, Gotlgi=0 gt (I-h) =0 @.1)

oz ot

where the current through the nonlinear capacitor is given by dp(V')/dt. From equations (2.1)
we can eliminate / and I; and write

gV 10V 9%

Csortor T T o o2

= 0. (22)

With no loss of generality, we may regard p(0) = 0 and expand p(V) to obtain p(V') = p/(0)V +
p"(0)

+?V2. For bounded solutions, we must have p'(0) > 0. Hence we have

p(V) ~ Co (V= B'V?) = CoV — Cn V2. (2.3)
Substituting (2.3) into (2.2), we obtain the following partial differential equation for the voltages:

0%V 10%V otV 02V?
o7 "Taz “Sazar Nz =0 (2:4)
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2.2. Derivation of the generalized complex Ginzburg—Landau equation. If we introduce
the notations

a = 71/L7 ﬂ = 7CN; A= CS7
equation (2.4) takes the form

82_V_|_a82_v_0 84‘/ +ﬁ82v2 —
o2 o2 * 0x20t2 o2

Co 0. (2.5)

We follow Taniuti and Yajima [25, 26] and seek a first-order uniform expansion by using the
method of multiple scales in the form

V =201 exp [i(kXo — wTy)] + eVag exp [2i(kXo — wTp)] +
+ 63/21)33 exp [3Z(kX0 — wT())] + 2 [1)42 exp [2i(/€X0 — wT())] +

+ wvygexp [4i(kXo — wTp)]] +cc+ ..., (2.6)

where cc stands for the complex conjugate, ¢ is a small, dimensionless parameter related to the
amplitudes (0 < ¢ < 1), v = v;;(Xy1,T1,T5), T, = €"t, and X,, = €"x.

Substituting (2.6) into (2.5) and equating coefficients of like powers of € and exp [i6] (here
0 = kXy — wTp), we obtain the following:

for order /2, exp [i],

[Cow? + ak? + M*w?] v11 = 0, (2.7)
for order 3/2, exp [i],

8’011 0’011

—2iw [Co + Ak?] a7, T2k [0 + Aw?] X 2Bw?vi v = 0, (2.8)
for order ¢, exp [2i6)],
—4 (Cow? + ak? + 4Nk*w?) — 4w’ B = 0, (2.9)
for order £3/2, exp [3i6)],
—9 (Cow? + ak? + 9Ak*w?) — 18w?Buivs = 0, (2.10)
for order &2, exp [2i6)],
[—4 (Cow? + ak? + ANk*w?) ]| v4a — 8Bwvi 33 = 0, (2.11)
for order &2, exp [4i)],
[—16 (Cow? + ak? + 16Ak*w?) ] vag — Bw? [32v11v33 + 1603,] = 0, (2.12)
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w —

Fig. 2. The dispersion curve for the linearized version of the
above transmission line.

for order £%/2, exp [i],

62’1)11 (9’1)11 82’011 2621]11 281)11 82’1)11
C — 24 e 2iwk 4k —
oz T Mo, | TV axe orz TN T, T amax,
0? ovy
— Ww? 8)1?21 + 0 —4iw%11)22 — 2w vgn — 2wViaus3 | = 0.
1

For the nontrivial solution we must have vy; # 0. Then (2.7) gives
Cow® + ak?® + N\e?w? = 0.
Equation (2.14) is the dispersion relation illustrated in Fig. 2 for the line parameters
Cs = 5Cy = 1200pF, L = 14pH, Cn = 38,4pF, 0 < k < 1,58, ¢ =0, 1.
Using the dispersion relation (2.14), equations (2.9) - (2.12) give

2
V22 = ———570U
3)\k2 11>

2
_ 3
U387 Tonzpe 1

,33
Vg = 5 [on[* oy,

 108A2k8w
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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3
Vg = ——— ¥} (2.19)
5AN3ES 1T ‘
respectively.

Solving for vy, /9T, from (2.9) and (2.16) we obtain

87)11 Co w3 87)11 iﬁw?’

8T1 N (0% ﬁ@Xl B Oé]CQ 11022,
3 /~a
where V, = G (f) ___Cov-a
a (

k m is the group velocity. Hence,
0

0%v11 B C_gw_ﬁa%n _ iBwb 0 (0F v2) — ifw3 0 (0l 093)
oTZ — a2 kS 0x2  Ya?kSox, T ak? o1y M

(2.20)
821111 Cow3 821}11 iﬁw3 8 (U*’U )
OT10X, o k3 0XZ  ok? 80X,

Combining (2.20) and (2.13), and using (2.16) —(2.18), we obtain, in terms of the original vari-
ables ¢t and =z,

8 0% 0
(;)11 8 <\U11\ Un) + ZQQ <|Un|2 Un) + Qs |vnn|* o1y =0, (2.21)
where
P = P(k) = — L = —_3C0Av _O‘lz - (2.22)
2 2 (Co + Ak2)"
_ e
,325 (Co + 4)\k2)
k) = , 2.24
Q2= @) = 05 (ot A2 (229
Bie?/—a
Qs = Q3(k) = — . 2.25
3= @G =~ (Co + Ak2)*2 (2:25)
Using the transformation
g =T — QQQI1t7 T ta U11(£77—) = u(&a 7-) €xXp [2Q2P_1QI1£/2] ) (226)
we write (2.21) in the final form
ou 32u 0 2 4
5+ Pag tiQig (1) = yu+ Qslon|*ory =0, (2.27)
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where v = —Q3P~'Q % /4.

351
Thus the resulting equation (2.27) that describes the evolution of a wavepacket is a complex
envelope equation that involves higher order nonlinearities. We call this equation the MGLE.
curve.

For the line parameters (2.15) we plot the following coefficient of the spatial dispersion

/
rd
|

Fig. 3. The coefficient of the spatial dispersion curve.

Itis seen from Fig. 3 that the coefficient of the spatial dispersion is always negative when 0 <
< k < 1,58. In the next section we study the Benjamin — Feir instability of the monochromatic
wave solutions.

3. The Benjamin - Feir instability. To study the Benjamin — Feir instability of the monochro-
matic wave solutions, we first express v in the polar form
w(é 1) = a(§,7)exp[ib(§, 7)] G.1)

Substituting (3.1) into (2.27) and separating imaginary and real parts we obtain

(14 3Q1a) da  p ( Oa 0

mon | Y o
ar pcoe  “oez) T '
b ob\? 92
(CL + Q1a3) E + P (CL <8_§> - 8—;> +’}/CL - Q3a5 =0 (33)
2
If the wave has a fixed, single wavenumber, then P = —%2702}
reduces to

= 0 and system (3.2), (3.3)
b

(14 3Q1a?) % =0, (a+ Q1a?) % +va—Q3a° =0
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whose solutions are

_ Qzad—~

= T + const, 34
1+ Qla% ( )

a = ag, b

where qg is constant.
It natural to define the local wavenumber £ as the ¢ derivative of the total phase and the
local frequency as the negative of the 7 derivative of the total phase § = ko& — woT + b(&, 7),
k:k0+b§, w = wy — br.
Note that

kr + we = bgT — bq—g =0, (35)

which expresses the conservation of the number of waves. We will write the change in the
wavenumber b; as K. Now equation (3.2) gives

a% (2a* + 3Q1a*) + 4P§ (a’K) =0, (3.6)

which is an equation of conservation of the wave action. On the other hand, equation (3.3) gives
a (14 Q1a*) by + P (aK? — age) +va — Qsa® = 0,
which when differentiating with respect to £ gives
a’(14 Q1a®)’K, + ag (1 + 3Q1a2) [ans —~a+ P (a& - aKQ)] +
+ Pa (1+ Q1a2) (a§K2 + 20K K¢ — agee) +a(1+ Qlag) (v - 5Q3a4) ag =0. (3.7)
Equation (3.7) is a relation for conservation of waves, since

7+ P (K= %) - Quat
a
1+ Q3a? ’

w = wo +

Next, the monochromatic wave solution (3.4) means that

Qsad —

k = ko, w = wy— .
0 0 1+Q1a%

This is the Stokes wave. Test it linear stability by setting

a = ay+ a, K =K, (3.8)
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where a is assumed to be infinitesimal. Substituting (3.8) into (3.6) and (3.7) and keeping only
linear terms in perturbation quantities, we obtain

Pao -~
i Pa &
T I 3Quag Y
B _ 2 (Q1Q3af + 2Qsa3 + Q1) af
T 02 T N2 ag,
ao ( + Qlao) ao (1 + Qlao)

or

P(1+ Qla%)_Q
(1 + 3@1&3)

[P (1+ Qua) aegee + 205 (Q1@Qsap + 2Qsag + Q1y) dee] - (3.9)

Qrr = —

Therefor if a o« exp [il§ + Q7] ,

(14 Qua3) k2

02 =—
(1 +3Q1a(2))

(14 Qiad) P*1* — 2a3P (Q1Q3a5 + 2Qzad + Q1y)] . (3.10)

Because § = —Cy < 0, it follows from (2.22)-(2.25) that P(k) < 0, Qi(k) > 0,
Qs(k) < 0,andy = —Q3P~'Q;?/4 > 0. Therefore we have the following results.

Theorem 3.1. If

Q1Qzap + 2Q3a2 + Q1y < 0, (3.11)

the monochromatic wave solution (3.4) will be unstable to long waves in the range

2a3 (Q1Q3ag + 2Q3a3 + Q17)

l2
0< < P (1 n Qla%)

(3.12)

Inequality (3.11) is the Benjamin — Feir instability criterion to the MGLE in the electrical
monoinductance transmission line. This new result is different from the Lange and Newell cri-
terion for the Stokes wave [27, 28] by the presence of the amplitude ay of the monochromatic
wave.

For the line parameters (2.15) we plot Q1Qsag +2Q3a3 + Q1 as a function of the amplitude
ap or/and a function of the wavenumber k.
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Fig. 4. The dependence of Q1Qsas + 2Qzag + Q1Y
onao withk = 0, 1.

02 03 0.4 05 k

Fig. 5. The dependence of Q1Qzag + 2Qsa? + Q1 on k,
0,09 < k < 0,624, for ap = 1000.

Fig. 4 shows that for the wavenumber & = 0, 1, condition (3.11) holds for all ay > ag. ~
=~ 0,084. For these values of ag, the monochromatic wave solutions corresponding to the fi-
xed wavenumber k£ = 0,1 are modulational unstable. All the monochromatic wave solutions
associated to £ = 0, 1 with any amplitude ag < ag. are stable.

It is seen from Figures 5, 6, and 7 that for any fixed wavenumber 0 < k& < 0,624, the
corresponding monochromatic wave solution with the amplitude agp = 1000 is modulational
unstable, while any monochromatic wave solution corresponding to the wavenumber 0,625 <
< k < 1,58 with the amplitude ag = 1000 is modulational stable.

Figures 4 -7 show that Qngag +2Q3a3 + @17, as a function of k or/and ay, changes its sign
for particular value of k or/and ay.
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Puc. 6. The dependence of Q1Qzag + 2Qzad + Q1y on k,
0,624 < k < 0,625, for ag = 1000.
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Puc. 7. The dependence of Q1Qzas + 2Qza? + Q1y on k,
0,625 < k < 1,58, for ap = 1000.

4. Conclusion. In this paper monoinductance LC circuit is considered and envelope modulati-
on is reduced to the MGLE. Benjamin - Feir instability for the MGLE is analyzed. As far as
we know there have been no such Stokes wave analysis related to LC circuit. As in most cases,

the linear part of the modulation equation (the coefficient of the spatial dispersion) is fixed,
—1d?
that is, P = Td—l:; We also have that Q1Qszag + 2Q3a2 + Q1 < 0 is a necessary but not
sufficient condition for the instability. It should be noted that Q1 Qsag + 2Qsa2 + @1y > Ois a
sufficient condition for the stability. In fact, if this last condition is satisfied then for every real
[, @ will always be pure imaginary and @  exp [ik€ 4+ Q7] will be bounded. In most cases the
criterion of the instability does not depend on the amplitude of the monochromatic wave. But
for our MGLE, the said criterion depends on the amplitude ag. This fact allows us to construct

an unstable monochromatic wave for a given wavenumber.

ISSN 1562-3076. Heainitini koausarnns, 2003, m. 6, N 3



356

A N =

o

10.

11.

12.

13.
14.
15.
16.
17

18.

19.

20.

21.

22.

23.
24.

25.

26.

27
28.

E. KENGNE

Scott A. Active and nonlinear wave propagation in electronics. — New York: Wiley-Intersci., 1970.
Solitons in action / Eds. K.E. Lonngren, A.C. Scott. — New York: Acad. Press, 1978.

Ostrovski L.A., Gorshkov K.A., andPapko V.V. Phys. scr. — 1979. — 20. — P. 357

Hirota R., Suzuki K. Direct methods in soliton theory // J. Phys. Soc. Jap. — 1970. — 28. — P. 1366.

Hirota R., Suzuki K. Direct methods of finding exact solutions of nonlinear evolution equations // Backlund
Transformation: Proc. [IECE. — 1973. — 61. — P. 1438.

Toda M. Theory of nonlinear Lattices // J. Phys. Soc. Jap. — 1967 — 22. — P. 413;23. — P. 501

Benjamin T.B., Feir J.F The disintegration of wave trains on deep water // J. Fluid Mech. — 1967 — 27. —
P. 417 -430.

Lake B.M., Yuen H.C., Rungaldier H., and Ferguson WE. Nonlinear deep water waves: theory and experi-
ment // Ibid. — 1977 — 83. — P.49-74.

Kengne E. Envelope modulational instability in a nonlinear dissipative transmission line // Nonlinear Osci-
llations. — 2002. — 5, Ne 1. — P.20-29.

Kawahara T, Sakai J., and Kakutani T. Weak ion-acoustic shock waves // J. Phys. Jap. — 1970. — 29. —
P. 1068 -1073.

Inoue H'Y,, Sahai J., and Kawata T. Nonlinear wave modulation in dispersive media // Trans. IECE Jap. E. —
1976. — 60. — P. 339.

Saito H., Muraya K., and Watanabe S. Nonlinear forced vibrations of a beam carrying concentrated mass
under gravity // J. Sound. and Vibr. — 1976. — 46. — P. 515-525.

Nayfeh A.H. Perturbation methods // Phys. scr. — 1985. — 31. — P. 415.

Whitham G.B. Linear and nonlinear waves. — New York: Wiley-Intersci., 1974.

Benney D.J., Roskes G.J. Wave instabilities / Stud. Appl. Math. — 1969. — 48 — P. 377-385.
Karpman V1., Kadomtsev B.B. Nonlinear waves // Sov. Phys. Uspekhi. — 1971. — 14. — P. 40-60.

Karpman VI, Krushkal E.M. Modulated waves in nonlinear dispersive media // Zh. Eksp. i Teor. Fiz. — 1968.
— 55. — P 530.

Taniuti T. Reductive perturbation method and far fields of wave equations // Progr. Theor. Phys. Suppl. —
1974. — 55. — P.1-35.

Asano N., Taniuti T, and Yajima N. Reductive perturbation method for nonlinear wave propagation in
inhomogeneous media. II // J. Phys. Soc. Jap. — 1970. — 29. — P. 209-214.

Yajima N., Asano N., and Taniuti T. Perturbation method for a nonlinear wave modulation // J. Math. Phys.
— 1969. — 10. — P. 2020-2024.

Kirchgassner K. Wave solutions of reversible systems and applications // J. Different. Equat. — 1982. — 45.
— P 113-127

Mielke A. A reductible principle for nonautonomous systems in infinite dimensional spaces // Ibid. — 1986.
— 65. — P 68-88.

Mielke A. Steady flows of inviscid fluids under localized perturbations // Ibid. — P. 89-116.

Mielke A. Reduction of quasilinear elliptic equations in cylindrical domains with applications / Math. Meth.
Appl. Sci. — 1988. — 10. — P. 51-66.

Taniuti T., Yajima N. Perturbation method for nonlinear wave modulation. I // J. Math. Phys. — 1969. — 10.
— P 1369-1372.

Taniuti T., Najima N. Perturbation method for nonlinear wave modulation. III // Ibid. — 1973. — 14. —
P. 1389-1397

Stokes G.G. On the Stokes wave // Cambridge Phil. Soc. — 1998. — P. 441 -455.
Lange C.G., Newell A.C. The post-buckling problem for thin elastic shells / STAM J. Appl. Math. — 1974. —
27. — 441 p.

Received 16.09.2002,
after revision — 15.02.2003

ISSN 1562-3076. Heainitini koausanns, 2003, m. 6, N2 3



