Долговечность структурно-неоднородных материалов в условиях ползучести

А. Н. Малка

Предложена модель, описывающая долговечность структурно-неоднородных материалов при ползучести в области температур выше температуры вязкохрупкого перехода. При этом длительное сопротивление материала разрушению контролируется процессами микропластической деформации. Проверка эффективности модели на эвтектическом сплаве (% (мас.)) 86,7Mg—12Al—1,3Ca в областях температур и напряжений 0,49— $0,61T_{nn}$ и (0,94— $5,6)\cdot10^{-3}$ т/G показала хорошую корреляцию между экспериментальной и расчётной долговечностью. Установлено, что в исследованной области контролирующим механизмом является вязкое, аккомодированное объёмной диффузией алюминия в магнии движение дислокационных атмосфер.

Введение

Для надёжного определения срока безаварийной работы элементов конструкций важное значение имеет достоверное описание кинетики разрушения материалов. Особый научный интерес представляет задача описания кинетики разрушения достаточно неоднородных материалов, в которых зарождение микротрещин в местах заторможенного сдвига происходит относительно рано [1]. При этом процесс роста микротрещин в материале при температурах выше температуры вязкохрупкого перехода $T_{\rm X}$, занимает большую часть времени жизни образца под нагрузкой.

Для жаропрочных структурно-неоднородных металлических сплавов при $T > T_X$ наиболее полно процесс ползучести и замедленного разрушения можно описать с помощью системы кинетических уравнений, предложенных Ю. Н. Работновым в работе [2]:

$$\dot{p} = \alpha(\sigma_0)^n (1 - \omega)^{-s} \exp\left(\frac{-Q_{kT}}{k}\right);$$

$$\dot{\omega} = \beta \sigma_0^m (1 - \omega)^{-r} \exp\left(\frac{-Q_{kT}}{k}\right),$$
(1)

где \dot{p} — скорость нормальной деформации ползучести; σ_0 — приложенное к образцу нормальное начальное напряжение; Q — энергия активации; k — постоянная Больцмана; T — абсолютная температура; α и β — константы материала; n, s, m, r — показатели степени. В модели [2] введён структурный параметр повреждённости ω , который характеризует растресканность материала и равен относительной площади поперечного сечения образца, занятой трещинами. Каждому состоянию повреждённости соответствует значение из диапазона $0 \le \omega \le 1$; $\omega = 0$ условно соответствует неповреждённому материалу при t = 0 и $\omega = 1$ в момент разрыва образца при $t = t^*$, где t^* — долговечность образца.

В рамках модели [2] принято, что удельная скорость процесса разрушения, определяющая величину t^* , контролируется не локальными напряжениями вблизи вершин трещин, а средним напряжением на площади, свободной от трещин, $\overline{\sigma} = \sigma_0 / (1 - \omega)$. Поэтому применение модели [2] с параметром ω и условием $0 \le \omega \le 1$ возможно только к \mathbb{C} А. Н. Малка, 2009

112

достаточно неоднородным материалам при $T > T_X$ и оправдано следующим обстоятельством. Поскольку при $T > T_X$ критический размер Орована h_{Op} для трещины может составлять макроскопическую величину [1], то для достаточно неоднородных материалов, в которых микротрещины зарождаются на расстояниях меньше h_{Op} друг от друга, достижение трещинами критического размера просто невозможно. Поэтому материал сопротивляется разрыву до тех пор, пока величина $\overline{\sigma}/2$ не достигнет напряжения течения кристалла τ_T при данной температуре T.

Таким образом, модель [2] описывает механически и математически обоснованную связь между процессами деформации и разрушения. Эта связь осуществляется как на структурном уровне, через параметр ω , так и на уровне механизмов микропластической деформации (МПД), через равенство величины Q в кинетических уравнениях (1). Равенство Q микропластической деформации в вершине трещины и Q для деформации материала в целом также отмечено и в работе [3] при рассмотрении самоорганизующейся системы "вершина трещины — экранирующие дислокации" в области температур вязкохрупкого перехода ΔT_X . К серьёзным недостаткам модели [2] можно отнести использование для описания \dot{p} и $\dot{\omega}$ исключительно параметрических степенных функций с множеством подгоночных показателей степени, которые затрудняют физическую интерпретацию результатов.

Цель настоящего исследования — разработка и экспериментальная проверка модели, описывающей долговечность структурно-неоднородных материалов при ползучести в области $T > T_X$ с учетом физической природы МПД, построение для выбранного объекта исследования диаграмм скорости ползучести и долговечности и определение контролирующих механизмов МПД в исследованной области температур и напряжений.

Модель и теоретическое описание долговечности

Предлагаемая модель, подобно модели [2], основывается на представлениях о роли и количественном вкладе МПД в процесс замедленного разрушения структурно-неоднородных материалов при дислокационной ползучести выше $T_{\rm X}$. Модель включает следующие предположения и допущения.

- 1. Величина атермического обратного скалывающего напряжения τ_G константа исходной структуры материала, постоянна во времени и не зависит от условий эксперимента.
- 2. Считаем, что для достаточно неоднородных материалов при $T > T_X$ локализация деформации возникает на самых ранних стадиях ползучести [1], так что промежутком времени, необходимым для зарождения шейки, можно пренебречь.
- 3. Пусть в стержне, деформирующемся под действием постоянной нагрузки (рис. 1, *a*), плотность подвижных дислокаций ρ = ρ_{x,y,z,t} не зависит от времени *t* и неравномерно распределена только вдоль оси стержня *x*, то есть ρ_{x,y,z,t} = ρ_{x,0,0,0}. При этом считаем, что распределение плотности дислокаций в стержне имеет вид, показанный на рис. 1, *б*, где ρ_{max} максимальная плотность подвижных дислокаций; <u>ρ</u> средняя плотность подвижных дислокаций, равная

Рис. 1. Модель поведения образца под нагрузкой: *а* — расчётная схема; *б* — распределение плотности подвижных дислокаций в объёме стержня.

$$\overline{\rho} = \frac{1}{l} \cdot \int_{0}^{l} \rho_x \partial x$$

Величина $\overline{\rho} \sim b^{-2} \cdot (\tau/G)^m$, где $\tau = \sigma_0/2$ — максимальное скалывающее напряжение; G — модуль сдвига; m — показатель, который может принимать значение от 0 до 2. Величина m = 1 характерна для зернограничных, а m = 2 — для объёмных дислокационных механизмов МПД [4]. При $m \rightarrow 0$ величина $\overline{\rho}$ почти не зависит от величины напряжения τ .

- 4. Накопленная элементарным объёмом $\Omega_x \partial x$ пластическая деформация *p* вызывает сужение эффективного сечения Ω_x и определяет величину повреждённости ω : $\omega = 1 1/(1 + p)$.
- 5. Скорость деформации объёма $\Omega_x \partial x$ (рис. 1, *a*), как следует из работ [4—6], с учётом возможности скольжения дислокаций при $\tau^* \to 0$ за счёт термических флуктуаций в противоположном направлении можно выразить формулой

$$\dot{p}_x = 2\Gamma \frac{\rho_x}{\overline{\rho}} \left(\frac{\tau}{G}\right)^m \exp\left[-\frac{U^*}{kT}\right] \operatorname{sh}\left[\frac{V^*\tau^*_x}{kT}\right],\tag{2}$$

где Г — константа скорости деформации; U^* — эффективная энергия активации (э. а.) МПД в ненагруженном кристалле при T = 0 К; τ^* зависимое от координаты x эффективное скалывающее напряжение, которое из-за пластического сужения эффективного сечения Ω_x равно $\tau^*_x = \tau \cdot (1 + p_x) - \tau_G$; p_x — деформация объёма $\Omega_x \partial x$; $V^* = U^*/(\tau_{T=0} - \tau_G)$ — эффективный активационный объём (а. о.); $\tau_{T=0}$ напряжение течения кристалла при T = 0 К.

- Пусть *r* координата по оси *x* шейки с ρ_r = ρ_{max}. Тогда разрыву стержня предшествует накопление в объёме Ω_r∂*x* критической деформации *p*_{кр}, которая определяет момент достижения напряжения течения τ_T и образование магистральной трещины.
- 7. Величина $\tau_T = U * (1 T/T_S)/V * + \tau_G$ [4], где T_S критическая температура, при которой количества тепловой энергии в кристалле достаточно для преодоления дислокацией препятствия без дополнительного приложения внешнего напряжения.

В соответствии с предлагаемой моделью (рис. 1, *a*) скорость нормальной деформации ползучести стержня можно записать в виде

$$\dot{p} = \frac{2\Gamma}{l} \left(\frac{\tau}{G}\right)^m \exp\left[-\frac{U^*}{kT}\right] \cdot \int_0^l \frac{\rho_x}{\overline{\rho}} \operatorname{sh}\left[\frac{V^*\tau^*_x}{kT}\right] \partial x \,. \tag{3}$$

Если пренебречь относительным удлинением стержня и считать, что на установившейся стадии ползучести локализация деформации пренебрежимо мала ($p_x = 0$), то минимальная скорость ползучести

$$\dot{p}_{\min} = 2\Gamma \left(\frac{\tau}{G}\right)^m \exp\left[-\frac{U^*}{kT}\right] \operatorname{sh}\left[\frac{V^*(\tau - \tau_G)}{kT}\right].$$
(4)

В работе [6] показано, что при напряжениях $\tau > 1,5 \tau_G$ значения, рассчитанные по формуле (4), хорошо совпадают с выражением

$$\dot{p}_{\min} = \Gamma \left(\frac{\tau}{G}\right)^m \exp \left[-\frac{U^* - V^*(\tau - \tau_G)}{kT}\right].$$
(5)

В рамках предположений и допущений, принятых в данной модели, долговечность стержня t^* равна долговечности объёма $\Omega_r \partial x$ с наибольшей плотностью подвижных дислокаций $\rho_r = \rho_{max}$, имеющего соответственно наибольшую скорость деформации. Поэтому долговечность стержня t^* можно определить из дифференциального кинетического уравнения, полученного из выражения (2):

$$\dot{p}_r = \frac{dp_r}{dt} = 2\Gamma q \left(\frac{\tau}{G}\right)^m \exp\left[-\frac{U^*}{kT}\right] \operatorname{sh}\left[\frac{V^*(\tau(1+p_r)-\tau_G)}{kT}\right],\tag{6}$$

где $q = \rho_{\text{max}} / \overline{\rho}$ — коэффициент локализации деформации; p_r — деформация в шейке. Интегрируя уравнение (6) с граничными условиями

$$p_r = \begin{cases} 0 & \text{при } t = 0, \\ p_{\kappa p} & \text{при } t = t^*, \end{cases}$$

получим выражение для долговечности стержня при ползучести

$$t^* = \frac{kT}{2q \,\Gamma \,V^*} \cdot \frac{G^m}{\tau^{m+1}} \exp\left[\frac{U^*}{kT}\right] \ln\left[th\left(\frac{V^*(\tau \,(1-p_{\kappa p})-\tau_G)}{2kT}\right) \right/ th\left(\frac{V^*(\tau-\tau_G)}{2kT}\right) \right].$$
(7)

Поскольку в формулу (7) входит параметр граничных условий $p_{\kappa p}$, определяющийся величиной $\tau_T = f(U^*, V^*, T_S)$, то её можно использовать только для уточнения величин активационных параметров. Практический интерес представляет выражение для долговечности стержня, полученное интегрированием уравнения (6) с граничными условиями

$$p_r = \begin{cases} 0 & \text{при} \quad t = 0, \\ \infty & \text{при} \quad t = t^*. \end{cases}$$

Оно имеет вид

$$t^* = -\frac{kT}{2 q \Gamma V^*} \cdot \frac{G^m}{\tau^{m+1}} \exp\left[\frac{U^*}{kT}\right] \ln\left[th\left(\frac{V^*(\tau - \tau_G)}{2kT}\right) \right].$$
(8)

При напряжениях $\tau > 1,5 \tau_G$ в кинетическом уравнении (6) функцию $2 \operatorname{sh}[f(\tau)]$ можно заменить на $\exp[f(\tau)]$. Тогда долговечность стержня

$$t^* = \frac{kT}{q \,\Gamma \,V^*} \cdot \frac{G^m}{\tau^{m+1}} \exp\left[\frac{U^* - V^* \left(\tau - \tau_G\right)}{kT}\right]. \tag{9}$$

При этом величина Г для материала является структурночувствительной характеристикой и при изменении структуры и механизма 115 МПД может изменяться на несколько порядков. Поэтому для удобства обработки экспериментальных результатов по формулам (8) и (9) запишем $\Gamma = v_D \exp(S/k)$, (10)

где v_D — характеристическая дебаевская частота колебаний атомов; S — множитель, имеющий размерность энтропии.

Произведение формул (5) и (9) даёт соотношение, подобное соотношению Монкмена—Гранта:

$$\dot{p}_{\min} \cdot t^* = \frac{kT}{\tau} \cdot C , \qquad (11)$$

где $C = (q V^*)^{-1}$ — константа. Поэтому данная модель может быть использована для анализа и экстраполяции данных только в случае соблюдения этого соотношения.

Методика определения активационных параметров

Пусть экспериментальные данные по длительной прочности подчиняются закону (8). В случае большого разброса в значениях t^* установить общие для выражений (5) и (9) параметры можно методом наименьших квадратов. Для этого считаем, что в выбранном нами диапазоне температур и напряжений величины искомых параметров U^* , V^* , Γ и q постоянны, а ошибки их величин подчиняются нормальному закону распределения. При небольших значениях t^* линии экстраполяции уравнений (8) и (9) полностью совпадают. Тогда, разделив формулу (5) на (9) и прологарифмировав полученное выражение, имеем уравнение, которое при заданном показателе m позволяет определить величины U^* , V^* , Γ и q:

$$\ln\left(\frac{\dot{p}_{\min}kT}{t^{*}} \cdot \frac{G^{2m}}{\tau^{2m+1}}\right) = \ln\left(q\Gamma^{2}V^{*}\right) - \frac{2U^{*}}{kT} + \frac{2(\tau - \tau_{G})V^{*}}{kT}.$$
 (12)

Предположим, что имеется $N \ge 3$ экспериментальных точек, причём не менее двух точек при $T_1 = T_2 = T = \text{const}$ и $\sigma_1 \ne \sigma_2$ и не менее одной при $T_3 \ne T$. Запишем матрицу из N логарифмических уравнений, которая в общем виде имеет вид

$$\ln(q\Gamma^2 V^*) + a_i \cdot U^* + b_i \cdot V^* = c_i \quad (i = 1, 2, ..., N),$$
(13)

где *i* — порядковый номер условного уравнения; $a_i = -2/(kT_i)$; $b_i = 2(\tau_i - \tau_G)/(kT_i)$; $c_i = \ln(G^{2m}(\dot{p}_{\min})_i kT_i)) - \ln(t^*_i \tau_i^{2m+1})$. Нормальные уравнения к матрице (13) имеют вид

$$\begin{cases} \ln(q\Gamma^{2}V^{*}) \cdot N + U^{*} \cdot \sum_{i=1}^{N} a_{i} + V^{*} \cdot \sum_{i=1}^{N} b_{i} = \sum_{i=1}^{N} c_{i}; \\ \ln(q\Gamma^{2}V^{*}) \cdot \sum_{i=1}^{N} a_{i} + U^{*} \cdot \sum_{i=1}^{N} (a_{i}^{2}) + V^{*} \cdot \sum_{i=1}^{N} (a_{i} \cdot b_{i}) = \sum_{i=1}^{N} (c_{i} \cdot a_{i}); \\ \ln(q\Gamma^{2}V^{*}) \cdot \sum_{i=1}^{N} b_{i} + U^{*} \cdot \sum_{i=1}^{N} (a_{i} \cdot b_{i}) + V^{*} \cdot \sum_{i=1}^{N} (b_{i}^{2}) = \sum_{i=1}^{N} (c_{i} \cdot b_{i}). \end{cases}$$
(14)

Задавшись величиной показателя m, значение которого выбираем из условия максимума коэффициента корреляции между расчётными и экспериментальными значениями, и решив эту систему уравнений, определим значения U^* и V^* .

Величину q определим из соотношения (11):

$$q = \frac{k}{NV^{*}} \cdot \sum_{i=0}^{N} \left[\frac{T_{i}}{(\dot{p}_{\min})_{i} t^{*}_{i} \tau_{i}} \right].$$
 (15)

Величины Γ_i и S_i для *i*-го испытания рассчитаем из выражений (8) и (10) соответственно:

$$\Gamma_{i} = -\frac{kT_{i}}{2 q t^{*}_{i} V^{*}} \cdot \frac{G^{m}}{\tau_{i}^{m+1}} \cdot \exp\left[\frac{U^{*}}{kT_{i}}\right] \ln\left[th\left(\frac{V^{*}(\tau_{i} - \tau_{G})}{2kT_{i}}\right) \right], \quad (16)$$

$$S_i = k \cdot \ln[\Gamma_i / \nu_D]. \tag{17}$$

Тогда константа

$$\Gamma = \frac{1}{N} \sum_{i=1}^{N} \Gamma_i .$$
(18)

Соответственно

$$S = k \cdot \ln[\Gamma/\nu_{\rm D}]. \tag{19}$$

Поскольку изотермические линии, построенные на диаграмме долговечности по формулам (8) или (9) с использованием величины *S*, отмечают только 50%-ную вероятность разрыва образцов, то для практических целей прогнозирования безотказной работы изделий необходимо знать среднее квадратичное отклонение величины *S*

$$\Delta S = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (S - S_i)^2} .$$
(20)

Зная ΔS и коэффициент Стьюдента, можно качественно прогнозировать вероятность отказов (разрывов) образцов.

Материал и методики исследования

В качестве материала для исследования использовали эвтектический сплав состава (% (мас.)) 86,7Mg—12Al—1,3Ca¹* [7] (далее сплав), предназначенный для работы в интервале температур 150—200 °C. Образцы сплава предварительно гомогенизировали при 410 °C в течение 20 ч. Стандартные испытания на растяжение проводили в соответствии с ГОСТ 9651-84. Исследование поверхности разрушения образцов выполняли на сканирующем электронном микроскопе JEOL JSM6490 LV. Величину атермического нормального напряжения ($\sigma_G = 2\tau_G = 24,77$ МПа) определяли методом релаксации напряжений [5]. Для дальнейших расчётов из литературы использовали данные для магния: b = 0,321 нм — вектор Бюргерса; $\Theta_D = 406$ К — дебаевская температура; $G \approx 16$ ГПа — модуль сдвига при 200 °C. Из диаграмм фазового равновесия, температура ликвидуса для сплава 88Mg—12Al равна $T_{nn} = 590$ °C.

Эффективность предложенной модели определяли из оценки корреляции между расчётными t^*_p и $(\dot{p}_{\min})_p$ и экспериментальными значениями t^*_3 и $(\dot{p}_{\min})_3$. С этой целью проводили испытания на длительную прочность по ГОСТ 10145-81 при 150—250 °C (то есть при

^{1*} Здесь и далее состав сплава приводится в % (мас.).

 $T > T_X$). Параметры в уравнении (12) находили методом наименьших квадратов.

Результаты и их обсуждение

Температурная зависимость свойств исследуемого сплава при растяжении (рис. 2) типична для материалов с вязкохрупким переходом [1]. При $T < T_X \approx 330$ K (60 °C) происходит переход от вязкого к квазихрупкому разрушению. В области температур ΔT_X (60—120 °C) наблюдается зона смешанного разрушения, а область, характерная для вязкого разрушения, находится выше 120 °C. Следовательно, в исследованном на длительную прочность интервале температур 150—250 °C разрушение образцов сплава также носит вязкий характер.

Этот вывод подтверждается результатами электронной фрактографии (рис. 3). На рис. 3, *а* показан излом, характерный для квазихрупкого разрушения. При этом разрушение протекает по границам эвтектических колоний. На рис. 3, *б* виден излом с отчётливо заметной вязкой составляющей разрушения (ямочный рельеф). На поверхности излома присутствуют дисперсные эвтектические частицы размером 2—5 мкм, которые, как и в модели Екобори, являются местами заторможенного сдвига и, следовательно, источниками зарождения трещин. Далее процесс вязкого роста и слияния микротрещин протекает в α -Mg матрице и заканчивается разрывом образца.

Рис. 2. Температурные зависимости свойств сплава 86,7Mg-12Al-1,3Ca при растяжении: 1 — относительное сужение ψ ; 2 — истинный предел прочности σ_{BH} ; 3 — условный предел прочности σ_{BP} ; 4 — условный предел текучести $\sigma_{0.2}$; 5 — предел упругости $\sigma_{Y\Pi}$.

Рис. 3. Поверхность разрушения образцов сплава 86,7Mg-12Al-1,3Ca после испытания на растяжение при температурах 20 (*a*) и 250 °C (*б*). **118**

Результаты эксперимента и аппроксимации приведены в табл. 1, результаты расчёта для m = 0, 1 и 2 — в табл. 2. Из табл. 1 и 2 следует, что рассчитанные в соответствии с предложенной моделью t^* и \dot{p}_{\min} хорошо совпадают с экспериментальными значениями при m = 0. Величина m = 0 для этого сплава указывает на слабую зависимость плотности подвижных дислокаций от напряжения. Высокое значение коэффициентов корреляции $R_{t^*} = 0,9935$ и $R_{p'} = 0,9934$ (табл. 2) свидетельствует о том, что предложенная модель физически и математически правильно выражает связь между деформацией и разрушением при $T > T_X$. Этот факт даёт основание полагать, что по изотермическим линиям скорости ползучести (рис. 4, a) и долговечности (рис. 4, b), построенным по результатам расчёта (табл. 2), можно с достаточной степенью надёжности определять сопротивления ползучести и пределы длительной прочности для исследуемого сплава в областях 0,49—0,61 T_{nn} и (0,94—5,6)·10⁻³ τ/G .

При этом полученная величина а. о. ≈25b³ характерна как для поперечного скольжения, так и для механизма движения дислокационных атмосфер. Рассчитанная э. а. 142кДж/моль близка к э. а. объёмной

Τ,	σ_0 ,	Эксперимент		Модель (5), (9) при <i>m</i> = 0		Погрешность
°C	МПа	$\dot{p}_{ m min}$, ${ m c}^{-1}$	<i>t*</i> э, ч	\dot{p}_{\min} , c^{-1}	<i>t*</i> р, ч	для <i>t*</i> , %
250	30	$2,187 \cdot 10^{-6}$	22,067	1,050.10-6	27,997	31,228
	45	$5,605 \cdot 10^{-6}$	5,124	$4,985 \cdot 10^{-6}$	6,293	28,591
	60	9,354·10 ⁻⁶	1,857	$1,269 \cdot 10^{-5}$	1,920	8,616
	70	$1,9.10^{-5}$	1,263	$2,345 \cdot 10^{-5}$	0,916	-23,595
	80	$4,672 \cdot 10^{-5}$	0,497	$4,209 \cdot 10^{-5}$	0,448	-4,829
	90	$5,915 \cdot 10^{-5}$	0,154	7,536.10-5	0,222	52,597
	100	$1,468 \cdot 10^{-4}$	0,172	$1,348 \cdot 10^{-4}$	0,112	-30,814
200	50	$2,636 \cdot 10^{-7}$	85,411	2,629.10-7	101,133	23,455
	70	$1,059.10^{-6}$	21,997	9,866·10 ⁻⁷	19,728	-6,055
	90	$3,188 \cdot 10^{-6}$	4,925	$3,579 \cdot 10^{-6}$	4,238	-9,462
	100	$6,049 \cdot 10^{-6}$	1,578	$6,807 \cdot 10^{-6}$	2,006	34,030
	115	$1,771 \cdot 10^{-5}$	0,770	$1,785 \cdot 10^{-5}$	0,665	-8,701
	130	$4,802 \cdot 10^{-5}$	0,263	$4,683 \cdot 10^{-5}$	0,224	-9,506
	140	$6,582 \cdot 10^{-5}$	0,121	8,906.10 ⁻⁵	0,109	-4,132
150	95	8,357.10-8	109,158	1,185.10 ⁻⁷	108,500	4,071
	110	$4,062 \cdot 10^{-7}$	37,754	3,482.10-7	31,878	-11,268
	130	$1,131 \cdot 10^{-6}$	7,959	1,466.10-6	6,406	-15,002
130	150	$6,101 \cdot 10^{-6}$	1,583	6,173·10 ⁻⁶	1,319	-11,623
	170	$2,513 \cdot 10^{-5}$	0,334	$2,599 \cdot 10^{-5}$	0,276	-11,677
	180	5,223.10-5	0,079	5,333.10-5	0,127	72,152
$\frac{175}{180} = \frac{2,51510}{5,223 \cdot 10^{-5}} = \frac{0,554}{0,079} = \frac{2,57510}{5,333 \cdot 10^{-5}} = \frac{0,270}{0,127}$ $\frac{1}{N} \sum_{i=1}^{N} \left(\frac{t*_{P} - t*_{\mathcal{B}}}{t*_{\mathcal{B}}} \right)_{i} \cdot 100\%$						0,021
	20,4					

Таблица 1. Результаты эксперимента и аппроксимации данных

119

	-	-	
Расчётные параметры	При <i>m</i> = 0	При <i>m</i> = 1	При <i>m</i> = 2
U^* , кДж/моль	141,94	138,78	135,61
V^{*}, b^{3}	25,393	21,253	17,114
τ _{<i>T</i>=0} , ΜΠα	293	340,2	410,2
q	3,165	3,788	4,697
Γ , c ⁻¹	2,353·10 ⁸	$4,67 \cdot 10^{10}$	$8,97 \cdot 10^{12}$
S, Дж/(моль·К)	-77,048	-32,159	13,346
ΔS , Дж/(моль·К)	0,444	0,6323	0,896
$R_{p'} = f(\ln[(\dot{p}_{\min})_{\rm P}]; \ln[(\dot{p}_{\min})_{\rm P}]]$	0,9934	0,9843	0,9686
$R_{t^*} = f(\ln t *_{\mathrm{P}}; \ln t *_{\mathfrak{P}})$	0,9935	0,9891	0,9795

Таблица 2. Результаты расчёта

Рис. 4. Диаграммы скорости ползучести по выражению (5) (*a*) и долговечности по выражению (9) (*б*) для сплава 86,7Mg—12Al—1,3Ca.

диффузии алюминия в магнии 143кДж/моль [8]. Так же, как и в работах [8, 9], это позволяет сделать вывод о том, что контролирующим механизмом МПД в магниевых сплавах системы Mg—Al—Ca при 150—250°C и $\sigma_0 > \sigma_G$ является движение дислокационных атмосфер, аккомодированное объёмной диффузией алюминия в магнии с э. а. 142кДж/моль.

Выводы

Предложена модель, описывающая долговечность структурнонеоднородных материалов в условиях дислокационной ползучести выше температуры вязкохрупкого перехода T_X . При этом аналитические выражения долговечности получены в рамках предположения, что для $T > T_X$ ползучесть и сопротивление разрушению контролируются одним и тем же механизмом МПД.

Проверка эффективности модели на эвтектическом сплаве 86,7Mg— 12Al—1,3Ca в областях 0,49—0,61 T_{nn} и (0,94—5,6)·10⁻³ τ/G показала хорошую корреляцию между экспериментальными и расчётными долговечностью ($R_{t^*} = 0,9935$) и минимальной скоростью ползучести ($R_{p'} = 0,9934$). Для этого сплава построены диаграммы скорости ползучести и долговечности при 150, 200 и 250 °C.

Установлено, что в исследованной области температур ползучесть и замедленное разрушение контролируются протекающим в α -Mg матрице **120**

вязким, то есть аккомодированным объёмной диффузией алюминия в магнии с э. а. 142 кДж/моль и а. о. $\approx 25 b^3$, движением дислокационных атмосфер.

- 1. Владимиров В. И. Физическая природа разрушения металлов. М.: Металлургия, 1984. 280 с.
- 2. *Работнов Ю. Н.* О разрушении вследствие ползучести // Прикладная механика и техн. физика. 1963. № 2. С. 113—123.
- 3. *Ткаченко В. Г., Максимчук И. Н., Трефилов В. И.* Дислокационная теория формирования истинного разрушающего напряжения в области хрупкого перехода кристаллов // Докл. АН СССР. 1991. **320**, № 4. С. 873—876.
- 4. *Фрост Г. Дж., Эшби М. Ф.* Карты механизмов деформации / Пер. с англ. Бернштейна Л. М. Челябинск: Металлургия, 1989. 328 с.
- 5. Ивенс А., Роулингс Р. Термически активированная деформация кристаллических материалов // Термически активированные процессы в кристаллах. М.: Мир, 1973. С. 172—206.
- 6. *Мильман Ю. В., Трефилов В. И.* О физической природе температурной зависимости предела текучести // Механизм разрушения металлов. К.: Наук. думка, 1966. С. 59—76.
- 7. *Пат. 79413 України*. Магнієвий сплав, стійкий до повзучості / В. Г. Ткаченко, О. М. Малка, І. М. Максимчук та інш. Опубл. 11.06.2007.
- Pekguleruz M. O. and Kaya A. A. Creep resistant magnesium alloys for powertrain applications // Proc. of the 6th Internat. conf.: Magnesium Alloys and Their Applications (18—20 November 2003, Wolfsburg (Germany)) / Wiley-VCH Verlag GmbH & Co. KGaA. — Weinheim, Germany, 2003. — P. 74—93.
- 9. Малка А. Н. Механизмы релаксации напряжений в новых конструкционных магниевых сплавах системы Mg—Al—Ca // Металлофизика и новейшие технологии. 2006. 28, спец. вып. С. 201—207.