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We consider the energy stored in a one-dimensional ballistic ring with a barrier sub jected to a

linearly time-dependent magnetic flux. An exact analytical solution for the quantum dynamics of

electrons in the ring is found for the case when the electromotive force multiplied by the electron charge,

e€, is much smaller than the interlevel spacing, A. Electron states exponentially localized in energy

space are found for irrational values of the dimensionless ratio A =A/2¢€. Relaxation limits the dynamic

evolution and the localization does not develop if A is sufficiently close to a rational number. As a result

the accumulated energy becomes a regular function of A containing a set of sharp peaks at rational values

with small enough denominators (fractional pumping). The shape of the peaks and the distances between

them are governed by the interplay between the strength of backscattering and the relaxation rate.

PACS: 73.40.—c¢, 73.20.Dx

1. Introduction

Physical properties of mesoscopic system are
strongly influenced by quantum interference of
electronic states [1]. Anderson localization of elec-
trons [2], universal fluctuations of conductance [ 3],
as well as periodic magnetic field dependence of
thermodynamic- and transport properties of multi-
ply connected devices (e.g., metallic rings) are
important examples.

Previous extensive studies in mesoscopic physics
were concentrated mainly on thermodynamics, as
well as on linear response of nanostructures to dc or
slowly time-varying electrical and magnetic pertur-
bations. At the same time, relatively little is known
about the nonlinear response of mesoscopic systems
to a time-dependent bias. In general, an electron
driven by an external time-dependent force does not
conserve the energy. In spite of the fact that energy
is not conserved, interference processes remain cru-

cially important if the phase breaking rate is much
less than the rate characterizing dynamical redistri-
bution of the electron wave function between differ-
ent states in energy space.

In this paper, we consider an example of such a
system, namely a single-channel mesoscopic ring
subjected to a non-stationary perpendicular mag-
netic field, linearly dependent on time. We concen-
trate on the energy accumulation in such a system
as a function of time. To investigate the role of
interference, we take into account electron
backscattering from a single potential barrier («de-
fect»), embedded in the ring. Tt is shown that
tuning either the time derivative of the external
magnetic field variation, or the transmission ampli-
tude through the barrier (by the gate potentials)
one can influence the interference pattern, and in
this way change the dynamics significantly.

Disordered conducting rings have been exten-
sively discussed in connection with energy dissipa-
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tion in mesoscopic metallic systems [4,5]. Gefen
and Thouless [6,7] have suggested that randomly
distributed impurities lead to the so-called dynami-
cal localization of electrons in energy space. This
phenomenon, similar to Anderson localization in
real space, should exist even in ballistic rings, i.e.,
when the elastic mean free path is much bigger than
the ring’s diameter. To be more precise, the electron
energy as a function of time should saturate rather
than increase without bound (as is expected to
happen in a perfectly ballistic ring without any
impurities at all [8]). In the saturation regime the
time-averaged electric current vanishes. Conse-
quently, a slow-varying magnetic flux ®(¢) through
the ring induces a circular slowly varying current
only in the presence of phase breaking processes.
The role of these processes was analyzed numeri-
cally in Refs. 9, 10.

Dynamical localization in energy space, as well
as Anderson localization in the real space, occurs
due to destructive interference of partial waves
with random phases forming the electron state.
However, in our case the nature of the randomness
is dynamic (cf. the case of so-called kicked rota-
tor [11,12]). Consequently, the interference is cru-
cially sensitive to the rate of change of magnetic
flux, scattering amplitude against the barrier, etc.
As was shown in Refs. 13 and 14, for certain values
of ®(t) the energy-space propagation of the elec-
trons can in the single-impurity case be mapped
onto the real-space motion of a particle in a peri-
odic potential. Such a Bloch-like state results in the
conductance behavior qualitatively similar to the
one of pure rings.

At the same time, according to numerical stud-
ies [10,13] the electron appears localized in energy
space at other rates of magnetic flux variation; the
energy pumped into the systems saturates as ex-
pected for disordered systems. This result makes the
crucial importance of the rate of change of flux
clear; by tuning the time derivative of the flux (i.e.,
the induced electromotive force in the ring) one can
crossover from one regime to the other, and in this
way control the energy pumping. This is the subject
of the present paper [15].

We shall show that the scenario of the crossover
is as follows. Consider the conductance of the ring,
G, defined as the ratio between the circulating
current and the electromotive force € = - ®/c in-
duced in a ring of radius », by a magnetic field
linearly dependent on time. If scattering is strong,
G 0 € 2. As the scattering strength decreases, a set
of peaks in the G(€) dependence appears. The peaks
correspond to rational values p,/q of the dimension-
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less ratio A = A/2e€, where A = 72'2NF /mr% . Here
N is the number of filled electron states while m is
the effective mass. The shape of the peaks as well as
the distances between them are governed by an
interplay between the height V of the potential
barrier and the relaxation rate, v, the maximum
value of ¢ being determined by the condition
19/q= hv/e€. Here 1 =exp (-€, /€) is the effec-
tive amplitude of Zener tunneling through the en-
ergy gaps in the electron spectrum, €, = V2, 2Ne.
The peak structure near a maximum can be de-
scribed by the interpolation formula

-2 VA +ﬂq2 EVA’ a=A—B.
(7V)? + (e€q)’e? (e€)? q
1)

Here g = G/G, , G, = e?/h, while n(g) is a smooth
function of € If g < 19/¢* the function n ~ 1,
beyond this region it decreases as |¢| increases. As
the barrier becomes more transparent, T - 1, the
inter-peak distance (determined by the maximum
value of ¢) decreases. Finally, the peaks overlap
forming the conductance g = A/fv independent of
the barrier’s properties.

To understand the result conjectured above let us
consider the electron energy levels in the vicinity of
the Fermi level, E , where the energy dispersion
can be considered as linear. In a ballistic ring, one
has then two sets of adiabatic energies E/(®) corre-
sponding to clock- and counterclockwise motion
(Fig. 1). The scattering from the barrier opens gaps
for the flux values E; = E + IA/2,1=0, £1, £2, ...
the energy levels for clockwise and counterclock-
wise motion coincide. Consequently, the energy
pumping into the system by a slowly varying mag-
netic flux can be mapped onto the one-dimensional
motion of a quantum particle in the field of peri-
odically placed scatterers (cf. Refs. 6, 7, 13). Lan-
dau-Zener tunneling (with the amplitude T intro-
duced above) through the gaps corresponds to
forward scattering while reflection from the gaps is
s
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ig. 1. Diagram showing coincidence of flux-driven energy lev-
els (corresponding to clockwise and anti-clockwise motion of

electrons around ring) at a special flux value (cf. text).
C
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kscattering. The important difference from the
usual impurity problem is that there is no transla-
tional invariance at an arbitrary value of the driving
force €. This invariance is only present for rational
values p,/q of the dimensionless ratio A [13]. In this
case we arrive at a superlattice containing g «impu-
rities» per unit cell. As a result, the motion along
E-axis is described by g allowed bands, the «veloc-
ity» being vy =E~ M/t (here
ty=h/e€ =®,/® is twice the time interval
between two sequential Landau-Zener scattering
events). Since the upper bound of the Brillouin
zone is 4717/qA, the corresponding bandwidth for
the motion along E-axis is W = vg 4m/gA =
= 4mim9,/t, q. At rational values p/q of the quan-
tity A the electron experiences 2p rotations around
the ring while the enclosed magnetic flux changes
by g quanta. As a result the «motion» of the system
along FE-axis can be mapped onto the motion of
a quantum particle in a one-dimensional periodic
potential, the corresponding eigenstates being ex-
tended. If p/q is irrational the equivalent potential
is quasi-periodic. It turns out that in such a case the
corresponding states are then localized (see below)
in spite of the fact that there is no real disorder in
the system. The localization length in energy space,
Ry, » can be estimated for A =p/q +¢, | <<1/q
as follows. At finite € the phase mismatch with
respect to the case of rational A =p/q can be
ascribed to a quasiclassical potential U(E) = eaE
with a = 81%,/At,, . This potential gives rise to band
bending which creates semiclassical turning points
for the modes propagating along the E-axis. The
localization length can be estimated as half the dis-
tance between the turning points produced by the
upper and lower band edges, R, = W,/2a le| =
= At9/4q l¢|. Consequently, the localization time is
tloc = 4Rloc /UE ~ /CI|£|'

The manifestation of localization in the energy
pumping depends on the product v, .. At
V t,. >> 1 localization has no chance to develop
and the band picture of energy pumping is relevant.
The conductance is estimated as (cf. with Ref. 7)
G = P /€2, where P is the average energy accumula-
tion rate. The quantity P, in its turn, is determined
as V(OE)N, . Here OF ~ v /v is the energy accu-
mulated by a single state, while N ¢(8E) ~ OE /A is
the number of involved states. It follows that
g~ 1%(0/Mv). If v ¢, << 1, on the other hand, G
is determined by hops between intraband localized
states. In this case, &F ~ 2R|,., and we obtain
g ~ VAT /(e€ge)?. These estimates are consistent
with the first term in Eq. (1).
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The paper is organized as follows. In the follow-
ing section the theoretical model is described and
basic expressions for the electrical current are ob-
tained. These expressions are analyzed and dis-
cussed in Sec. 3, the details of calculations being
outlined in Appendices.

2. Theory
A. The model

The following model is employed. The electron
system is described by the Hamiltonian

Ht, 0)=- b0, 3 2+ 0 Hi @) @)
oD%  fog

z imp
Here o, are Pauli matrices. We are interested in the

current, averaged over the time 7 ,

t

+

1 .
I(t) = % J' dt' Tr pj (3)
t_

where t, =t £t,/2,

i =(e/m) 1A, §]

is the current operator. The single-electron density
matrix, p, is calculated from the equation

A~

B _ s g v -

where £, is the Fermi function.

B. The average current

The formal solution of Eq. (4) can be expressed
in terms of the evolution operator u(t, t'), which
satisfies the equation

du(t, t) .
in T dt H u(t, t)

with the initial condition (¢, £) = 1. It has the form

t

o) = vJ'dt' D U, vy [l H W, v) - (5)

The average current can be expressed through the
Heisenberg operators for the current, 7(t), and the
velocity in energy space, o(t),

J(t) = a*(t, 0) ju(t, 0)
o(t) = u*(t, 0) [l H(B)] ult, 0)
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as

t ¢

+

I(t) = ;0 J dt' J' de eV Tr () o)) . (6)

Using the symmetry property of the Hamilto-
nian (2)

It 9) e = H (t+t,,0)  (7)

one obtains the symmetry properties of the opera-
tors u, p and v:

ult +ty , ¢+ t) = e u(t, t') e,

Pt + 1) = ¢ p(r) &% , ®
ot +t) =TT,
where operator Tis
T = e, 0) . 9)

Using (7) and (8) it is easy to prove that the
average current (3) is  time-independent,
I(t) = const =1. Having in mind the symmetry
properties (7) and (8) it is convenient to divide the
integration interval (-, ¢') in (6) into the intervals
—ty/2-mty<t"<t,/2-mty, m=0,1,... In
this way one can express the average current I as

o)

I= S eV Ty (f“’”ﬁ’”ff) = Tr }1 , (10)

m=0
where v = Vt,/2, while
t,/2
7 1 -Vt >
f=fojdte i,
~t,/2
t,/2
f:J'dt et o(t) 1)
~t,/2
ty/2 t,/2
A 1 NA A
Ji=+ J' dt J' dt' eV it o(t') .
0
_to/z t

Thus the average current is expressed in terms of
the operators J, #, J, defined along the time
interval —t,/2, t,/2 which are dependent on the
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dynamics between the successive Landau-Zener tun-
neling events, and by the operator T which de-
scribes the long-time dynamics. Below we shall
show that long-time behavior of the system is actu-
ally determined by the eigenstates |B0and eigenval-
ues exp (if) of the unitary operator T.

C. Analysis of the operator T

As was shown above, one has to analyze the
unitary operator T in order to understand the long-
time dynamics. Its eigenstates and eigenvalues are
determined by the equation

T |B0= exp (i) 8O (12)

In the following, we restrict ourselves to the case of
weak scattering, i.e., we assume that the relevant
matrix element V (which corresponds to a momen-
tum transfer ~2p) is much smaller than the inter-
level spacing, A. For |V| << A the impurity poten-
tial is important only near the crossings of
«clockwise» and «counterclockwise» adiabatic
terms, that takes place at the times ¢, = mt; /2. As
a result of scattering, gaps are created in the adi-
abatic spectrum at #=1¢ . Beyond the adiabatic
approximation, these gaps can be penetrated by
Landau-Zener tunneling.

Consequently, one can discriminate between
rather large time intervals of ballistic evolution
(with the duration ~t,/2) and small intervals of
Landau-Zener tunneling. The typical duration of
the later intervals is < Vi, /A (cf. with Ref. 16).
Thus at At/ >> 1 the Landau-Zener tunneling is
indeed essentially confined within narrow intervals
and therefore can be described in terms of the
scattering matrix

~

S =exp (i0y) [V1 — 1% exp (6, 0) + ito,] . (13)

The physical meaning of T is the probability ampli-
tude for Landau-Zener «forward scattering», i.e., to
the transition into the state with the same angular
moment while traversing the interval of non-adi-
abatic motion. It turns out that the quantities of
interest here are independent of the phases 8, and
8, . For simplicity we put 6, =6, =0.

Having in mind the periodicity of ¢ we introduce
the vector basis

| eii(N F+n)¢
, tl=
n T

In this representation, the operator T (9) can be
treated as an operator acting on direct product n
and pseudo-spin (s = *) spaces,

I

ag [0
wo sl g
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~ — ~ . 4 ~
T=V1-128™%0e"™ +

+ 4T z 301 0 eliman IAQJ_r e2iman (14)

+

The operators R , and n are defined as

fei In, sO=|n 3 1,s0, #nln, sO=n|n, sO,

a is the fractional part of the quantity A = A/2e€
introduced above, while o, = (0, * io ) /2.

The most interesting 51tuat10n is the case of weak
relaxation, vt, << 1. This inequality means that
the relaxation time is much longer than the interval
between successive Landau-Zener transitions. It can
be shown by a direct calculation that if this inequal-
ity is met then the operators J and f acquire the
form [17]

J=1,vads,,,

n,n

F=vaO 0 » B9 »
where I, = lela/7 is the amplitude of the persistent
current while

~

: .. N
V=4(0,-S0,8Y=v0,-tVi-T0,. (15)

Under the same conditions Tr ] (=1, 1
The unitary operator T (as it can be shown by
direct calculation) possesses the properties:
b T D - —hita ] O N = T
R_. TR, =e T, o, ™ n)o, = T(n) .
These properties result in the following relations
between the eigenstates of the operator T

lpl?,(n + m) = lpl?,—4mm(n) y m= 07 i1y

(16)
0, Ws(-n) = Y_g(n) .

At irrational values of a these relations allow one
to generate a complete set of eigenstates provided
g, i known (see Appendix A). Hence, in this case
the spectrum of T can be expressed in the form
exp (if3}), where

B;—'=i[50(a) —4mar, r=0,+1,£2, ..

At the same time it is evident that at rational values
a = p/q the operator T, accordmg to (14), possesses
the translational symmetry, R TR 7= T Conse-
quently, the eigenstates of the operator T have the
Bloch form while the spectrum of 7" can be repre-
sented by a band structure. In this case the relations
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(16) also generate a complete set of eigenstates
provided structure of one band is known.

Using (10), (12) one can express the average
current in terms of eigenvalues and eigenfunctions
of the operator T

(W), Vi ()W (0), Visy(0))
1 —exp [-2v +i(B - B)]

1

— 2
= '[ + R
IO
B.B.n

(17)

where we denote (a,b) the scalar product in pseudo
spin space.

Using the equality V2= originating from the
definition (15) and the properties (16) of the eigen-
functions Wg (n) we can express the constant T2 in
the form

2= 5 (W), Vi)
BB
(for any », »'). In the limit v << 1 we get the

following expression for the average current

1 \Y
== Q2= ,
I, % | Bl v2 + sin? CDl3 (18)

where

0y = (W (), Vo) , @ =5 (BB
n

and lpBO(n) is any solution of the Eq. (12) (as
follows from (16), the expression (18) does not
depend on the choice of B ).

To find the eigenstates and eigenvalues of the
operator T explicitly it is convenient to introduce
the operators

Ao DelT/2 O + Tl

U,=1+ € 0+Dsin@mn—82 O,

- B O 0
(19)

L=0_0,0 eim”+SOJr o [ e iman+ip/2

As follows from the definition (19)

. .~ eia/2 + T
Ull=1- ¢ 0+Dsin5mm—ﬁ2 O,
- - O O
~ 1 ~ . . .
1= SIED (0.0, ST0e™™" +0g,0 0 eiman=iB/2y,
=T

By direct calculations one can show that the opera-
tor T - e’ can be rewritten in the form

A
~ ~ ~

T-eP=Q[R, U, +U_ L™, (20)
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where the operator @ is

~

O = (itSo_ 0 e2iman R Q2imany [ -1 4

+ (180, O 2R e2imany [ U1 R_

From the definition (20) and Eq. (12) one obtains
the equation for the auxiliary function d p(n) =

= Llyy(n),
[R, U, + U_]dy(m) =0

which is equivalent to the set of equations for the
components d, p(n) = (s, dB(n)). The set reads as

diyﬁ(n) + di,B(n T 1)+

22 [ +
+ eT singmn Bz Dd s =0 @D

Introducing the function

+l3|:m% if m is even
Bm) = (22)
On+10
l3 Oy O if m is odd
O

one can reduce the set of difference equations (21)
to a single equation for B(m)

E@DDI@D
I:I

B(m + 1) + B(m — 1) +

2 ima,/?2 0 _ N
+ 2 sin [Tum + B mDB(m) =0. (23)
T 0 2 g

Thus, the vector equation (12) is reduced to the
scalar equation (23) for B(m). Its solution allows
one to determine both the eigenstates and eigenval-
ues of T (see Appendix B).

The results are different for the cases of rational
and irrational a.

1. Case of irrational a-values. According to our
analysis (see Appendix B)

B=PBr=xTu-4mar, r=0,=%1,%2, .. (24)

At B = 1 the eigenstate has the form

21
oF iTan(2nt1) ; [g-ik+ix(k)
- —i k(2n—1)
W, J'a'k e et (25)
where
1186

® 1t cosl(k - T/2)

X(R) = - Z 1 sin Tl (26)
=

The infinite series (26) converges for almost all
irrational values of @, and (k) is an analytic func-
tion (see Appendix B). Consequently, all eigen-
functions are exponentially localized, the localiza-
tion length R, . in energy space being

R2 = A2[( n® |30~ (B 2 |B3] =

R E
z sin? Tul + oM.

O
=

| | o

s
s
g

One can see that in the vicinity of rational values
p/q of a the localization length R, . diverges as
At /(2rygla - p/ql) in agreement with the qualita-
tive estimates given above.

2. Rational values of a(=p/q). Since the problem
is translationally invariant in n-space the eigen-
states can be labeled by a quasi momentum X
(0 < X<2m/q). The spectrum is now given

by [18] B = BX( 40,
Bx(K) = 2m%+ o

L2
— arcsin [Iq sin =+
g

tyg (17C- 2mar + Tf)D

(27)

where r =0, 1, ..., g-1.
An expression for the Bloch function wﬁ(”) for
the case of rational a-values is given in Appendix B.

D. Final results

In the strong localization limit (v - 0) one
obtains the following expression from Eq. (18) for
the current (and dimensionless conductance) (see
Appendix C)

-2, g AR, O
I=1,v R , g=ThY —— R .(28)
TR (e (b 1L

Consequently, in the <irrational» case the average
current tends to zero, when v - 0.

In the «rational» case the current can be ex-
pressed as
I _1-Vi- . D v
7.~ f Z d Kot .’7C| P NITSE

0 V2 +
720 v2 + sin’ &

(29)
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B - BHAD (

® ) D Qg =Y @ V)
7=0

< 4+

with the help of (16) and (27). Here @:(n) is the
Bloch amplitude corresponding to the reigenstate
lp;—“yc(n). The first term in Eq. (29) determines the
contribution from the intraband transitions to the
average current. Formally, it tends to infinity when
v - 0. Consequently, the intraband transitions de-
termine the singular behavior of the current in
the rational case. These conclusions are in agree-

V=0.05

/1,

S N B~ OO

1
€
1
t
\
i
t
1
t
1
€
1
€

/1,

— = M

7=03
1

p/q

Fig. 2. The normalized current /1 as a function of a = p/q
lfor differentNLandau-Zener tunneling amplitudes 1, I, = le|A/7.
The values v =0.05 (upper panel), 0.2 (middle panel), 0.5

lower panel) for the dimensionless relaxation rate was used.
Arrows indicate the positions of maxima.
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tions in Ref. 13.

An exact expression for the eigenfunction Bz(n)
shows the limiting transition to the expression
(25) as g, p - o, p/q = const. The current calcu-
lated according to Eq. (29) also remains continu-
ous. Thus, Eq. (29) (with large enough p and ¢q)
can be used as a good approximation for irrational
a-values. The results of such a calculation are
shown in Fig. 2.

3. Discussion and conclusion

The following two assumptions have been implic-
itly made in our consideration: (i) the electron
dynamics are governed by a linear dispersion law;
(ii) the energy gaps as well as the scattering matri-
ces S are the same for all the energy levels involved.

Assumption (i) is valid if the number of involved
states (limited by the relaxation rate) is much
smaller than N,. This is the case if
(EV/A)2(A/68)NF >> 1. The first factor in this
product is small while the two others are large.
However, it can be concluded that the criterion can
still be met under realistic experimental conditions.

Assumption (ii) is valid if the Fourier component
of the impurity (barrier) potential,
V,=1 V() eind g, is essentially n-independent
for the relevant interval of n, dn < 1,/vt, . This is
the case if the scattering potential is confined to a
region of width 8¢ << 2mwt, . Note that the in-
equality vf, <<1 is essential for maintaining a
noticeable energy pumping.

If there are two point scatterers in the system the
distance between them may be treated as the width
of one barrier potential. So in the case of well
separated impurities (3 ~ 1) the interference from
different point scatterers will generate a quasiperio-
dic dependence of the gaps V, O cos (nd9). This
circumstance will generate an additional quasiperi-
odic disorder in scattering (nondiagonal disorder).
The problem whether this type of disorder is enough
for localizing electrons in energy space at any value
of the flux rate needs further considerations.
Nowever, for an increasing number of scatterers the
randomness in the energy gap distribution will
increase tending to make the distribution truly
random. This would strongly affect the «fractional»
regime of energy pumping and presumably suppress
the absorption peaks in Fig. 2. This crossover from
the picture considered in this paper to a case of
more than one scatterer is a way to introduce
disorder into the problem [6].

Another approximation is that we have allowed
for relaxation in the simplest possible way by using
a single relaxation time in the Eq. (4) for the
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density matrix. This assumption is adequate if the
relaxation is caused by a transfer of the electrons in
real space between the ring and a surrounding
reservoir. If the electron energy spectrum in the
reservoir is continuous, then the lifetime of an
electron state in the ring with respect to this mecha-
nism is almost independent of its quantum numbers.
The mechanism discussed above allows us to de-
scribe electron states in the ring as pure quantum
states, the relaxation rate being the decay through
escape to the reservoir. The exact results obtained
above are relevant for the case when such an <es-
cape» mechanism dominates. Internal inelastic re-
laxation processes in the ring can in principle lead
to a significant difference between phase- and en-
ergy relaxation rates. Such a situation requires a
separate treatment. However, in the most interest-
ing case of efficient Landau-Zener tunneling, the
intrinsic inelastic processes must involve large mo-
mentum transfer and therefore they are strongly
suppressed [8].

In conclusion, the quantum electron dynamics
problem in a single-channel ballistic ring with a
barrier, subjected to a linearly time-dependent mag-
netic flux has been solved exactly. Exponential
localization in energy space has been proven. Fi-
nally, we have shown that the dc-current exhibits a
set of peaks with fractional structure when plotted
as a function of the induced electromotive force.
This structure is strongly sensitive to the barrier
height, as well as to the relaxation rate.

This work was supported by the Swedish Royal
Academy of Sciences (KVA), The Swedish Research
Council for Engineering Sciences (TFR) and by
the Research Council of Norway. We also acknow-
ledge partial financial support from INTAS grant
No 94-3862.

Appendix A

To prove that the functions {y,(n)} form a com-
plete set it is necessary to check the Parseval
identity

S WP 0 ww) =3, , 1.

rE

As it follows from Eq. (16),

(A1)

W) = W) . WL () =0, [W(-n)]".

Therefore, one arrives at the set of equalities
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S [Wm170 W) = 0, S W) O [wi(-n)1', =
=0, Y W) 0 141 o, =

T
=0, 5% Wm0 ¥ a, .
on d
Having in mind, that
. S
X+0yX oy—ITrX,
one finally obtains
> W17 0 W) =1 > Tr (W17 0 g =
r,x r

A

=1y W), W) =3, ,1.
s
In this way the Parseval identity (A.1) is proved.

Appendix B
We search for a solution of (23) in the form

2n

By(n) = eminan’/2 ‘!' dk e (k) . (B.1)

Substituting (B.1) into (23) one gets the following
equation for the 21eperiodic function uﬁ(k):

uB(k + Tl'ﬂ) — ei)\+iG(k+)\/2) uﬁ(k _ Tl'ﬂ) , (B2)
where

L

The ways to solve (B.2) are different for irrational
or rational a.

a) Irrational a

In this case one can look for the solution of (B.2)
in the form

uB(k) =exp [ikr + ixB(k)]

where Xg(k) is 2meperiodic continuous function and
r is the arbitrary while number. XB(k) is determined
by the following difference equation with constant
coefficients:

Xg(k + ) = Xg(k = T@) = A = 21ar + G(k +\/2) .
(B.4)
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This equation has solutions if and only if the right
part is orthogonal to all the solutions of uniform
equation

flk+ 1) - f(k-T) =0 (B.5)

If @ is an irrational number one can easily check
that there is only one solution of Eq. (B.5) within
the class of integrable functions, namely
f(k) = const. Keeping this fact in mind we integrate
both parts of (B.4) over the variable k from -Tt to
1 to find the value of A at which the solution of
(B.4) exists. Substituting (B.3) for G(k) we get
A =\, = 2mar and, as a consequence, the expression
24) for the eigenvalues of operator 7.

Solving Eq. (B.4) at A=A, by the Fourier
method, one gets the following expression for the

function x(k) = X,(k)

® 1 cos (k- Tur-
X =-y 5 =N

=1

2 (B

sin Tl

It is known (see, e.g., Ref. 19) that for almost all
irrational numbers @ (that means excluding a set of
irrational numbers of zero measure) the inequality
la = p/ql > C/q? can be satisfied. Here p, g are
integer numbers, while C depends only on a. One
can show that this inequality leads to a convergence
of the series (B.6) for almost all a. As a result, the
function u (k) can be analytically continued into
the region

Int<Imk<-InT.

Because of that the function B (n) given by (B.1)
decays as a T I at o oo, and therefore the
eigenstates of operator T are exponentially local-
ized.

b) Rational a =p/q

In this case Eq. (23) is symmetric with respect to
translation n - n + 2g. Therefore its solution has
the Bloch form, and as a consequence the function
u (k) defined by (B.1) appears singular. Thus at
ratlonal a =p/q one can look for the solution of
(B.2) in the form

uB(k) = exp [ikr + i{(k)] x

XZE@1H§+'ZC mm+% (B.7)

=0

O(x) is a delta function. Substituting this anzatz into
the (B.2) and using the relationship
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X [l
o) - =) 0o 5 - ,
Z %IH % mm[ﬂ] Z %Hl 9 + T Tl'ﬂmE

m=0

we reconstruct it as
0, (B.8)

+Z("—myy%:

DT} = exp ik + Ta) -

g-1
O rk
DGy o6
go Dmg

-
—expz[i{(k Ta) + A — 2Tur + G %+25+/\E|2—ﬂtj|%
0“ m
where
G(k) = Gy(k) + \(R) ,
21
— i ! —i k_k’ U —
A(k)_ZnZIdk emimak k) Gk =
0
2 1 sin g(k - /2)
= — arctan .
q 1 =17 cos g(k - /2)
To obtain (B.8) we used the fact, that
O A - I
exp iA S@‘ ZD exp iA Bizx[mx
O O [
g-1
O
Zé@mg ——Tram% 0.
m=0 a

From Eq. (B.8) one can see that it is enough to find
(k) to satisfy the equation 22{C} = 0 and therefore,
similarly to the case of irrational a, the problem is
reduced to a difference equation with constant coef-
ficients,

((k +Tu) - (k- Tu) =

A
=A- 2Trar+G%a+ZD+/\ 372%5 (B.9)
O O

At rational @ =p/g Eq. (B.5) has the solution
f(k) = exp ilgk, [ =0, +1, £2, ... Consequently, the
r.h.s. part of Eq. (B.9 ) must be orthogonal to this
function rather than to a constant as in the case of
irrational . One can check that the integral of the
r.h.s. part of (B.9) times f(k) =exp (ilgk), 1 # 0
vanishes forany A. Integrating Eq. (B.9) over & one
gets the dispersion equation for A( X)),
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- X0
A = 2mar + A BTKFO . (B.10)
0 0

If A(X) satisfies this equation, the solution of (B.9)
is

- - -
Zr(k) __ z TT cos l(k — Tar — /2) (B
=1

sin Tl

Here the prime indicates that the terms with
l=mqg, m=1, 2, ... are omitted.
From (B.10) one gets the following expression

for A = )\r(]C):
MK = 2mar + % arcsin @’7 sin% (X - 2mar+ T[)%
(B.12)

for r=0,1, ..., g-1 and, as a consequence, the
expression (27) for B (X).

The expression for the Bloch function () corre-
sponding to the eigenvalue A _ (X)) =A(X), has
the form

W(n) = ei?@ Fimann+1)
g-1 —ig +{(E)
—simamn + it H (K) e Y
x Z e ™o 7 -ma) O (B.13)
Z (0 G
where
X ANX)
Efn(m:_j"'zngi p) ,
1,/2
cos g( K+ T[)/ZD/

g
t = + 19
S g ! cos gAN(X) 2 E
and {(k) = {,_(k) is defined by Eq. (B.11). In the
limit p, g - o p/q = const one gets the expression
(25) for the case of irrational a.

Thus, the expressions (B.11), (B.12), (B.13)
together with (22) provide 2g eigenstates of the
operator T for a given value of %K which plays the
role of quasimomentum. Consequently, one obtains

the complete set of eigenfunctions of operator T
while X scans the interval 0 £ X< 21/9.

Appendix C: Limit of strong localization

To provide the strong localization limit v - 0),
one formulates the following statements.

Lemma 1: For unitary operator P, defined ac-
cording to

1190

15 = §0+ O e2"m’2 + 30_ O eim’% ]AQ_ eim’% ,
there is the following operator equality
PP =ema T

Consequently, operator P translates one of the
eigenstates of the operator T(BD to another state,
IB + 2] . .

Lemma 2: The operators T, ;1, P, V defined
above, meet the operator equality

V = P*aP - TP*aPT*
(the proof can be obtained by direct substitution).

Basing on these statements one can express the
matrix element Qg in Eq. (18) as

Q =B, . Vpo=[1 - PP p, , Prappo=

=11 -e®P) i, + 2m), 2@ + 2ra)0.

Consequently, we can rewrite the Eq. (18) for the
average current in the form

~

I - V sin® @

1,742 1% - ;
0 5 V2+sin2CD[3

; (C.1)

where

ﬁg = Z (lIJBO(n), ;leg(n)) :
n
Therefore, in the strong localization limit one has

1 ~ N .
1 =S (W (), i)Wl it () =
np#p,
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