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Formation and growth dynamics of domains
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The formation and the growth dynamics of 180 °-domains in ferroelectrics in external field are

investigated with the use of the statistical approach within the Ginzburg-Landau model. It is shown that

despite the polarizing role of an external field the formation of an intermediate polydomain structure is

found to be more preferable than immediate transfer to the monodomain ordering state.

PACS: 64.60.—1i, 64.80.—v

Introduction

The fact that the really observed structure of
solids is often nonequilibrium is largely determined
by the dynamics of transformations occurring there.
These transformations may have the character of
both phase separation [1] and ordering [2]. In mul-
ticomponent alloys both of the aforesaid processes
can proceed simultaneously [3]. In this paper we
are concerned with the ordering processes and in
large measure their dynamic aspect, which consists
in tracing the paths of establishing one or another
stable or metastable state and in revealing the
reasons influencing this choice.

The structural phase transitions in ferroelectrics
associated with the appearance of macroscopic re-
gions of the crystal where the spontaneous electric
polarization is not equal to zero are the basic object
of our investigation in this work.

To characterize quantitatively the state change of
a system passing through the critical temperature
point T, of a phase transition, one or more values
called order parameters are introduced. In the case
of the ferroelectric phase transition the projection
of the polarization vector on a certain crystal-
lographic direction is used as a long-range order
parameter.

It is known [4] that, in the absence of external
field at the temperatures below T, , i.e., in low-
symmetrical phase, the states correspond to the
different (with respect to the sign) values of the
order parameter +n. In the early stages of the
ordering, when the relaxation of the short-range
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order has already been proceeded basically, the
appearance of the structures of the type + n or — n
proves to be quite accidental and therefore the
regions of both the signs £ n (called usually 180 °-
domains) must exist in different points of the crys-
tal. It is obvious that the spatial size of the domains
is assumed to be much larger than the lattice pa-
rameter. As was shown by us earlier [2], the evolu-
tion of these inhomogeneities of the order parameter
in the absence of the external field will proceed
along one of two basic paths, depending on the
initial conditions — either the formation of a sin-
gle-domain state or the formation of a polydomain
structure followed by increasing (for diffusion
time) the spatial scale of this structure up to the
crystallite size.

Our goal is to clear up how the long-range order
evolution character will change in an initially disor-
dered system if at the moment of quenching is
finished some external field € conjugating with the
order parameter n will be imposed on it rapidly
enough. The question is, if the homogeneous (mono-
domain) ordering will occur, or can a sufficiently
developed polydomain structure formed, in some
situations? In the case of a ferroelectric an uniform
steady-state electric field should be meant when
speaking about an external field. The time of its
establishing (1, = €/€) is considered to be small in
comparison with the time of the forming (1,) and
certainly it is much less than the time of coalescence
(t,) of the domain structure (1, << 1, << T).



General description of the model

In order to describe the ordering within the
framework of Landau theory we shall assume fur-
ther that, despite the proximity of temperature to
the critical one (T, - T)/T, << 1 the system lies
outside the fluctuation region. In this situation a
nonequilibrium addition to the thermodynamic po-
tential in the presence of external field can be
presented in the form of Ginzburg-Landau func-
tional [5]:

o, o) = % A+ § B+ 5 (0nyY-nEddv
(1)

Here the coefficient A is proportional to (T, - T).
Since the characteristic energy scale in this problem
is T, it may be considered that B ~T_, and
6~T, 7(2) , where 7 is the interaction radius; i.e. the
value of the order of interatomic distance; E is the
external field, which we believe for the simplicity
to be homogeneous one.

In order to describe the dynamics of nonequili-
brium system we shall use the Landau-Khalatnikov
equation [2] for a nonconserved order parameter:

on__,0o®
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ot y5ﬂ 2)

where y is the kinetic coefficient which can be
represented in the form (TTC)_1, so T can be inter-
preted to be the time required for an elementary
rearrangement of the system (for example, a dis-
placement of an atom or interchange of neighboring
atoms).

If, now, distance is measured in units of r, and
time in units of T, then Eq. (2) can be written, in
view of Eq. (1), in the form:

on/0t=0n+on-nd+¢. (3)

Here A is the Laplacian and we have introduced two
parameters: a = (T, - T)/T, is a dimensionless pa-
rameter that characterizes the proximity of tempera-
ture T, up to that of the specimen cooled, to the
temperature of ordering T, ; € = E/T, is the exter-
nal field in corresponding units.

It should be emphasized that the initial state of
order-disorder system must be given statistically,
considering that, first, inhomogeneities of an order
parameter are formed as a result of rapid cooling of
specimen randomly arranged in space; second, there
are thermal fluctuations of order parameters all
along. The spatial scale of appropriate inhomogenei-
ties is assumed to be much larger than the lattice
parameter.
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To solve the problem it is necessary to have an
initial condition to Eq. (3), i.e. the meaning of
order parameter n(r, t) at the initial moment of time
should be given, n(r, 0) = ny(r). Since this initial
function is random, the order parameter is a random
function of coordinates for ¢ # 0 as well. Therefore,
Eq. (3) will be describe spatial-time evolution of
the order parameter random field operating in the
spatially uniform (and determinate) field €.

The derivation of basic equations

To describe the relaxation processes taking place
in the system undergoing the phase transition, there
is no need to know the spatial distribution of the
order parameter n(r, t) in detail over the total
specimen. Therefore, we shall deal with the search
for the main physically significant characteristics of
this function in the subsequent discussion, such, for
example, as the average (over crystalline grain)
value of the order parameter M(r, £)0= n(£) and the
two-point correlation function

[&(r, E(r', H0= K(s, 1),

where we have introduced the centered order pa-
rameter &(r, t) = n(r, £) - N(t), and have used the
standard assumption that the order parameter field
is statistically uniform.

The equations for n(f) and K(s, t) are derived
from the basic equation (3) both by averaging the
equation itself and by averaging after premultiply-
ing both sides of Eq. (3) by n(r', t).

To obtain a closed system of equations for n(t)
and K(s, t), the possible asymmetry are neglected
here, i.e., we suppose that

[E2(r)&(r)0= 0 (5)

for all the r and r'. For correlation function of the
type @3(r, t)&(r', )Owe shall use the unlinking of
the form

E(r, E(r, 0= EX(OME(r, t)&(r, t)0=

s=r-r, (4)

= K0, H)K(s, ) . (6)

One of the justifications for this procedure is the
availability of only one spatial scale in the problem
considered.

It would appear natural, then, that the func-
tional dependence of the fourth order correlation
function [E3(r)&(r')Jof |r — r'| would be an accurate
copy the functional dependence of the distance
between points r and r' for the second order corre-
lation function F(r)§(r')O= K(r - r|). It has been
known that for the Gaussian random field the
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unlinking (6) will be an accurate one, if the right-
hand side of Eq. (6) is multiplied by a coefficient
which is equal to three. In our case the Eq. (6),
without any doubt, is an approximation, in which
the choice of the coefficient is determined by the
fact that in the problem considered, for long times
in particular, the one-point distribution function is
significantly different from Gaussian form. It fol-
lows from physical considerations based on the
equivalency of states that are equal in magnitude
but opposite in sign, of order parameters, that for
the sufficiently long times (¢ >> a™') are close to
the curve with two sharp maxima at the equilibrium
values of the order parameter. Here, of course, we
are dealing with a centered order parameter §. As it
is immediately evident from the calculation, for
such a distribution function the coefficient men-
tioned above is close to unity.

As a consequence of Eq. (3) and assumptions (5)
and (6), we obtain, finally, the system of equations
for the functions: n(¢) and K(s, £)

= ) (@l - 3K, 7 - +2) | @
K(s, 1) = AK(s, t) + [a = K(0, t) - 3n1K(s, ) .
0 ot (8)

The system of Egs. (7), (8) contains two physically
meaningful parameters: a and €. Owing to the
nonlinearity contained in the right-hand sides of
Egs. (7), (8), our system cannot be solved by ana-
lytical methods. However, as shown in [2], due to
the distinctive degeneracy, the similar system can
be reduced to the system of nonlinear ordinary
differential equations for the average value of order
parameter n(¢) and dispersion of it D = D(t) with
the help of the Fourier transformation of the
Eq. (8) on the spatial variable s

7)
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where the following notations are introduced:
D = D(t) = K(0, t);

alt) = a - 1,/740) . (10)

(9)
303D ,

Here we have used a natural determination of the
correlation radius #(f) by Fourier transform,
K(q, 1), of the correlat1on function:

2 3
2(t) = [Ra 0 dq /[R@ 0 an
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As it is shown in [2], the correlation radius at an
arbitrary moment of time is determined by the value
of the correlation function K(s, £) at the initial
moment of time, i.e. K(s, 0). The last must be
specified as the initial condition of the problem.
The temporal dependence of the coefficient a ¢ , in
accordance with (10), is determined completely by
the evolutionary character of the system correlation
radius 7 (f) (in our case it is associated with the
characteristic spatial scale of ordered region or
domain size).

For all the «acceptables initial correlation func-
tions, K(s, 0), as it is shown in [2], the temporal
dependence of the correlation radius r(t) has the
form:

r(t) = Vri0) + 2t/3 (12)

where 7(0) is the correlation radius of the system at
the initial moment of time (¢ = 0). The last formula
confirms the well-known conclusion that domain
sizes grow with time according to a diffusion law in
proportion to V¢ (provided, of course, that
t >> r2(0)). Thus, the system of equations (9) for
n(t) and D(¢), in the terms of the Eqs. (10), (12),
takes the form

) 1@ =3D0) -+ el

0 (13)
D(?) 2 20y~ —

g =1a= G £+ 7200 = D) - 3721 DO

Asymptotic behavior of system for long-times

It is of greatest interest to study the system of
Egs. (13) close to the ordering temperature T, ,
when a << 1 and the initial correlation length is
not too large, so that the condition
r?(O) << (1/0) << d? can satisfied, where d is the
characteristic crystallite size (we recall that time is
measured in units of T and distance is measured in
units of 7, i.e., the interatomic interaction length).
Then, asymptotically, i.e. at times t >> 1/a, the
system of Eqs. (13) transforms into a system of
equations with constant coefficients

Cin — =
= [(a 3D(f) —=n7)n + €],
e ( (14)
D% = (@ - D(®) - 3TD() |
with the initial conditions
n0)=ny; DO)=D,. (15)
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The solution of the system of Eqs. (14) with initial
conditions (15) allows us to obtain information
about the closing stages of the ordering process.

Let us perform qualitative analysis of the system
(14) with use of the concept of phase pattern [6]
(in the present case, in the variables n and D (see
Fig. 1).

As it is shown, the singular (stationary) points
of the system (14) can be found from the fact that
(dn/dt) - 0and (dD/dt) - 0ast - oo; therefore,

E+an-3Dn-n=0,
Ha-D-3m)D=0. (16)

This is a system of two algebraic equations in
variables n and D. The roots of the above-men-
tioned system yield the coordinates of singular
points in the plane (), D).

For a < 0, i.e. at a temperature above the criti-
cal point, there is only one singular point, which is
a stable node. The coordinates of this point for the
small € are n =¢/Jal, D = 0. This means that irre-
spectively of the initial conditions, the system will
pass into a disordered state. First of all, it should be
noted here that, even though the field € is as small
as possible, the average value of order parameter n
becomes nonvanishing everywhere over the tem-
perature region. Owing to the external field, among
other things, the phase transition appears to be
«blurreds, i.e., it takes place some temperature
interval away from critical point T, .

Fig. 1. Phase pattern of order-disorder system. The singular
points of the system (14) at € = 0 are marked by symbol (X);
the singular points (I-VI) for the system (14) at € # 0 are
marked by circles ( O ) and separatrices are indicated by dot-
ted lines. The bifurcation points (at € =¢,) for the system (14)
(n, and K) are shown by black circles ( e ). Here solid lines
a—c are the phase trajectories as a result of numerical integrat-
ing of the total system (13) for o =0.04; €= 0.001; 7,(0) = 10
at different initial conditions {n,, Dy}: {~0.08; 0.001} (a); {0;
0.003} (b); {0; 0.001} (c).
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For a >0, ie. at T<T_, and not-too-strong
field there is a whole system of singular points.
However, only the points located in the upper
half-plane of the phase pattern (in variables n, D)
will have physical meaning. Let us analyze, ini-
tially, the positions of the singular points in the
case of weak field (¢ << a3/2).

The first singular point 1 [n =—(¢/a), D = 0],
which corresponds to a homogeneous disordered
state, is an unstable node (Fig. 1).

The second point II (n =Va + (¢/2a), D = 0)
corresponds to a homogeneous ordered state
«aligned with the external field» and it is a stable
node (Fig. 1).

The third point IIT (n = —Va + (£,/2a), D = 0)
corresponds to homogeneous ordering, but it is
«opposite to the field». This point is also a stable
node (Fig. 1).

Both the second and the third singular points
correspond to single-domain types of the specimen
ordering.

All the rest of the singular points (with D # 0)
correspond to inhomogeneous ordering, i.e., to one
or the another polydomain structures.

The fourth point IV (N = £,/2a; D = a - 3¢2/4a?)
(Fig. 1) is a stable node and corresponds to the
possibility of the polydomain structure realization.
The fact that n # 0 in this state corresponds to some
non-equivalency of domains of two types. However,
in weak fields this distinction is small (to the extent
of the ratio £/a).

And finally, there are another two singular points of
the saddle type. One of them V («right saddle») with
coordinates (N = Vo /2 - £/4a; D = a,/4 + 3g/4Va)
(Fig. 1) corresponds to a possibility for realizing
such a quasi-stationary polydomain structure, where
the volume fraction of domains of the same type
(e.g., with polarization vector, aligned with field)
substantially exceeds the volume fraction of the
other type domains (opposed to the field).

The other point (<«left saddle») with coordinates
(n=—a,/2 -¢/4a; D = a/4 - 3¢/4Va) (the point
VI, Fig. 1) corresponds to a possibility for realizing
the quasi-stationary polydomain structure as well.
However, in this situation the volume fraction of
domains with the polarization vector oriented oppo-
site to the field substantially exceeds a volume
fraction of domains aligned with the field.

Two separatrices, leaving the origin of coordi-
nates and passing through the «lefts and «right»
saddle points, divide the phase pattern into the
three sectors. The upper central sector (1) is the
«attraction region» of the inhomogeneous (polydo-
main) state, the lower right-hand (2) and lower
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left-hand sectors (3) correspond to two attraction
regions of homogeneous single-domain states. De-
pending on the initial conditions (ﬁo, D,) the phase
trajectories of the system will be located in one of
the above-mentioned sectors. This is illustrated on
the phase pattern (Fig. 1), where, apart from the
singular points founded analytically and the separa-
trices of the asymptotic system of equations (14), a
number of results of numerical integrating (curves
a—c) of the complete system of equations (13) are
presented.

If in the initial state the average value of order
parameter [, # 0] and it is greater than the fluctua-
tions of order parameter, the system will transfer
immediately into one of the single-domain states.
The sign of the order parameter in the state of
thermodynamic equilibrium is determined by what
side of the first singular point the value ﬁo is
located on. We emphasize that the availability of
external field (g # 0), with weak inhomogeneity of
order parameter, will make the system to go over
into single-domain state, even though n, =0. The
choice between two single-domain states is prede-
termined by the field direction.

The deflection of the system to one or another
side in magnitude of the order parameter with
respect to the first singular point can occur, in
general, for various reasons, both random and deter-
minate character.

If, however, at the initial state inhomogeneities
are sufficiently developed and the average value of
the order parameter at the initial moment of time
ﬁo is close to —(¢/a), the developed polydomain
structure will be formed in the system over a time
t ~ a~!. The characteristic size of the domains, just
as the characteristic size of the transition layer
(domain boundary) between them, will achieve the
value of order a~!/? by this moment.

Further, in accordance with (12), the domain
sizes will grow in keeping with the diffusion law
~Vt, while the thickness of the domain boundaries
remains unchanged at the level a=1/2,

Strictly speaking, if the long-range interaction is
not counted, the polydomain state is not stable
thermodynamically. The state of interest may be
considered to be long-lived and its characteristic
lifetime is a1 << ¢ << d2. That is, in the situation
being considered the system will pass to the thermo-
dynamically stable monodomain state as well. How-
ever, this transition does not proceed immediately,
but it goes through the stage of forming and grow-
ing the domains. This growth proceeds for as long
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as the domain sizes will become of the order of the
crystallite size, when by the influence of external
field € the system will give the preference to the
domain of certain sign.

Conclusions

In this paper we have used a statistical ap-
proach [1] to investigate the ordering dynamics
under the second order phase transitions in the
presence of the external field. This has allowed us
to show that the imposition of a not-too-strong field
to the ordering system leads to the asymmetry of
the ordering process, removing the degeneracy on
the sign of the order parameter, i.e. it makes mono-
domain states with the order parameters +n and
- n nonequivalent. However both in the weak field
and at the absence of the field the formation of a
polydomain ordered structure is most likely. De-
spite its thermodynamic instability, the structure of
this kind will evolve rather slowly to the thermody-
namic equilibrium monodomain type of ordering.
The influence of a weak external field on the
polydomain structure lies only in the fact that the
volume redistribution of an energetically disadvan-
tageous regions (oriented opposite to the field) and
advantageous regions (aligned with the field) will
occur in favour of the latter. The homogeneous
(monodomain) state of ordering is realized just in
sufficiently strong fields in excess of the critical
value & (which is generally dependent on the tem-
perature), irrespective of the initial conditions. The
field €, is nothing but a coercive field.
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