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We propose a microscopic theory for the Aharonov-Bohm oscillations, observed by Latyshev et al. in

the magnetotransport experiment in NbSe, with a charge density wave (CDW). CDW slides across an

array of columnar defects in a high magnetic field. For the charge carrying quanta of CDW these defects

are elementary solenoids carrying a magnetic flux. The quantum CDW current acquires a component

oscillating with the flux, with the period hc/2e. Its magnitude is proportional to the concentration of

columnar defects. The lower limit to the phase breaking length for these oscillations is set by the

minimal Lee-Rice coherence length.

PACS: 71.45.Lr, 72.15.—v

The sliding charge density and spin-density
waves (CDW and SDW) in quasi-one-dimensional
metals represent the amazing examples, apart from
the superconductivity, of collective transport by a
moving quantum ground state at high enough tem-
peratures.

The most striking feature is the existence of a
nonlinear dc-current along the high conducting di-
rection produced by the Frohlich collective mode
(see the review papers [1]). The Frohlich conduc-
tivity emerges in electric fields exceeding the
threshold value E; (E > E;). Until recently, all
the CDW-transport experiments had been more or
less successfully explained by the theories which
had considered CDW in a classical manner: either
phenomenologically as a rigid object moving in a
periodic potential, or microscopically, as a defor-
mable medium in which the topologically stable
domain walls (the CDW solitons) serve as the
elementary CDW-charge carriers (see [1]).

The pioneer experiment which had evidently
shown the quantum nature of the CDW-solitons
was performed by Latyshev et al., [2]. A thin film

of a CDW-conductor NbSe; was irradiated by heavy
ions of Xe. The Xe-ions produced an array of
identical parallel tracks [columnar defects (CD)]
piercing the film, and the host lattice inside the CD
was destroyed. The radius R of each CD is of the
order of 100 A. The irradiated film was placed in a
strong magnetic field H =20 T (Fig. 1) and the
nonlinear conductance was measured. In electric
fields above the threshold, E > E., the transport
current appeared to be an oscillatory function of the
magnetic field with the period of oscillation
sHo "
2eTR?

The relative magnitude of the oscillatory com-
ponent of the transport current is of the order
of 0,25%.

The oscillatory dependence on H clearly indi-
cates the Aharonov-Bohm effect (ABE) nature of
the observed phenomenon, the period of the ABE-
oscillations with the magnetic flux being
AD = he2e.
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Fig. 1. Geometry of the experiment [2]. Magnetic field H is
oriented along the axis of the columnar defects of radius R (z
axis), the transport current I flows along the electric field E (x
axis).

The striking feature of this ABE is that it is
observed at such high temperatures (7 = 50 K)
when single-electron ABE is totally suppressed by
the electron-phonon scattering. Therefore, it was
assumed in [5] that those oscillations can be attrib-
uted to the quantum CDW-solitons which encircle
the CDs pierced by the magnetic field thus affecting
the collective Frohlich current. In other words, the
CDs serve as the elementary solenoids for quantum
solitons.

To summarize, the experiment [2] is really the
first evidence for a high-temperature quantum co-
herent effect in a non-superconducting material. It
brings us to a qualitatively new level in under-
standing the nature of a CDW current state: it
demonstrates unambiguously the quantum origin of
a collective current which was masked in all the
previous studies. It demands therefore a new theo-
retical description of transport phenomena in
CDW-conductors.

A theory that aims to describe the ABE in CDW
transport should include the quantum description of
the CDW charge carriers and should explain the
anomalously large CDW phase breaking length
LEPW  strongly exceeding the one for a single
electron transport at such temperatures, which
makes ABE observable at high temperatures.

In this paper we develop such a theory, using the
concepts, formulated in [3,4], where the idea of the
CDW charge carriers quantization has been put
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forward and the persistent current of the CDW-con-
densate has been studied for the first time.

It is well known, that the ABE in conductors can
be observed in two ways: (i) as oscillations of a
diamagnetic moment (of persistent currents) in iso-
lated loops, and (ii) as oscillations of conductance
in open circuits containing loops. As the ABE is
intimately connected to the topological structure of
a charge carrier wave function in a multiply con-
nected conductor, the basic period of oscillations
with flux in both those schemes is the same.

The qualitative theory of persistent currents in
CDW in the idealized model of a single-chain CDW
loop was first proposed by Krive and the author [3]
and was elaborated later on in a series of papers [4].
It was shown there that the persistent current in
CDW is formed by the topologically non-trivial
CDW-excitations, viz, solitons and instantons. The
basic period of the persistent current oscillations
with magnetic flux is found to be ®¢ = hc/2e, just
as in the experiment [2]. Although the measure-
ments of a persistent current in CDW are beyond
the present technology facilities, the understanding
of the role of the topological CDW-excitations in
the ABE is essential for solution of the quantum
transport problem. The qualitative picture of the
AB-oscillations in the geometry of interest was first
discussed by the author [5].

The paper is organized as follows.

In the first chapter, we give a proper method of
CDW quantization and formulate an exactly sol-
vable model of a quantum CDW transport along a
single chain with a loop pierced by a magnetic flux.
Such a loop mimics a columnar defect.

In the second chapter, we propose a model of a
columnar defect in a CDW-material. In the third
part, we show that the long range CDW-coherence
allows to reduce the problem of a transport current
through a dilute array of CDs to the one studied in
the first chapter, and calculate the transport current
oscillating with flux. The relative magnitude of the
oscillatory current estimated along our formulas for
the parameters of the experiment [2] is of the order
of 10721073, which is in a good agreement with the
experimental data.

1. Mathematical formalism. Aharonov-Bohm
oscillations of a CDW transport current in a
toy 1D model

The Peierls-Frohlich  order parameter is
A exp (ip) where A is the gap in a single electron
spectrum and the gradients of ¢ define, via the
Frohlich relations [1], the collective CDW current,
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7, and the charge density fluctuations, p, in a single
chain:

]=_EE, (1a)
_ €09
mox (1b)

where e is the electron charge, and x denotes the
coordinate along the chain.

Note that the Egs. (1) have, at first glance, an
incorrect vector dimensionality. Indeed, the
Eq. (1a) comprises a scalar operator that acts on a
scalar to give a vector quantity, and the Eq. (1b)
comprises the vector operator acting on a scalar to
give a scalar. It is necessarily the case that there is
an implicit direction implied. Such a direction is the
one along the chains. The phase ¢ (the CDW
variable), strictly speaking, is a quantum Bose
field. This can easily be seen in the path integral
formulation of the Peierls-Frohlich problem (see,
e.g., the review by Krive et al. in Ref. 1). Accord-
ingly, the Eqs. (1) are the operator equations. The
measured current is:

. e . .
Jt=—ﬁg£|]=]c+fq, (2)
where the brackets denote quantum averaging. In
electric field above the threshold, E > E , the
transport current (2) has two components: the clas-
sic j, and the quantum, jq . The former is produced
by the mean component of the order parameter, and
the latter by its fluctuations. The theory of a classic
CDW dec-transport is well developed (see [1]). For
our purposes we must find the quantum dc-current
7. expressed in terms of wavefunctions of individual
CDW-charge carriers. In the Aharonov-Bohm ge-
ometry, the wavefunctions are sensitive to magnetic
flux variations providing oscillations of a transport
current. To quantize CDW, we use the Bose-Fermi
duality transformations in 1D [6]. This powerful
tool allows us to map the results of the electron
theory of metals and semiconductors onto quantum
CDW. In particular, quantum solitons of CDW,
which serve as elementary charge carriers, turn out
to be equivalent to spinless conduction electrons in
a 1D semiconductor (see, e.g., [7]). Evidently, the
oscillatory ABEs, existing in mesoscopic conduc-
tors, have their analogs in CDW.

The dual transformations for the normally or-
dered operators are (see, e.g., [7]):

1 —
I 00 = WO (3)
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I 0,9 = -bou,

where  is a two-component Dirac
¢ =y'o, , 0, are the Pauli matrices.

The qualitative picture underlying the transfor-
mations (3) is that the statistics in 1D is ill defined.
One cannot merely place two solitons at one point
which, roughly speaking, allows us to treat them as
fermions. The Eqgs. (3) introduce explicitly the de-
sired description of a CDW in terms of the wave-
functions of the CDW charge carriers (solitons and
antisolitons).

To show how this scheme works, consider the
AB-oscillations of jq in a single chain with a loop,
of a perimeter L, pierced by a magnetic flux ®
(Fig. 2). Consider for simplicity an incommensu-
rate CDW described by Lagrangians:

spinor,

f %
L=N, 5? 07 - (ax¢)2§ (4a)

in linear chains connected to the loop, and

218c2
L=, @8P = 15" 0P 0 @) ()
in a loop.

Here N, = E/O(2UF , O =cy/vp <1 is the pa-
rameter of adiabaticity in the Peierls-Frohlich theo-
ry, ¢, is the phase velocity of CDW.

The Lagrangian (4a) is well known in the theory
of CDW. The Lagrangian (4b) contains the topo-
logical term which describes coupling of a Frohlich
current (1a) to a vector potential A= ®/L in the
loop:

Metal
bank

Metal
bank

Fig. 2. Schematic view of a CDW-transport along a single
chain containing a loop with a perimeter L, pierced by the
magnetic flux ®; j is the transport current density; 6 is the an-
gle variable.
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‘A
L =5 (4c)

The topological term in (4b) was introduced for
the first time in the paper by Bogachek et al.,
Ref. 4. On a microscopic level, it arises nonpertur-
batively due to the chiral anomaly phenomenon in
a1D CDW [7,8]. The doubling of the electron
charge in (4b) is the result of a summation over spin
projections of electrons out of which the CDW is
formed. The effective charge 2e leads to the oscilla-
tions of the persistent and transport currents with
flux with the period @, = hc/2e [4,5].

To obtain the jq one has to find the transparency
of the loop. It is highly unacceptable to do it in
terms of ¢-field using for example the instanton
approach [4]. It is more convenient to use the dual
fermion language in which this problem can be
reduced to the one already solved in Ref. 9. Indeed,
the Lagrangians (4a), (4b) take the Dirac form:

L=NyiBy, oW (5a)

and

. — . €
L=N01L|Jyp %U_lﬁ
g
where Yy = (O'y , €9 0,), M= (¢, x).
The scattering problem of interest has been
solved in Ref. 9 for a nonrelativistic electron. One
can easily show that the results obtained in Ref. 9
remain valid in our case.
The CDW quantum transport current takes the
form [10]:

®3, G0, (5b)
O

2
i@ =5 I de g@f,(6) - fr©)] . (6)

The integration is performed over the energy €.
Here g(g) is the transmission probability, which
depends explicitly on the CDW wave functions,
fr,p are the distribution functions of the left and
right moving dual fermions. For simplicity, we
assume that the relaxation occurs in leads, which
means that

fR,L = fo(a * pUD) ) (6a)

where f, is the Fermi function and v, is the drift
velocity. For sliding CDW, v}, is not zero in elec-
tric fields above the threshold E;. . It is convenient
to rewrite (6) in the form:

[f()(a + PUD) - fo(a - va)]
2poy,

b

i@ =], I de g(e)
(7
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where j, is the classic current at zero temperature
along a chain free of a loop:

P op(E)

8
T - (8

The Fermi energy for dual fermions is of the
order of A. This is the maximum kinetic energy
which the CDW soliton (the dual fermion) pos-
sesses [11]. Correspondingly the cut-off to the Di-
rac theory, for dual fermions is:

. AN _
pF CO GE'() ’ (9)
where &, =fv;/A is the amplitude coherence
length.
The function g(g) was calculated in Ref. 9 to be:

4n? cos? (/) sin® (Tik)

- o (10)
n? sin? (21k) + p*(k, n, D)

g(e)

where
Pk, 0, @) = 5 cos 0 a” = (1= 1) cos (27)
5 d (11)

eL
2Trﬁco

The phenomenological parametern, 0 <n < 1,2,
determines the connection between the linear chain
and the loop. The coefficients a, b are:

a=%H1—mrﬂ—1H b:%H1—mrﬂ+1H

(12)
The value of n will be specified in the Ch. 2.

Note that the Egs. (6) and (10) are valid when
the perimeter of a loop is small compared to the
phase breaking length LgDW. In a sliding 1D CDW
the lower limit to LEPW is set by the Lee-Rice
phase coherence length [ I which is typically 1-
10 pm [1]. This clearly shows why the CDW
ABE is observed at sufficiently high temperatures,
when the single electron ABE, characterized by
Lg) ~103-103 A, is suppressed. A three-dimensional
sample of NbSey is characterized by three coherence
lengths: | along the chains in x-direction, [ along
the y direction and /; along the less conducting
axis, z: [; << [y << l” , and, correspondingly, by
three phase velocities ¢, << ¢, << ¢, . In an actual
experiment [2], the phase breaking length is gov-
erned by the sample thickness d in a less conducting
direction. In this context, the oscillatory effect in
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CDW is the mesoscopic one in spite of it resem-
blance to the flux quantization in superconductors.

Under the conditions of the experiment [2], the
CD hole diameter contains several tens of chains
and the model has to be reformulated keeping safe
two basic features: (i) a qualitative picture of the
quantum transport of CDW along a single chain
[Egs. (6), (10)], and (ii) the long distance phase
coherence in a sliding CDW.

2. A model of a columnar defect in a CDW
material

According to [2], the CD is a real hole with a
diameter 10—-12 nm surrounded by a damaged re-
gion which adds a further 2—4 nm to the effective
diameter.

Consider the distribution of a phase around a
single cylindric CD with the radius R (Fig. 3).
Inside the CD, the host material is destroyed and,
accordingly, A = 0. This local defect creates Friedel
oscillations of the electron charge that compete
with the CDW charge modulation over an atomic
distance scale &, ~ 10 A [12]. The suppressed A

y

Fig. 3. The model of CD adopted in the theory: a) conducting
chains are oriented along the x-axis; b) the real hole; ¢) the
region of the edge states of the width ~&,; d) the interface layer
of the width ~3, around the CD containing large phase gradi-
ents. The high energy heavy ion produces a round hole which
pierces the sample along the z-axis. The CD-hole is surrounded

by a layer of width o, , within which the phase is confined to

L
b =0, (see the text). We assume that the positions of conduct-
ing chains are not disturbed away from the CD: |x| > R |cos 6],
|yl > R |sin 8]. 7°PW is the transport current; 6 is the angle vari-

able.
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causes a strong phase gradients |09 /0r] >> |I|™! lo-
calized around the CD within a strip of width &,
which is of the order of several &, [12]. The poten-
tial barrier created by these phase gradients is of the
order of A [12] (Fig. 4). It separates the phase ¢
inside 8, from the bulk. The local phase ¢ in the
region R+ 0r << R+, is adjusted to a cer-
tain optimal value ¢, that matches the Friedel
oscillations. The value ¢, differs from the one
established in the bulk, its excitations can be re-
garded as the edge states. We make a plausible
assumption that inside the layer ~d, there exists
random 1D chain paths encircling the CD, along
which the CDW current is again given by the
Eq. (1a). The CDW edge state phase velocity along
those 1D paths is ¢ where ¢, <¢ < ¢, . Such ran-
dom chains emerge as the result of a strong damage
of a host lattice caused by a heavy ion. The average
phase ¢ in the bulk away from the CD still remains
correlated over the Lee-Rice lengths [12]. This
qualitative picture is an assumption of our model.
Consider the scattering of the classic and quan-
tum CDW excitations on a CD. In the classical
picture the excitations of ¢, (the edge states) are
confined to a CD in a radial direction, they have
only the azimuthal momenta and do not contribute

”l

CDW edge states

Fig. 4. The potential U created by the CD for the CDW exci-
tations as a function of the radial coordinate r. The destroyed
host material occupies the region » < R. The potential barrier
of the order of A produced by the large phase gradients in the
region R + 3 <r <R +J, separates the edge states localized at
R <r <R +3, from the bulk. R is the CD radius.
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Fig. 5. The trajectories along which the classic current (2) and
quantum current () encircle the CD. L is the classical cur-
rent spreading length (14).

to the current flow. The classic current spreads
around the CD in the way plotted in Fig. 5,a. The
characteristic spreading length L . can be estimated
from the equation of motion for a 3D CDW Lag-
rangian:

Oy 0(2)
L=n,N, J' dxerEx2 ©0.0)? - (0,9)* -

227 0
i N, G bl (1)

where n, is the 2D density of conducting chains,
T, is the critical temperature of a 3D phase tran-
sition, and Z is the number of the nearest neigh-
bor chains. Assuming the thickness of a sample
d <<, and putting 0x ~1/L_, 0y ~ 1/L, we get
an estimate:

CO ar
Lx~LC—~LT>>L, (14)
Y C
where
V2ZT,
Cy_Wa<<CO' (15)

In NbSey ¢, = 0.1¢, . Classic trajectories (14)
contribute to the magnetoresistance but not to
the ABE.
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Contrary to the classic picture, the quantum
CDW-particles encircle the CD in a quite different
way (Fig. 5,b). Quantum particles propagate freely
along the chain away from the CD, then penetrate
under the potential barrier (Fig. 4) and mix with
the edge states localized near the hole. Because the
dispersion of the edge state trajectories is small as
far as & << L and k8, =1, the CDW quanta
encircle the CD along a path of a fixed length L.
Quantum paths obviously contribute to the AB-os-
cillations.

Now we can formulate a quantum model of a
CDW which contains a single CD.

Save N, the excitations of the phase localized
in the chains away from the CD are described by
the Lagrangian:

L= )3 iy, v, 0, , (16)

where n labels the chain. There are Ng chains
which connect the CD:

Ld
Ny=—n,.
* 4™ an
The edge excitations of ¢, are described by the
Lagrangian:

g e 0
L= WY, %u "L q)éu,xgwn » (18)
n

where n runs over the Ld(k;d,) values, dx —
- 1/Rdqg, v —» vp(c/cy).

The phases in all the Ny chains that are con-
nected to the CD (17) are correlated provided
L << ly , d <<, . This means that all the dual
fermions located in these chains have the same
transmission probability g(€) (10), in which & [Eq.
(11)] is replaced by k(c,,/c). Thus, the flux-depend-
ent transport current carried by the bunch of N
chains is nothing but N, jq(tb) where jq(dJ) is given
by Eq. (7). The parameter of transparency n can be
estimated quasiclassically:

0 &, (m N0
r]‘EXPB%D, (19)
O O

where mCDW=O(_2mD, m- is the band mass in

NbSe, . Taking m"”=1.8m, , & =30 A, A =350 K,
o = 0.5 (see, e.g., Griiner [2]), we get:
n = 0.03-0.05 (19a)

for 8,/¢,=6-7 [12,13]. Note, however, that the
ratio 8,/€, was estimated for a point defect. For a
CD, the estimate can differ though not crucially.
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3. Calculation of a flux-dependent transport
current

The total current IPW is the sum over the
single chain currents. At small concentration of
CDs [1] one can neglect the contribution of chains
connecting the different loops (random loop ap-
proximation) we then get

I°PW = Nj_+ > J(®) = ISPW 4 [CDW (@) (20)
loops

where N is the total number of chains in a sample,

CDW— ;
I; =Nj, .
The sum over loops is estimated as
> =NoNep 1)
loops

where N, is the total number of loops (of CDs) in
a sample:

where n, is the concentration of CDs, is the
distance between the electrodes along the x-direc-
tion, L is the size of a sample in the y-direction.
Collecting together Egs. (7), (20), (21) we obtain

L JCDW

fo(a pF UD)]
(23)

To calculate the integral over the energy, we make
use of the periodicity of g(g):

UD)

g(€) = g(e + 21Ty , (24)
where
fic
T =__ (25)
B0 L

Nep =ng Ly L, (22)  is the interlevel spacing in a one-dimensional iso-
lated ring. We get:
(e +ppop) — [y —Ppop)] =
2T[T0
= (€ + €, + 2Ty + Pp o) = fo(€ + €5 + 21aTy = pr )] (26)
7n=—00
where gF is the Fermi energy for dual fermions.
Making use of the Poisson summation formula
S p(n) = J' dnp() +2'y J' dn p(n) cos (21kn) (27)
n =1
we get
°° T = sin (kpgop/T,) sin (ke/T)
> [fyle+ gy + 21Ty + P 0p) — [o(€ + € + 2Tl - pp )] = T, z b (T T,) . (28)
n=-00 b=1
Making use of the inequality v, <<'c, we eventually obtain the following equation for I COW ().
1eDW(gy = "0 T ISPV S | sh™\(1kT/T,) F(®, 1, T,) , (29)
2_'_[ T Z 0 n: 0

k=1
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where

PALU

F(®,n, Ty = J' de sin (ke/Ty) g(e + ) - (30)

In an actual experiment [2], the ratio T /T, = 10 which allows us to keep only the first harmonics with
k=1 in the r.h.s. of Eq. (29). The exponential decrease with temperature is a typical feature of the

AB-transport current (see, e.g.,

[14]), as well as of the persistent current [4].

The integral over the energy (30) has to be calculated at n << 1 [see Eq. (19a)]:

2T[T0

sin (€/T,) sin® ((e + £;),/2T)

F = 4n? cos® (T, ®,) J' de
0

n? sin® (e + €5)/2T) + [cos* (TP,/P) - n

= 31)
—cos ((€ +g5)/2T)]

The main contribution to F comes from those points in which the denominator of the integrand is close

to zero. We get the asymptotes:

2
- 05 m-non H
T 9N sin %DH + T U
0 opd U
0 O O
1 O D - (nt1/4)D,
— F = D1
T, o n cos %D
0
g -
04 O - (n+1/2)d>
O— r]3/2 sin %FDZT[2
V2 0[]

Here n = [®/®] is an integer.

In an actual experiment [2], n, |L = 103-10%
and we obtain the following estimate for the rela-

tive magnitude of the oscillatory component of
ICDW:

ICD W(CD)
CDW
IO

= 1072-1073 (33)

which is in good agreement with the experimental
data [2].

To conclude, we have constructed, for the first
time, a microscopic theory of the AB-oscillations
phenomenon in a transport CDW-current which
flows through a sample containing a large number
of identical tiny holes (CD) placed in a strong
magnetic field. The quantum CDW excitations
view these holes as elementary solenoids which
carry magnetic flux and the quantum transport
current acquires terms oscillating with the magnetic
flux with the period hc,/2e. The oscillatory compo-
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,  when [0 -nd| << no_,

, when |® - (nt}2)® | << n

[0
j—ﬁ, when [® - n®| >> no_,
%

® - (nt 1/4)D] >> no,,

|® - (nt 1/4)d)5| <<no®,

O, |®-nd|>>nd .

(32)

nent of current is proportional to the concentration
of CDs. Because of the long-range CDW rigidity,
all the holes contribute additively to the current
and the oscillations exist at sufficiently high tem-
perature T = 50 K. At such temperatures, the single
electron oscillations, periodic with Ac/e, are expo-
nentially suppressed by the electron-phonon phase-
breaking scattering and cannot be observed.

The presented theory of the ABE in CDW is
based on the quantum description of the CDW
charge carriers in one dimension by means of the
Bose-Fermi equivalence procedure. This method,
together with the idea of a long range CDW coher-
ence within an array of 1D chains, allows us to
reduce this 3D problem to an exactly solvable
model of a single chain connected to a loop pierced
by a magnetic flux. This simple picture gives good
agreement with the experimental data.
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