Энергетический анализ основного состояния трехвершинной модели Поттса

А.Б. Бабаев^{1,2}, А.К. Муртазаев^{1,3}, Ф.А. Кассан-Оглы⁴

¹Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН, г. Махачкала, 367003, Россия E-mail: b albert78@mail.ru

²Дагестанский государственный педагогический университет, г. Махачкала, 367003, Россия

³Дагестанский государственный университет, г. Махачкала, 367025, Россия

⁴Институт физики металлов УрО РАН, г. Екатеринбург, 620990, Россия

Статья поступила в редакцию 23 марта 2018 г., после переработки 13 июня 2018 г., опубликована онлайн 26 сентября 2018 г.

Проведен энергетический анализ основного состояния трехвершинной модели Поттса на треугольной решетке с учетом первых и вторых ближайших соседей с величинами взаимодействия J_1 и J_2 . На основе численного эксперимента выявлены диапазоны существования упорядоченных и неупорядоченных фаз в спиновых структурах, описываемых этой моделью, с величинами взаимодействия $J_1 < 0$, $J_2 < 0$ и $J_1 > 0$, $J_2 < 0$.

Ключевые слова: беспорядок, фрустрации, модель Поттса, основное состояние.

Введение

В последние десятилетия интенсивно обсуждаются фазовые переходы (ФП) и критические явления (КЯ) в магнетиках, описываемых моделями Изинга и Поттса на различных решетках [1-4]. Это обусловлено тем, что спиновые решеточные модели как на двумерных, так и на трехмерных решетках описывают большой класс реальных физических систем: слоистые магнетики, пленки жидкого гелия, сверхпроводящие пленки, адсорбированные пленки и др. [5,6]. Эффекты фрустраций играют важную роль в различных магнитных системах. Экспериментальные [7] и теоретические [8] исследования позволили установить, что фрустрированные системы проявляют необычные свойства, отличные от соответствующих нефрустрированных систем. Антиферромагнетик (АФ) на треугольной решетке является примером фрустрированной спиновой системы. Однако необходимо отметить, что в случае трехвершинной АФ модели Поттса на треугольной решетке при учете взаимодействия только между ближайшими соседями в основном состоянии фрустрации, обусловленные геометрией решетки в случае модели Изинга, отсутствуют и магнитная система упорядочена при конечной температуре. При учете вторых ближайших соседей конкуренция обменных взаимодействий может привести к фрустрациям, т.е. такому пространственному расположению магнитных моментов атомов в кристалле, при котором невозможно одновременное упорядочение всех взаимодействующих спинов (см. рис. 1).

Влияние фрустраций, возникающих при конкурирующих взаимодействиях, на фазовые переходы и особенности термодинамических и магнитных свойств низкоразмерных систем исследовано в работе [9].

На основе точных решений для модели Изинга (с учетом взаимодействий только между ближайшими соседями) на квадратной решетке [10], на треугольной и гексагональной [11] и на решетке кагоме [12] исследованы явления возникновения и исчезновения фрустраций в зависимости от знаков и величин отношений взаимодействий по различным направлениям в решетке. Для 2D трехвершинной модели Поттса не получено ни одного точного решения, вследствие чего для исследования термодинамических и магнитных свойств, а также фазовых переходов в этой модели используются самые разнообразные приближенные и численные методы: кластерный метод [13], низкотемпературные разложения [14], исследование нулей статсуммы [15], разные ренорм-групповые подходы [16,17], многочисленные варианты моделирования методом Монте-Карло [18-20], в которых определяется класс универсальности, род перехода, расчет критических индексов, определение фазовых диаграмм, нахождение мультикритических точек и

Puc. 1. Магнитные структуры в трехвершинной антиферромагнитной модели Поттса с величинами взаимодействий $J_1 < 0$ и $J_2 < 0$ на треугольной решетке. Исходная фаза соответствует параметру $r = J_2/J_1$ в диапазоне 0 < r < 0,2 (a); промежуточная фаза — $0,2 \le r \le 1,0$ (б); конечная фаза — в диапазоне 1,0 < r < 2,0 (в).

даже уточнение точек фазовых переходов до шестого знака [20].

За последние тридцать лет исследованию спиновых систем, описываемых ферромагнитными и антиферромагнитными моделями Поттса на треугольной решетке с взаимодействием между ближайшими соседями, было посвящено значительное число работ [17,18-22], в которых были получены ответы на многие вопросы. Учет взаимодействия вторых ближайших соседей может привести к возникновению фрустраций, что существенно усложняет решение этой модели. Для спиновых систем, в которых возникают фрустрации, основными являются следующие вопросы: какие условия необходимы для существования фрустраций и в каких решетках они могут существовать? Каковы самые общие качественные и количественные критерии? Какое основное состояние спиновой системы? Кроме того, следует иметь в виду, что при исследовании спиновых систем, в которых возможны фрустрации, очень важно, что в системе может существовать огромное количество состояний с низкой энергией, близкой к энергии основного состояния. Эти состояния благодаря ненулевой энтропии S могут вносить конечный вклад в термодинамику даже в пределе низких температур [23]. Следует отметить, что в результате многочисленных исследований антиферромагнитных моделей Поттса на разнообразных решетках обнаружилась замечательная особенность. Треугольная решетка оказалась единственной, в которой наблюдается фазовый переход при антиферромагнитном взаимодействии между ближайшими соседями.

Нами в работах [24,25] на основе метода Монте-Карло (МК) исследовалась трехвершинная антиферромагнитная модель Поттса на треугольной решетке с учетом первых и вторых ближайших соседей в диапазоне значений r = 0-1, $r = J_2/J_1$. Было обнаружено, что в этой модели в интервале изменений величины $0 \le r < 0,2$ наблюдается ФП первого рода, в то время как в интервале изменений $0,2 \le r \le 1,0$ в системе возникают фрустрации и нет ФП. В этих работах подробно не рассматривался вопрос об основном состоянии магнитной структуры, описываемой трехвершинной моделью Поттса на треугольной решетке. Не были получены зависимости энергии основного состояния системы от величины *r* для случаев $J_1 < 0, J_2 < 0$ и $J_1 > 0, J_2 < 0$. Определение основного состояния магнитной структуры, описываемой трехвершинной моделью Поттса, в зависимости от величин и знаков обменных интегралов J_1 и J_2 является главной целью этой работы.

Модель Поттса и метод исследования

Антиферромагнитная трехвершинная (q = 3) модель Поттса на треугольной решетке с учетом взаимодействия вторых ближайших соседей описывается следующим гамильтонианом [5]:

$$H = -J_1 \sum_{i,j} \cos \theta_{i,j} - J_2 \sum_{i,k} \cos \theta_{i,k} , \qquad (1)$$

где J_1 и J_2 — параметры обменных взаимодействий для ближайших и вторых ближайших соседей, $\theta_{i,j}$, $\theta_{i,k}$ углы между взаимодействующими спинами $S_i - S_j$ и $S_i - S_k$, причем $\theta_{i,j}$ принимают три значения 0°, 120° и 240°. Модель Поттса с гамильтонианом вида (1) также хорошо описывает физические свойства многих неупорядоченных структур (см. [26,27]).

Для выполнения условий эргодичности при компьютерном моделировании нами использовался кластерный алгоритм Вольфа [28] в сочетании с классическим алгоритмом Метрополиса методом Монте-Карло [29]. Начальные конфигурации задавались таким образом, чтобы все спины находились в разных состояниях. Для вывода системы в равновесное состояние отсекался неравновесный участок длиной τ_0 для системы с линейными размерами *L*. Этот неравновесный участок отбрасывали. Затем усреднение проводили по участку марковской цепи длиной $\tau = 200\tau_0$. Для самой большой системы L = 120, $\tau_0 = 2 \cdot 10^7$ МК шагов/спин. Кроме того, для повышения точности расчетов усредняли по 10 различным начальным конфигурациям. Затем эти данные использовались для расчета средних значений термодинамических параметров.

Результаты компьютерного моделирования

Для наблюдения за температурным ходом энергии *Е* использовали следующее выражение [30]:

$$E = \frac{1}{N} [\langle H \rangle], \qquad (2)$$

где $N = L_2$ — число узлов решетки с линейным размером *L*.

На рис. 2 приведены температурные зависимости энергии для трехвершинной модели Поттса с величинами взаимодействий $J_1 < 0, J_2 < 0$, а на рис. 3 для случая $J_1 > 0, J_2 < 0$. Зависимость энергии основного состояния от величины r для рассмотренной модели при $J_1 < 0, J_2 < 0$ представлена на рис. 4 и была впервые получена в работе [24]. В этой работе не рассматривались температурные зависимости энергии. Были показаны энергии трех фаз, как функции параметра r: исходной с превалированием ближайшего взаимодействия $J_1E_a(r) = 3J_1(0,5-r)$ (а), промежуточной $E_g(r) = (1 + 1)$ + r)3J1/4 (б) и конечной с превалированием второго взаимодействия $J_2E_f(r) = 3rJ_1/2$ (в). Кроме того, на рис. 4 видно, что существуют две особые точки, r = 0,2 и r = 1,0, в которых происходит смена структур. На основе анализа численных данных, полученных в работах [24,31], можно выделить следующие диапазоны существования фаз в основном состоянии: 0 < r < 0,2 -

Рис. 2. (Онлайн в цвете) Температурная зависимость энергии двумерной антиферромагнитной модели Поттса с величинами взаимодействий $J_1 < 0$ и $J_2 < 0$.

Рис. 3. (Онлайн в цвете) Температурная зависимость энергии двумерной антиферромагнитной модели Поттса с величинами взаимодействий $J_1 > 0$ и $J_2 < 0$.

для исходной (a); $0,2 \le r \le 1,0$ — промежуточной (б) и $1,0 \le r \le 2,0$ — конечной (в) (рис. 1).

В случае сильного (превалирующего) взаимодействия между ближайшими соседями J_1 (r << 1) в основном состоянии реализуется фаза, в которой угол между любыми двумя ближайшими соседями не должен быть равным 0°, так как это энергетически невыгодно. То есть любая пара ближайших спинов не должна быть параллельна. Энергия, приходящаяся на один узел, равна в этом случае $3J_1/2 - 3J_2 = 3J_1(0,5 - r)$. Магнитная структура, соответствующая этим требованиям, изображена на рис. 1(а). Черный кружок означает одно из трех направлений под углом 0°, 120° или 240° относительно произвольно выбранного направления. Серый кружок означает любое из этих трех направлений, но несовпадающее с черным. Направление белого кружка не должно совпадать ни с черным, ни с серым. Из-за перестановок

Рис. 4. (Онлайн в цвете) Энергии фаз для двумерной модели Поттса с величинами взаимодействий $J_1 < 0$ и $J_2 < 0$ как функция параметра r: исходная фаза — красная точечная линия (1); промежуточная фаза — штриховая линия (2); конечная фаза — голубая штрихпунктирная линия (3). Энергия основного состояния — сплошная линия (4) (данные численного метода).

Рис. 5. (Онлайн в цвете) Энергии фаз для двумерной модели Поттса с величинами взаимодействий $J_1 > 0$ и $J_2 < 0$ как функция параметра r: исходная фаза — черная точечная линия (1); промежуточная фаза — красная штриховая линия (2); конечная фаза — зеленая штрихпунктирная линия (3). Энергия основного состояния — черная сплошная линия (4) (данные численного метода).

черных, серых и белых кружков магнитная структура реализуется в шести изоэнергетических конфигурациях.

В противоположном случае при превалирующем взаимодействии между вторыми соседями $J_2(r >> 1)$ в основном состоянии должна реализовываться фаза, в которой угол между любыми двумя вторыми соседями не должен быть равным 0°, а любая пара вторых спинов не должна быть параллельна. Энергия, приходящаяся на один узел, в этом случае равна $3J_2/2 = 3rJ_1/2$, а соответствующая структура изображена на рис. 1(в). Эта структура реализуется также в конечном числе конфигураций, а именно: в 216 = (6³) изоэнергетических конфигурациях.

В промежуточном случае конкуренция между взаимодействиями J_1 и J_2 порождает многочисленные разнообразные фазы. Нами выделено подмножество энергетически наинизших структур, одна из которых изображена на рис. 1(б). Любой конфигурации этого бесконечного подмножества соответствует энергия $3J_1/4 + 3J_2/4 = (1 + r)3J_1/4$.

Зависимость энергии от температуры и зависимость основного состояния рассматриваемой модели для случая $J_1 > 0$ и $J_2 < 0$ от величины r (см. рис. 3 и 5) получены впервые. Как видно на рис. 5 смена структуры происходит в точках r = 0.5 и r = 1.0. В случае сильного (превалирующего) взаимодействия между ближайшими соседями $J_1(r \ll 1)$ в основном состоянии реализуется фаза, в которой угол между любыми двумя ближайшими соседями должен быть равным 0°, так как это энергетически выгодно. Таким образом, любая пара ближайших спинов должна быть параллельной. Энергия, приходящаяся на один узел, равна в этом случае $E_a(r) = (-3 + 3r)J_1$. Магнитная структура, соответствующая этим требованиям, изображена на рис. 6(а). В этом случае рассматриваемая система будет пребывать в ферромагнитном состоянии.

В противоположном случае при превалирующем взаимодействии между вторыми соседями J_2 (r >> 1) в основном состоянии должна реализовываться фаза, в которой угол между любыми двумя вторыми соседями не должен быть равным 0°, а любая пара вторых спинов не должна быть параллельна. Энергия, приходящаяся на один узел, в этом случае равна $E_f(r) = 3J_1r/2$, а соответствующая структура изображена на рис. 6(б).

В промежуточном случае конкуренция между взаимодействиями J₁ и J₂ порождает многочисленные разнообразные фазы. Нами выделено подмножество энергетически наинизших структур, одна из которых

Рис. 6. Магнитные структуры в трехвершинной антиферромагнитной модели Поттса с величинами взаимодействий $J_1 > 0$ и $J_2 < 0$ на треугольной решетке. Исходная фаза соответствует параметру $r = J_2/J_1$ в диапазоне 0 < |r| < 0,5 (a); конечная фаза — $|r| \ge 1,0$ (б); промежуточная фаза — $0.5 \le |r| \le 1,0$ (в).

изображена на рис. 6(в). Любой конфигурации этого бесконечного подмножества соответствует энергия $E_f(r) = -3J_2/2r$. Этот случай требует тщательных исследований с привлечением графического режима для выяснения основного состояния возможных конфигураций, что станет целью другой работы.

Заключение

В настоящей работе на основе компьютерного моделирования проведен энергетический анализ основного состояния спиновых систем, описываемых трехвершинной моделью Поттса с учетом первых и вторых ближайших соседей для случаев $J_1 < 0$, $J_2 < 0$ и $J_1 > 0$, $J_2 < 0$. Результаты энергетического анализа данных свидетельствуют о следующем.

1. При $J_1 < 0$ и $J_2 < 0$ превалирование обменного параметра между ближайшими соседями над параметром между вторыми соседями в интервале изменений величины $0 \le r < 0,2$, а также превалирование обменного параметра между вторыми соседями над параметром между ближайшими соседями в интервале изменений величины $1,0 < r \le 2,0$ не приводит к вырождению основного состояния системы. В рассматриваемых интервалах изменения *r* в системе возникают ФП. Конкуренция обменных параметров первых и вторых ближайших соседей в интервале изменений параметра *r*, $0,2 \le r \le 1$, приводит к вырождению основного состояния системы и ФП отсутствует.

В случае, когда $J_1 > 0$ и $J_2 < 0$ превалирование обменного параметра между ближайшими соседями над параметром между вторыми соседями в интервале изменений величины $0 \le r < 0,5$, а также превалирование обменного параметра между вторыми соседями над параметром между ближайшими соседями в интервале изменений величины $1,0 < r \le 2,0$ не приводит к вырождению основного состояния системы. В рассматриваемых интервалах также возникают ФП. Конкуренция обменных параметров первых и вторых ближайших соседей в интервале изменений параметра $r, 0,5 \le r \le 1$, приводит к вырождению основного состояния системы.

Работа поддержана грантом РФФИ №16-02-00214.

- 1. H.T. Diep, *Frustrated Spin Systems*, World Scientific Publishing Co. Pte. Ltd., Singapore (2004).
- 2. Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, Москва (1985).
- 3. A.K. Murtazaev and A.B. Babaev, JETP 116, 101 (2013).
- A.Б. Бабаев, А.К. Муртазаев, ΦΗΤ 41, 784 (2015) [Low Temp. Phys. 41, 608 (2015)].
- 5. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
- 6. W. Zhang and Y. Deng, Phys. Rev. E 78, 031103 (2008).
- 7. D. Loison and K.D. Schotte, Europ. Phys. J. B 5, 735 (1998).
- 8. Р.С. Гехт, *УФН* 159, 261 (1989).

- 9. A.B. Babaev, T.R. Rizvanova, and A.K. Murtazaev, *Phys. Solid State* **59**, 2444 (2017).
- 10. L. Onsager, Phys. Rev. 65, 117 (1944).
- 11. R.M.F. Houtappel, *Physica* 16, 425 (1950).
- 12. K. Kanô and S. Naya, Prog. Theor. Phys. 10, 158 (1953).
- J. Adler, A. Brandt, W. Janke, and S. Shmulyian, *J. Phys. A* 28, 5117 (1995).
- 14. I.G. Enting and F.Y. Wu, J. Stat. Phys. 28, 351 (1982).
- H. Feldmann, A.J. Guttmann, I. Jensen, R. Shrock, and S. Tsai, *J. Phys. A* 31, 2287 (1998).
- 16. M. Schick and R.B. Griffiths, J. Phys. A 10, 2123 (1977).
- 17. G.S. Grest, J. Phys. A 14, L217 (1981).
- 18. Y. Saito, J. Phys. A 15, 1885 (1982).
- 19. H. Pack, *Phys. Rev. B* **49**, 12881 (1994).
- 20. M.-X. Wang, J.-W. Cai, Z.-Y. Xie, Q.-N. Chen, H.-H. Zhao, and Z.-C. Wie, *Chin. Phys. Lett.* **27**, 076402 (2010).
- A.K. Murtazaev and A.B. Babaev, J. Magn. Magn. Mater. 324, 3870 (2012).
- 22. А.К. Муртазаев, А.Б. Бабаев, Г.Я. Азнаурова ФНТ **37**, 167 (2011) [*Low Temp. Phys.* **37**, 134 (2011)].
- 23. В.С. Доценко, *УФН* **163**, 1 (1993).
- A.K. Murtazaev, A.B. Babaev, M.A. Magomedov, F.A. Kassan-Ogly, and A.I. Proshkin, *Solid State Commun.* 246, 41 (2016).
- 25. A.B. Babaev, A.K. Murtazaev, E.M. Suleimanov, and T.R. Rizvanova, *Phys. Solid State* **58**, 2074 (2016).
- A.K. Murtazaev, A.B. Babaev, and G.Y. Aznaurova, *Solid State Phenomena* 152-153, 571 (2009).
- A.K. Murtazaev, A.B. Babaev, and G.Y. Aznaurova, *Solid State Phenomena* 168-169, 357 (2011).
- 28. U. Wolff, Phys. Lett. 62, 361 (1989).
- 29. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller, *J. Chem. Phys.* 21, 1087 (1953).
- P. Peczac, A.M. Ferrenberg, and D.P. Landau, *Phys.Rev. B* 43, 6087 (1991).
- A.K. Murtazaev, A.B. Babaev, M.A. Magomedov, F.A. Kassan-Ogly, and A.I. Proshkin, *JETP Lett.* 100, 242 (2014).

Енергетичний аналіз основного стану трьохвершинної моделі Поттса

А.Б. Бабаєв, А.К. Муртазаєв, Ф.А. Кассан-Огли

Проведено енергетичний аналіз основного стану трьохвершинної моделі Поттса на трикутній гратці з урахуванням перших та других найближчих сусідів з величинами взаємодії J_I та J_2 . На основі чисельного експерименту виявлено діапазони існування впорядкованих та неврегульованих фаз у спінових структурах, які описано цією моделлю з величинами взаємодії $J_I < 0, J_2 < 0$ та $J_I > 0, J_2 < 0$.

Ключові слова: безлад, фрустрації, модель Поттса, основний стан.

Energy analysis of the ground state of the three-vertex Potts model

A.B. Babaev, A.K. Murtazaev, and F.A. Kassan-Ogly

An energy analysis of the ground state of the three-state Potts model on a triangular lattice is carried out, taking into account the first and second nearest neighbors with interaction values J_I and *J*₂. Based on the numerical experiment, the ranges of existence of ordered and disordered phases in the spin structures described by this model with interaction values $J_I < 0$, $J_2 < 0$ and $J_I > 0$, $J_2 < 0$ are revealed.

Keywords: disorder, frustrations, Potts models, the ground state.