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On the basis of the continuum model for long-wavelength charge carriers, originating in the tight-binding ap-
proximation for the nearest-neighbour interaction of atoms in the crystalline lattice, we consider quantum 
ground-state effects of electronic excitations in Dirac materials with two-dimensional monolayer honeycomb 
structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and 
a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac–Weyl Ham-
iltonian operator. We show that the quantum ground-state effects are independent of the disclination size and 
find circumstances when they are independent of a parameter of the boundary condition. The magnetic flux cir-
culating in the angular direction around the nanocone apex and the pseudomagnetic flux directed orthogonally to 
the nanocone surface are shown to be induced in the ground state. 

Keywords: Dirac materials; nanocones; ground state; quantum effects in monolayer crystals. 

1. Introduction

A wealth of new phenomena in micro- and nanophysics, 
suggesting possible applications to technology and indus-
try, is promised by a synthesis in this century of strictly 
two-dimensional atomic crystals (for instance, a monolayer 
of carbon atoms, graphene, [1,2]). The electronic states 
near the Fermi level in these crystals are characterized by 
the linear and isotropic dispersion relation, with the density 
of states at the Fermi level being strictly zero. Condensed 
matter systems with such a behavior of electronic excita-
tions are known as the two-dimensional Dirac materials 
comprising a diverse set ranging from honeycomb crystal-
line structures (graphene [1], silicene and germanene [3], 
phosphorene [4]) to high-temperature d -wave supercon-
ductors, superfluid phases of helium-3 and topological 
insulators, see review in [5]. Using the tight-binding ap-
proximation for the nearest-neighbour interaction in the 
crystalline lattice, an effective long-wavelength description 
of electronic excitations can be given in terms of a contin-
uum model which is based on the Dirac–Weyl equation for 
massless electrons in 2 1+ -dimensional space-time, with 
the role of velocity of light c played by Fermi velocity 

/ 300v c≈  [6,7]. 

Freely suspended samples of crystalline monolayers are 
not exactly plane surfaces, but possess ripples which are 
due to the appearance of topological defects in a crystalline 
lattice: disclinations and disclination dipoles (dislocations). 
A single disclination warps a sheet of the crystalline lat-
tice, giving it the shape of a cone. The squared length ele-
ment of the conical surface is 

2 2 2 2 2= , 0 < 2 ,ds dr r d−+ ν ϕ ≤ ϕ π  (1) 

where 1= (1 )−ν −η , and 2πη is the deficit angle. Conical 
spaces (i.e., 3-dimensional spaces with a 2-dimensional 
section given by (1)) emerge in a field rather different from 
condensed matter physics — in cosmology. The early uni-
verse in the process of its cosmological expansion is likely 
to undergo a series of phase transitions with spontaneous 
breakdown of continuous symmetries, and a vortex-like top-
ological defect which is formed in the aftermath of such a 
transition is known under the name of a cosmic string, see 
reviews in [8,9]. Starting with a random tangle, the cosmic 
string network evolves into two distinct sets: the stable one 
which consists of several long, approximately straight strings 
spanning the horizon volume and the unstable one which 
consists of a variety of string loops decaying by gravitational 
radiation. A straight infinitely long cosmic string in its rest 
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frame is characterized by an outer space with the transverse 
section given by (1). Parameter η is related to the mass per 
unit length of the cosmic string, hence it is positive, and the 
present-day astrophysical observations restrict its values to 
range 60 < < 10−η  (see, e.g., [10]). 

On the contrary, in the case of conically-shaped crystal-
line monolayers, parameter η takes both positive and nega-
tive discrete values of order 1 and even larger: a disclination 
obtained by deleting atoms from the crystalline lattice results 
in the positive deficit angle, whereas a disclination obtained 
by adding atoms into the crystalline lattice results in the 
negative deficit (i.e., proficit) angle. For instance, in the case 
of the honeycomb lattice of graphene, silicene, germanene 
or phosphorene, a natural way of producing the apex of a 
nanocone is by substituting some of hexagons by pentagons 
(positive deficit angle) or heptagons (negative deficit angle); 
thus, = / 6dNη , where dN  is an integer which is smaller 
than 6. A general disclination in the honeycomb lattice is 
obtained by substituting a hexagon by a polygon with 
6 dN−  sides; polygons with > 0dN  ( < 0dN ) induce lo-
cally positive (negative) curvature at the apex, whereas the 
crystalline sheet is locally flat away from the disclination, 
as is the conical surface away from the apex. In the case of 
nanocones with > 0dN , the value of dN  is related to apex 
angle δ , sin / 2 = 1 / 6dNδ − , and dN  counts the number of 
sectors of the value of / 3π  which are removed from the 
crystalline sheet. If < 0dN , then dN−  counts the number 
of such sectors which are inserted into the crystalline sheet. 
Certainly, polygonal defects with > 1dN  and < 1dN −  are 
mathematical abstractions, as are cones with a pointlike 
apex. In reality, the defects are smoothed, and > 0dN  
counts the number of the pentagonal defects which are tight-
ly clustered producing a conical shape; carbon nanocones 
with the apex angles = 112.9 , 83.6 , 60.0 , 38.9 ,19.2δ      , 
which correspond to the values = 1, 2, 3, 4, 5dN , were ob-
served experimentally, see [11] and references therein. The-
ory also predicts an infinite series of the saddle-like nano-
cones with quantity dN−  counting the number of the 
heptagonal defects which are tightly clustered forming the 
saddle centre. Saddle-like nanocones serve as an element 
which is necessary for joining parts of carbon nanotubes of 
different radii. 

Another distinction from the case of cosmic strings is in 
the intertwinement of valleys, as well as sublattices, in the 
case of disclinations corresponding to odd values of dN . It 
seems reasonable to identify a matrix exchanging both the 
sublattice and valley indices with 5γ . Hence, the relevant 
bundle connection corresponding to the gauge axial vector 
field appears, describing the pseudomagnetic vortex with 
flux related to the deficit angle. This is in contrast to the 
case of cosmic strings, where the relevant bundle connec-
tion correspond to the gauge vector field describing the 
vortex with flux unrelated to the deficit angle. 

In the present paper, we consider the quantum ground-
state effects of electronic excitations in honeycomb crystal-

line monolayer structures with disclinations corresponding 
to = 1, 2, 3, 4, 5, 6dN ± ± ± − . A crucial point is a choice of 
the boundary condition at the location of the disclination. 
The previous consideration [12–14] was neglecting the 
transverse size of the disclination, treating it as a pointlike 
one. We are now tackling the problem more carefully by 
taking into account the finite size of the disclination, impos-
ing the most general boundary condition at the disclination 
edge, and then going to the physically sensible limit of the 
nanocone size exceeding considerably the disclination size. 
This more physical approach allows us to specify the 
boundary condition with more definiteness. We find out that 
the pseudomagnetc field directed orthogonally to the nano-
cone surface is induced in the ground state, whereas the 
electric charge is not; the magnetic field circulating in the 
angular direction around the nanocone apex is induced in the 
ground state in cases = 2, 6dN ± −  only. 

2. Continuum model description of electronic 
excitations in monolayer atomic crystals  

with a disclination 

Electronic excitations in a plane sheet of the honeycomb 
crystalline lattice are described in terms of a four-component 
wave function, 

 ( )( ) ( ) ( ) ( )= , , , ,
TI I II II

B BA Aψ ψ ψ ψ ψ  (2) 

where subscripts A  and B  correspond to two sublattices 
and superscripts ( )I  and ( )II  correspond to two valleys 
(inequivalent Fermi points). As was noted in Introduction, 
in the framework of the long-wavelength continuum mod-
el, the wave function of electronic excitations satisfies the 
Dirac–Weyl equation, 

 ( ) ( )1 2
0 1 2= 0, = .i H H i∂ − ψ − α ∂ +α ∂v  (3) 

The generating elements of the Clifford algebra of 
anticommuting matrices in 3 1+ -dimensional space-time 
can be chosen as 

 0 0 3 1 0 2 2 3 1 3 1 1= , = , = , = ,γ τ σ α −τ σ α τ σ α τ σ  (4) 

where 0σ  and jσ  ( 0τ  and jτ ) are the unity and Pauli matri-
ces with the sublattice (valley) indices, and = 1,2,3j . De-
fining 5 1 2 3= iγ − α α α , one gets 

 5 2 2= .γ −τ σ  (5) 

A rotation by angle ϑ in the plane of a honeycomb lat-
tice sheet is implemented by operator exp ( )iϑΣ , where 

 1 2 3 31 1= =
2i 2

Σ α α τ σ  (6) 

is the pseudospin playing here the role of the operator of 
spin component which is orthogonal to the plane. The hon-
eycomb lattice is invariant under a rotation by 2π, but is not 
invariant under a rotation by π. The parity transformation 
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can be introduced as a rotation by π, which is simultane-
ously supplemented by the exchange of both the sublattice 
and valley indices [15], 

 ( )( ) ( ) ( ) ( )= , , ,
TII II I I

B BA APψ ψ ψ ψ ψ  (7) 

with 

 = 2 , [ , ] = [ , ] = 0;P R P H R H+ −Σ  (8) 

in representation (4) we obtain 

 3 5= , = .P Rα γ  (9) 

The wave function is chosen as a section of a bundle with 
spin connection 2− Σ, i.e., it obeys condition 

 ( 2 ) = ( ).ψ ϕ+ π −ψ ϕ  (10) 

If a defect with = 1dN ±  is inserted at the origin, then 
condition (10) is changed to the Möbius-strip-type condition: 

 ( 2 ) = ( ), ( 4 ) = ( ).iRψ ϕ+ π ± ψ ϕ ψ ϕ+ π −ψ ϕ  (11) 

For a general defect with < 6dN , the condition takes form 

 ( 2 ) = exp ( ),
2 di N Rπ ψ ϕ+ π − − ψ ϕ 

 
 (12) 

while the Hamiltonian operator for electronic excitations in a 
conical surface with the squared length element given by (1) 
takes form 

 1= ,
2

r
rH i

r
ϕ

ϕ
  − α ∂ + + α ∂    

v  (13) 

where 

 
2

0 2 3 1
2= = , = , = .r

r
r

r
ϕ ϕ

ϕ
ν

α α −τ σ α τ σ α α
ν

 (14) 

By performing a singular gauge transformation, we arrive at 
the wave function obeying condition (10) and the Hamilto-
nian operator involving bundle connection 1(2 )−Φ πv  [12]: 

 1= ,
2 2

r
rH i i

r
ϕ

ϕ
 Φ    − α ∂ + + α ∂ −    π    





v
v

 (15) 

where 

 1 1= 3 (1 ) , = (1 / 6) ;dR N− −Φ π −ν ν −v  (16) 

note that in the case of cosmic strings quantity Φ  is the 
flux of a gauge vector field corresponding to the generator 
of a spontaneously broken continuous symmetry. 

Next, by performing in addition a unitary transfor-
mation, we arrive at the representation with both R  and P  
diagonal, 

 5 3 0 3 0 3 0 1 1= = , = = , = ,R Pγ τ σ α τ σ γ τ σ  (17) 

while relations (6) and (14) are maintained. The initial repre-
sentation with diagonal 0γ , see (4), can be denoted as the 

standard one, and it has been chosen to be diagonal in both 
the sublattice and the valley indices, see (2). The final repre-
sentation with diagonal 5γ , see (17), can be denoted as the 
chiral one, and it mixes up sublattices, as well as valleys. 

Using the chiral representation, we decompose the solu-
tion to the stationary Dirac–Weyl equation, ( ) =EHψ x  

( )EE= ψ x , with H  given by (15) and (16) as 

 

( 1/2)
,

( 1/2)
,

( 1/2)
,

( 1/2)
,

( , )e

( , )e
( ) = ,

( , )e

( , )e

i n
n

i n
n

E i n
n n

i n
n

f r E

g r E

f r E

g r E

+ ϕ
+

+ ϕ
+

− ϕ
∈ −

− ϕ
−

 
 
 
 ψ
 
 
 
 

∑x


 (18) 

where the radial functions satisfy the system of first-order 
differential equations 

 
, ,

, ,

1 ( 1) ( , ) = ( , )
;

1 ( 2) ( , ) = ( , )

r n n

r n n

n f r E Eg r E
r

n g r E Ef r E
r

± ±

± ±

  −∂ + ±ν − ν +     
 

  ∂ + ±ν − ν +    





v

v
  

  (19) 
thus a component of definite chirality, +  or −, is a super-
position of components with definite sublattice and valley 
indices. 

Quantum effects in the ground state of electronic exci-
tations comprise the induced electric charge density: 

 †
2 2( ) = ( ) ( ),

2 EE
e dE Eq

∞

−∞

− ψ ψ∫x x x
 v

 (20) 

the induced electric current density: 

 †
2( ) = ( ) ( );

2 EE
e dE E∞

−∞

− ψ αψ∫j x x x
 v

 (21) 

the induced parity-breaking condensate density: 

 †
2 2

1( ) = ( ) ( ),
2 EE

dE E P
∞

−∞

ρ − ψ ψ∫x x x
 v

 (22) 

and the induced R -current density: 

 †
2

1( ) = ( ) ( ).
2

R
EE

dE E R
∞

−∞

− ψ ψ∫j x x α x
 v

 (23) 

The magnetic field strength, ( )B x , is also induced in the 
ground state, as a consequence of the Maxwell equation, 

 1( ) = ( ),×B x j x∂
v

 (24) 

as well as does the pseudomagnetic field strength, ( )RB x , 
which is a consequence of the analogue of the Maxwell 
equation, 

 1( ) = ( );R R×B x j x∂
v

 (25) 
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the use of term “pseudomagnetic” is justified because R  
coincides with 5γ ; due to this, also the R -current can be 
regarded as an axial current. 

Using (14), (17) and (18), one gets = 0R
rj  immediately 

and, with more careful analysis (see the beginning of Sec-
tion 4), 3 = 0Rj , where 

 2 2
3 , ,2

1( ) = [ ( , ) ( , )
2

R
n n

n

dE Ej r f r E g r E
∞

+ +
∈−∞

− − −∑∫
 v

  

 2 2
, ,( , ) ( , )].n nf r E g r E− −− +  (26) 

Thus, the only component of the induced ground-state R -
current, 

 , ,2( ) = [ ( , ) ( , )R
n n

n

r dE Ej r f r E g r E
∞

ϕ + +
∈−∞

− +
ν ∑∫

 v
  

 , ,( , ) ( , )],n nf r E g r E− −+  (27) 

is independent of the angular variable. The induced 
ground-state pseudomagnetic field strength is also inde-
pendent of the angular variable, being directed orthogonal-
ly to the conical surface, 

 
max

3 3 max( ) = ( ) ( ),
r

R R R

r

drB r j r B r
r ϕ
′ν ′ +
′∫v

 (28) 

with total flux 

 
max

I 3

0

2= ( ),
r

R R

r

drrB rπ
Φ

ν ∫  (29) 

where it is assumed without a loss of generality that a 
nanocone is of a rotationally invariant shape with maxr  
being its radius and 0r  being the radius of a disclination, 
max 0r r  in the physically sensible case. 

Turning to the induced ground-state electric charge and 
parity-breaking condensate, their densities are also inde-
pendent of the angular variable: 

 2 2
, ,2 2( ) = [ ( , ) ( , )

2 n n
n

e dE Eq r f r E g r E
∞

+ +
∈−∞

− + +∑∫
 v

  

 2 2
, ,( , ) ( , )]n nf r E g r E− −+ +  (30) 

and 

 2 2
, ,2 2

1( ) = [ ( , ) ( , )
2 n n

n

dE Er f r E g r E
∞

+ +
∈−∞

ρ − − +∑∫
 v

  

 2 2
, ,( , ) ( , )].n nf r E g r E− −+ −  (31) 

Appropriately, one can define total charge 

 
max

0

2= ( )
r

r

Q drrq rπ
ν ∫  (32) 

and total P -condensate 

 
max

0

2= ( ).
r

r

C drr rπ
ρ

ν ∫  (33) 

Note that the induced ground-state condensate of 
pseudospin Σ  (6) is proportional to 3

Rj  (26) and, thus, is 
vanishing. 

As to the induced ground-state electric current, note an 
evident relation, = 0rj , and a less evident one (substanti-
ated in the beginning of Sec. 4), = 0jϕ , where 

 , ,2( ) = [ ( , ) ( , )n n
n

er dE Ej r f r E g r E
∞

ϕ + +
∈−∞

− −
ν ∑∫

 v
  

 , ,( , ) ( , )];n nf r E g r E− −−  (34) 

hence, the only nonvanishing component is directed or-
thogonally to the conical surface and is related to the P -
condensate: 

 3( ) = ( ).j r e rρv  (35) 

The total electric current, 

 
max

3 3

0

2= ( ),
r

r

J drr j rπ
ν ∫  (36) 

is appropriately related to the total P -condensate: 

 3 = .J e Cv  (37) 

The induced ground-state magnetic field strength is also 
independent of the angular variable, being directed in the 
conical surface along a circle with an apex in its center, 

 
max

3 max
1( ) = ( ) ( ).

r

r

B r dr r j r B rϕ ϕ′ ′ ′− +
ν ∫v

 (38) 

Its total flux is 

 
max

I

0

= ( ).
r

r

dr B rϕΦ ∫  (39) 

Concluding this Section, note that we are considering the 
ground-state characteristics which are diagonal in chiralities. 
The nondiagonal ones (for instance, the 0γ -condensate) are 
proportional, as follows from (18), either to cosϕ or to sinϕ 
and, thus, vanish upon averaging over the angular variable. 

3. Self-adjointness and choice of boundary conditions 

Let us note first, that (15) is not enough to define the 
Hamiltonian operator rigorously in a mathematical sense. 
To define an operator in a unambiguous way, one has to 
specify its domain of definition. Let the set of functions ψ  
be the domain of definition of operator H , and the set of 
functions ψ  be the domain of definition of its adjoint, op-

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12 1621 



Yu.A. Sitenko and V.M. Gorkavenko 

erator †H . Then the operator is Hermitian (or symmetric in 
mathematical parlance), 

 2 † 2 † †( ) = ( ) ,
X X

d x g H d x g Hψ ψ ψ ψ∫ ∫   (40) 

if relation 

 † = 0
X

i dl
∂

− ψ ψ∫  α  (41) 

is valid; here functions ( )ψ x  and ( )ψ x  are defined in space 
X  with boundary X∂ . It is evident that condition (41) can 
be satisfied by imposing different boundary conditions for 
ψ  and ψ . But, a nontrivial task is to find a possibility that a 
boundary condition for ψ  is the same as that for ψ ; then 
the domain of definition of †H  coincides with that of H , 
and operator H  is self-adjoint (for a review of the Weyl-von 
Neumann theory of self-adjoint operators see [16,17]). The 
action of a self-adjoint operator results in functions belong-
ing to its domain of definition only, and a multiple action 
and functions of such an operator, for instance, the resolvent 
and evolution operators, can be consistently defined. Thus, 
in the case of a surface of radius maxr  with a deleted central 
disc of radius 0r , we have to ensure the validity of relations 

 † †
= =0 max

= 0, = 0,r r
r r r r

ψ α ψ ψ α ψ   (42) 

meaning that the quantum matter excitations do not pene-
trate outside. It is implied that functions ψ  and ψ  are differ-
entiable and square-integrable. As maxr →∞ , they conven-
tionally turn into differentiable functions corresponding to 
the continuum, and the condition at max=r r  yields no re-
striction at maxr →∞ , whereas the condition at 0=r r  yields 

 = = = =0 0 0 0
= , = ,r r r r r r r rK Kψ ψ ψ ψ   (43) 

where K  is a matrix (element of the Clifford algebra in 
2 1+ -dimensional space-time) which obeys condition 

 2 =K I  (44) 

and without a loss of generality can be chosen to be 
Hermitian; in addition, it has to obey either condition 

 [ , ] = 0,rK +α  (45) 

or condition 

 [ , ] = 0.rK −α  (46) 

One can simply go through four linearly independent ele-
ments of the Clifford algebra in 2 1+ -dimensional space-
time and find that two of them satisfy (45) and two other 
satisfy (46). However, if one chooses 

 1 2= rK c I c+ α  (47) 

to satisfy (46), then (44) is violated. There remains the 
only possibility to choose 

 0 0
1 2= rK c c iγ + γ α  (48) 

with real coefficients obeying condition 

 2 2
1 2 = 1;c c+  (49) 

then both (44) and (45) are satisfied. Using obvious pa-
rameterization 

 1 2= sin , = cos ,c cθ θ   

we finally obtain 

 0 i= e .
rrK i − θαγ α  (50) 

Thus, boundary condition (43) with K  given by (50) is the 
most general boundary condition ensuring self-adjointness 
of the Hamiltonian operator on a surface with a deleted disc 
of radius 0r , and parameter θ can be interpreted as the self-
adjoint extension parameter. Value = 0θ  corresponds to the 
MIT bag boundary condition which was proposed as the 
condition ensuring the confinement of the matter field, that 
is, the absence of the matter flux across the boundary [18]. 
However, it should be comprehended that a condition with 
an arbitrary value of θ is motivated equally as well as that 
with = 0θ . 

Imposing the boundary condition (43) with matrix K  
(50) on the solution to the Dirac–Weyl equation, ( )E xψ  
(18), we obtain the condition for the modes: 

 , 0 , 0cos ( , ) = sin ( , ).
2 4 2 4n nf r E g r E± ±
θ π θ π   + − +   

   
  

  (51) 

Let us consider nanocones with = 1, 2, 3, 4, 5dN  

(1 < < 7),ν  as well as with = 1, 2, 3dN − − −  (3 < < 1
5

ν ), 

and introduce positive quantity 

 
3 1= sgn ( 1) 1,
2 2

F ν − ν ν − −  (52) 

which exceeds 1 at = 3,4,5dN   (2 < 7≤ ν ) only; here 
sgn ( )u  is the sign function, sgn ( ) = 1u  at > 0u  and 
sgn ( ) = 1u −  at < 0u . Define also 

 
1= [sgn ( 1) 1],
2cn ± ν − −  (53) 

as well as 

 ___________________________________________________  

 [ ]
[ ]

c 1 1

1 1 1 11c

sin( ) ( ) cos( ) ( )1 1= ,
sgn( ) sin( ) ( ) cos( ) ( )2 1 sin(2 )cos( )

n F F F F

F F F Fn F

f J kr J kr
E J kr J krg F

− − −

− − − − +−

   µ + µν     µ − µπ + µ π   
 (54) 
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( ) ( )( ) 1 1

( ) ( ) ( )
1 11 1

sin( ) ( ) cos( ) ( )1= ,
2 sgn( ) sin( ) ( ) cos( ) ( )

l F l Fl F l Fn

n l F l Fl F l F

J kr Y krf

g E J kr Y kr

∧ ∧∧ ν − ν −ν + − ν + −

∧ ∧ ∧
ν + − ν + −ν + − ν + −

  µ + µ  ν        π  µ + µ     

 (55) 

where c=l n n− , and 

 
( ) ( )( )

( ) ( ) ( )
1 1

sin( ) ( ) cos( ) ( )1= ,
2 sgn( ) sin( ) ( ) cos( ) ( )

l F l Fl F l Fn

n l F l Fl F l F

J kr Y krf

g E J kr Y kr

∨ ∨∨ ′ ′ν + ν +′ ′ν + ν +

∨ ∨ ∨
′ ′ν − + ν − +′ ′ν + ν +

  µ + µ  ν        π  − µ + µ     

 (56) 

 ______________________________________________  

where c=l n n′ − + ; here ( )J uλ  and ( )Y uλ  are the Bessel 
and Neumann functions of order λ. 

In the case of 2 < 7≤ ν     ( = 1, = 3, 4, 5dF Nν − ), the 
complete set of solutions to (19) is given by 

 
( ) ( )

, ,
( ) ( ), ,1c c

= , = .n nn n

n nn nn n n n

f ff f
g gg g

∧ ∨
± ±

∧ ∨± ±≥ + ≤

      
               

  

  (57) 

In the case of 3 < < 2
5

ν    (0 < < 1, = 2, 1, 1, 2, 3),dF N − − −  

the complete set of solutions to (19) is given by 

 
( )

, , c
( ), , c1 =c c

= , = ,
nn nn

n n nnn n n n

ff ff
g g gg

∧
± ±

∧± ±≥ +

     
              

  

 
( )

,
( ), 1c

= .n n

n nn n

f f
g g

∨
±

∨± ≤ −

  
       

 (58) 

It should be noted that, in the case of 1=
2

ν      ( = 6)dN − , 

the complete set of solutions to (19) is also given by (58) 
with = 1/ 2F  and c = 2n  . 

Let us compare this with the case of an infinitely thin 
(pointlike) disclination which was considered in detail in 
[12–14]. In the latter case several partial Hamiltonian op-
erators are self-adjoint extended, and the deficiency index 
can be (0,0) (no need for extension, all partial operators 
are essentially self-adjoint), (1,1) (one partial operator is 
extended with one parameter), (2, 2) (two partial operators 
are extended with four parameters), etc. In particular, in 
the case of carbon-like nanocones, there is no need for self-
adjoint extension for = 3, 4, 5dN , there is one self-adjoint 
extension parameter for = 2, 1, 1dN − , 2− , 3,−  6− , there 
are four and more self-adjoint extension parameters for 

= 4, 5dN − −  and 7dN ≤ − . For the deficiency index equal 
to (1,1), the boundary condition at the location of a 
pointlike disclination ( = 0)r  takes form 

 ___________________________________________________  

 
1

, ,c c0 0max max
cos ( , ) sin ( , ),lim lim2 4 2 4

F F

n n
r r

r rf r E g r E
r r

−

± ±
→ →

   Θ π Θ π   + = − +      
      

 (59) 

 ______________________________________________  

where Θ is the self-adjoint extension parameter, F  is given 
by (52) for = 2, 1, 1dN − , 2− , 3−  and = 1/ 2F  for = 6,dN −  
while cn  is given by (53) for = 2, 1, 1dN − , 2− , 3−  and 

c = 2n   for = 6dN − . As follows from the present section, 
in the case of a disclination of nonzero size, when the 
boundary condition is imposed at its edge, the total Hamil-
tonian operator is self-adjoint extended with the use of one 
parameter, see (51). 

Value Θ of the self-adjoint extension parameter in the 
case of a pointlike disclination can be fixed by the limiting 
procedure 0 0r →  in the case of a nonzero-size disclination. 
Namely in this way, the condition of minimal irregularity 
[19,20] is obtained: 

 

1, 0 < < ,
2 2

1= , = ,
2

1, < < 1.
2 2

F

F

F

π


Θ θ


π
−

 (60) 

It should be noted that scale invariance is broken (condi-
tion (59) depends on maxr ) unless = / 2Θ ±π  at 1/ 2F ≠  
and = 1/ 2F  at arbitrary Θ. Thus condition (60) is the only 
one that is consistent with scale invariance. 

4. Induced ground-state effects 

Using the explicit form of modes ,nf ±  and ,ng ± , satisfy-
ing (19) and (51), we can calculate the induced ground-
state effects of electronic excitations in carbon-like 
nanocones. Concerning the R -current component which is 
orthogonal to the conical surface, 3

Rj  (26), and the electric 
current angular component, jϕ (35), they vanish due to the 
cancellation between modes with +  and − subscripts. The 
calculation of the R -current angular component (27) and 
the pseudomagnetic field strength (28) in the case of 
3 < < 2
5

ν     (0 < < 1F ) and 
1=
2

ν     ( = 1/ 2F ) yields: 
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1 2 2< ,
02 2
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    + +             
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 (63) 
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1 1 1 12= 0 =102 2 2 2

sin 1 8( ) = ( ) ( ) ,
2

R
F l l ll

r
j r dww C w K w K w

r r r r

∞ ∞

ϕ
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 θ   − +  −  π  
∑∫ 

v  (64) 

 13 2 2< ,
02 2

1 1sin( ) cosh sin[( ) )]cosh
2 21( ) =

cosh( ) cos( )( / 2)(2 ) cosh
R

F

F F u F F u
duB r

r uu

∞

π
θ≠−

      π + ν − − + ν π −      ν        − +
ν − νππ 

∫   
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( ) ( )0 0
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8 ( ) ( ) ( ) ( ) ,
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l F l F l F l Fl F l F
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r rdrr dww C w K w K w C w K w K w
r rr

∞ ∞ ∞
∧ ∨

ν + − ν − ν + ν − +ν + − ν +

 ′     + −    ′ ′′      
∑ ∑∫ ∫  (65) 

 13 2 2> ,
02 2

1 1sin( ) cosh sin[( ) )]cosh
2 21( ) =

cosh( ) cos( )( / 2)(2 ) cosh
R

F

F F u F F u
duB r

r uu

∞

π
θ≠

      π − ν − − − ν π −      ν         −
ν − νππ 

∫   

 
max

( ) ( )0 0
1 112

=1 =00

8 ( ) ( ) ( ) ( ) ,
r

l F l F l F l Fl F l F
l lr

r rdrr dww C w K w K w C w K w K w
r rr

∞ ∞ ∞
∧ ∨

ν + − ν − ν + ν − +ν + − ν +

 ′     − −    ′ ′′      
∑ ∑∫ ∫  (66) 

1624 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12 



Properties of the ground state of electronic excitations in carbon-like nanocones 
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 (67) 

and 

 
max

0 0
13 1 1 12 2= 0 =102 2 2 2

sin 1( ) = ln 1 8 ( ) ( ) ,
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r
R

F l l llr

r rdrB r dww C w K w K w
r r rr

∞ ∞

ν + ν + ν −

 ′ν θ     − −     ′′   π  
∑∫ ∫   (68) 

where 
1

( ) 2 2
1 1 1( ) = ( ) ( ) tan ( ) ( ) cot ( ) tan ( )cot ,

2 4 2 4 2 4 2 4
C y I y K y I y K y K y K y

−
∧
ρ ρ ρ ρ− ρ− ρ ρ−

 θ π θ π   θ π θ π        + − + × + + +                   
 (69) 

1
( ) 2 2

1 1 1( ) = ( ) ( ) cot ( ) ( ) tan ( )cot ( ) tan
2 4 2 4 2 4 2 4

C y I y K y I y K y K y K y
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∨
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 (70) 

and 

 
1 1
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1 2
2 2 2 2 22 2

1 1 1 1
2 2 2 2

( ) ( )
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( ) ( ) 4 ( ) ( )cos sin

l l

l

l l l l
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ν +

ν + ν − ν + ν −

 
 θ + + θ
 
 

  (71) 

( )I yλ  and ( )K yλ  are the modified Bessel functions with the exponential increase and decrease, respectively, at large real 
positive values of their argument. 

In the case of 2 < 7≤ ν     ( = 1F ν − ) we obtain 

 
/2

,22 2 2
=1 0

1 2 sin(3 / )( ) = sin( )
( / ) ( / 2)(2 ) sin cosh

R
N

p

v p duj r
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  (72) 
and 
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where u    is the integer part of quantity u  (i.e., the inte-
ger which is less than or equal to u), p and N  denote posi-
tive integers, , ′ω ωδ  is the Kronecker symbol ( , = 0′ω ωδ  at 
′ω ≠ ω and , = 1ω ωδ ).  

It should be noted that the integral over the w  variable 
in (61)–(64) and (72) vanishes in the limit of 0 0r → . 
Moreover, in the limit of r →∞, it decreases as 2

0( / )r r λ , 
where 
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2 2

F
F

F

π θ ≠ −  λ − ν  π θ
  

 (74) 
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0

0

ln ln( / )
= , = 2

2ln( / ) , = 1.
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r r
r r F

 λ ν  ν − 
 λ ν − ν 

 (78) 

The latter circumstance has far-reaching consequences, 
when we turn to the total flux of the induced ground-state 
pseudomagnetic field strength, see (29). Namely, the con-
tribution of the w-integral to I

RΦ  is damped and the field 
strength is proportional to the current in the physically sen-
sible case, i.e. at m 0axr r : 

 I I
3

max max

1 1( ) = , ( ) = ,
2 2

R R
R Rj r B r

r r r rϕ
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π π
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∑ ∫  (83) 

 ______________________________________________  

The analysis of the induced ground-state electric charge 
and P -condensate is performed in a similar way. Basing on 
the acquired experience, the results in the physically sensi-
ble case ( max 0r r ) can be immediately obtained by em-
ploying the condition of minimal irregularity, see (60), in 
the case of a pointlike disclination. Note that in the latter 
case the contribution of modes (55) and (56) is canceled 
upon summation over the energy sign, thus 

 ( ) = ( ) = 0, = 1 (2 < 7).q r r Fρ ν − ≤ ν  (84) 

Otherwise, at 0 < < 1F     (3 < < 2
5

ν  and 
1=
2

ν ), only 

mode (54) contributes, and the appropriate results for arbi-
trary Θ were first obtained in [21,22] and later generalized 
to 1ν ≠  in [12–14]: 
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and 
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By appllying (60) to (85) and (86) we obtain 

 ( ) = 0, 0 < < 1,q r F  (87) 
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2( ) = 0,

1 < < 1
2

F
r

F

 
  ρ  
 
  

 (88) 

and 

 2 2
cos 1( ) = , = .

22
r F

r
ν θ

ρ −
π

 (89) 

Thus, the electric charge is not induced at all, while the 
P -condensate is induced at = 1/ 2F  only, with the total 
value equal to 

 max 0=1/2
cos= ln( / ).FC r rθ

−
π

 (90) 

Recalling the relation between the P -condensate and 
the electric current, see (35) and (37), we get that the in-
duced ground-state electric current density is nonvanishing 
at = 1/ 2F  only, being directed orthogonally to the conical 
surface: 

 3 2=1/2
3 =1/2

max 0
( ) = ,

2 ln( / )
F

F
J

j r r
r r

−ν

π
 (91) 

where 

 3 max 0=1/2
cos= ln( / )FJ ev r rθ

−
π

 (92) 

is the total electric current. The induced ground-state mag-
netic field circulating in the angular direction around the 
apex of the conical surface, see (38), is presented as 

 =1/2
max max=1/2 =1/2 max 0

( ) ( ) = ln( / )
2 ln( / )

F
F F

eC
B r B r r r

r rϕ ϕ− − =
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FJ
r r e r r

vln r r
θ

−
π π

 (93) 

where it is plausible to put the constant of integration equal 
to zero, max =1/2

( ) = 0
F

B rϕ . Then the total magnetic flux, 

see (39), is 

 max=1/2 2
cos= .
2

I F e rθΦ
π

 (94) 

5. Conclusions 

On the basis of the continuum model for long-
wavelength charge carriers, originating in the tight-binding 
approximation for the nearest-neighbour interaction of the 
lattice atoms, we have studied quantum ground-state effects 
of electronic excitations in crystalline monolayers warped 
into nanocones by a disclination; the nonzero size of the 
disclination at the apex of a nanocone has been taken into 
account. Our main finding is that the physically sensible 
limit of the nanocone size exceeding considerably the 
disclination size fixes a boundary condition at the nanocone 
apex as the scale invariant one ensuring the minimal irregu-
larity of the modes; consequently, quantum ground-state 
effects are independent of the disclination size. 

Restricting ourselves to the carbon-like nanocones, we 
have considered all disclinations resulting in the conven-
tional nanocones, = 1, 2, 3, 4, 5dN , and several disclinations 
resulting in the saddle-like nanocones, = 1, 2, 3, 6.dN − − − −  
As we have proved, the results obtained earlier in [12–14] 
for the case of a zero-size disclination should be reduced to 
the case obtained by imposing condition (60). In particular, 
the ground-state electric charge is not induced at all. As to 
the local density of states, it is defined as 

 † 1
2 2
| |( ; ) = ( )Im( i0) ( ).EE

dE EE E E
∞

−

−∞

′ ′∆ ψ − − ψ
π∫x x x
 v

  

  (95) 
The density of the induced ground-state electric charge 

is related to (95) as 

 ( ) = ( ; ) sgn ( ),
2
eq dE E E

∞

−∞

′ ′ ′− ∆∫x x  (96) 

and only the odd in E′ piece of ( ; )E′∆ x  contributes to ( ).q x  
In the case of planar crystalline monolayer ( = 1)ν , one 
immediately gets 

 2 2
| |( , ) = ,EE

′
′∆

π
x

 v
 (97) 

and, as follows from the nullification of the charge, 
disclinations leave relation (97) unchanged; this also follows 
from expression (55) in [12] for the total density of states 
(when condition (60) is imposed). 

As to the nonvanishing ground-state effects which are in-
duced in carbon-like nanocones, they comprise two sets. 
One includes the magnetic field circulating in the angular 
direction around the nanocone apex, the electric current di-
rected orthogonally to the nanocone surface and the parity-
breaking condensate. In terms of the sublattice and valley 
indices, this set corresponds to bilinear form 

 
( ) ( ) ( ) ( )I II I II
A B B A

       
+       
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and emerges at = 1/ 2F  only, i.e. at = 2, 6dN ± − . Another 
set includes the pseudomagnetic field directed orthogonal-
ly to the nanocone surface and the R -current circulating in 
the angular direction around the nanocone apex. In terms 
of the sublattice and valley indices, this set corresponds to 
bilinear form 

 
( ) ( ) ( ) ( )I II I II
A A B B

       
−       

       
  

and emerges in all considered cases except = 3ν , i.e. = 4dN . 
We summarize our results by presenting expressions for the 
total magnetic and pseudomagnetic fluxes IΦ  and I

RΦ : 
 ___________________________________________________  
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 I max
1 , 3,
4

R
dr NΦ = =  (105) 

 I max
7 , 5.

12
R

dr NΦ = − =  (106) 

 ______________________________________________  

We conclude that the induced ground-state effects 
change drastically as dN  changes. The effects are absent in 
the case of the four-heptagonal defect ( = 4dN ), whereas 
they appear of opposite signs as a heptagon is removed from 
( = 3dN ) or added to ( = 5dN ) this defect, see (105) and 
(106). These cases are independent of the boundary parame-
ter, θ; note that namely these cases correspond to that situa-
tion with the zero-size defect when there is no need for self-
adjoint extension (the deficiency index is (0,0)). In all other 
cases the results depend on θ. The most distinct depend-

ence is characteristic for the cases of two-pentagonal, two- 
and six-heptagonal defects, when the results coincide, see 
(102). In the cases of one-pentagonal, one- and three-
heptagonal defects, the results are almost independent of θ 

unless =
2
π

θ −  for = 1, 3dN −  and =
2
π

θ  for = 1dN − , see 

(98)–(101), (103) and (104). 
Effective magnetic and pseudomagnetic fields which ap-

pear in corrugated crystalline monolayers produce strains 
and scattering of electronic excitations in a sample [23]. As 
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follows from our consideration, the ground-state magnetic 
and pseudomagnetic fields can be induced in the locally 
flat regions out of disclinations, and this may have observ-
able consequences in experimental measurements, likely 
with the use of scanning tunnel and transmission electron 
microscopy. 
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Властивості основного стану електронних 
збуджень у вуглецевоподібних наноконусах 

Ю.О. Ситенко, В.М. Горкавенко 

На основі континуальної моделі для довгохвильових за-
рядових носіїв, що побудована в наближенні сильного зв'язку 
у взаємодії найближчих сусідніх атомів кристалічної гратки, 
розглянуто квантові ефекти основного стану електронних 
збуджень в діракових матеріалах  із двовимірними одноша-
ровими сотовими структурами, скрученими дисклинацією у 
наноконуси; враховується ненульовий розмір дисклинації, а 
гранична умова на краю дисклинації вибирається такою, що 
забезпечує самосполучення гамільтонова оператора Дірака–
Вейля. Показано, що квантові ефекти основного стану не 
залежать від розміру дисклинації, та знайдено обставини, 
коли вони не залежать від параметра граничної умови. Пока-
зано, що в основному стані індукуються магнітний потік, 
котрий циркулює в кутовому напрямку навколо вершини 
наноконуса, та псевдомагнітний потік, який спрямований 
ортогонально до поверхні наноконуса. 

Ключові слова: дираківські матеріали, наноконуси, основний 
стан, квантові ефекти в одношарових кристалах. 

Свойства основного состояния электронных 
возбуждений в углеродоподобных наноконусах 

Ю.А. Ситенко, В.М. Горкавенко 

Исходя из континуальной модели для длинноволновых 
зарядовых носителей, построенной в приближении сильной 
связи для взаимодействия ближайших соседних атомов в 
кристаллической решетке, рассмотрены квантовые эффекты 
основного состояния электронных возбуждений в дираков-
ских материалах с двумерными однослойными сотовыми 
структурами, скрученными дисклинацией в наноконусы; 
учитывается ненулевой размер дисклинации, а граничное 
условие на краю дисклинации выбирается так, что обеспечи-
вается самосопряженность гамильтонова оператора Дирака–
Вейля. Показано, что квантовые эффекты основного состояния 
не зависят от размера дисклинации, и найдены обстоятельства, 
при которых они не зависят от параметра граничного условия. 
Показано, что в основном состоянии индуцируются магнит-
ный поток, циркулирующий в угловом направлении вокруг 
вершины наноконуса, и псевдомагнитный поток, направлен-
ный ортогонально к поверхности наноконуса. 

Ключевые слова: дираковские материалы, наноконусы, ос-
новное состояние, квантовые эффекты в однослойных кри-
сталлах. 
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