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Dynamics of transformation of conduction electrons into
charge-density-wave soliton at low temperatures
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The analytical model which describes the dynamics of transformation of conduction electrons into nonlinear
charge-carrying excitations of CDW in quasi-one-dimensional Peieris—Frohlich conductors is formulated and studied
by the inverse scattering transformation method. The pair of self-trapped conduction electrons transform into a
charged 2x-kink localized in a single conducting chain and surrounded by dipoles in neighboring chains

The commonly accepted model for the Peieris—
Frohlich quasi-one-dimensional charge-density-
wave (CDW) conductors relates their unusual
transport properties, i. e. nonlinear conductivity, me-
mory effects, etc, to the phase of the CDW order
parameter, A exp (ip), where the modulus A is the
Peierls energy gap in a quasiparticle spectrum, and ¢
governs the dynamics of the CDW condensate (the
collective excitations of the occupied valence band).
The phase dynamics description has been successful
in explaining bulk characteristics (see, e.g., reviews
[1-3)). However, one principal aspect of the CDW
physics, viz. the problem of interaction of the current-

carrying CDW phase deformations with conduction’

electrons, remains unresolved and still arises con-
troversial explanations.

The basic feature of quasi-one-dimensional CDW
conductors such as, e.g., TaS3 is the instability of

conduction electrons against the self-trapping and
conversion into the valence band where electrons
transform into new coilective charge carriers. Self-
trapping is connected with local gap deformations in
conducting chains. The potential barrier for the self-
trapping is ~ A, the time interval of the gap deforma-
tion is of order of ™! (w is the frequency of the
Peierls phonons which is of order of the Debye fre-
quency [4-6], and the interchain interaction is of
order T, (T is the temperature of the Peierls transi-

tion). In a weakly coupled array of highly conducting
chains, 7 << A, the self-trapping of electrons occurs

in individual chains independently, and the charge
transformations proceeds in two steps, each charac-
terized by the own time scale ¢, : transfer of conduc-

tion electrons into the valence band in a single chain,
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t1~w'], and formation of a collective charge carrier
in this chain, ¢, >> ¢, . The time ¢, is the intrinsic scale
of the CDW phase Hamiltonian at A = const [3-5].

The collective CDW charge, p, and the current, j,
densities in a single chain are related to phase gra-
dients via the Frohlich relations

p=tl¥® ;__edp §))
T ax’ T ot

When ¢ electrons are converted into the CDW con-
densate, the phase acquires a local deformation with
the net phase shift

Sp=p(x=w)—px=—0)=gr. (2

The final stage of conversion is aggregation of in-
dividual phase deformations in different chains to a
three-dimensional array, i ~ t3 >> £, . The time #; can

be attributed to a long-range Coulomb interaction [5].
Such arrays are responsible for generation of an
excess voltage observed in numerous experiments on
mesoscopic CDW samples (see, e. g., Refs. [7-9])
and were studied in a series of phenomenological
theoretical models {§,7,10-13] in which the problem
of the charge transformations dynamics remained un-
resolved. To our knowledge, the only paper in which
an attempt was made to devise a self-trapping
mechanismin a /D CDW conductor, was the Ref. 6. It
has been shown in [6] that at low temperatures,
T<<T,, the transfer of conduction electrons to the

valence band occurs via instantons which split from a
conduction band a level occupied by two electrons and
push this level towards the valence band. An instan-
ton interpolates between the initial state:
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|in) = | 2 conduction electrons, ¢ = const, A = const )

and the final one:

|/} = | no conduction electrons, dp, = 2, A = const),

and describes the self-trapping stage of conversion or
the nucleation of a phase-slip-center (PSC). The in-
stanton mechanism is most efficient at a metal-CDW
interface [6 ], because the instanton action exponen-
tially grows with the distance.

The subsequent evolution of the PSC has not been
investigated yet, and it is the aim of this paper to put
forward the qualitative microscopic theory of trans-
formation of a trapped electron pair into intrinsically
nonlinear phase excitations of CDW.

The scenario of charge transformation is as follows:

at time £~ w"l, a self-trapped pair of electrons
creates the initial phase profile dp,| = 2 (|/)-state)

localized on a scale of the Peierls coherence length,
leap = &0 = Fvp /A, the length £ being not the intrin-
sic scale of the phase Hamiltonian [3,4], thus 6¢in

serves as the initial condition to the phase motion
equations. To solve the Cauchy problem, we formu-
late the exactly solvable model of phase dynamicsin a
cluster of next-to-nearest neighbor chains and apply
the inverse scattering transformation (IST) method.
It appears that over the time ¢, ~ A/(wT ), the initial

condition dp,  transforms into a charged 2z-kink with
a core of order F Y T, localized in the same chain

and surrounded by dipoles in all the other chains.
For definiteness, let us take the zero temperature
and study the conversion of two electrons to a clus-
ter of Z nearest CDW chains which are oriented
along the most conducting x direction and occupy
the semiaxis x = 0.
The phase Lagrangian takes the form [3,4]

1
L= ]WFX
2
A% (g, /ot) o 7 Aop/o? _ #2(3p, /9x)* _
w? w? 4
722 (3py/ %)
- Z————F(fo—) + ZZTg cos (g —p)[ » (3

where ¢, denotes the phase in a central chain, and
o 4

denotes phases in the nearest ones. At ¢ = 0 two elect-
rons pass to a central chain: ¢y (x, t=0)=0,

p(x, t=0)=0.
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The Cauchy problem must be supplemented with
boundary conditions at ¢ = 0, see Egs. (5) below. The
initial moment ¢ = 0 to the Cauchy problem is defined
as the one when the phase configuration ‘5¢’m escapes

from under the autolocalization potential barrier with
zero velocity [6 ]

34 =0) =
5 (t=0)=0. (4a)

As the result of the energy conservation in the process
of self-trapping we get

Fop (dp,)
2A = f dx7 (—a;') , (4b)

%o 1
and hence % (t=0) %,

The compatibility of this initial condition to the
Lagrangian (3) needs special comment. The Lagran-
gian (3) is actually valid when phase gradients are
small compared to .Egl , when |[dp/dx| ~ Z;'(;l , the
modulus and phase dynamics cannot be separated.
Thus, when introducing the above initial condition to
the phase dynamics equations solely, we suppose the
existence of an intermediate region which we cannot
describe analytically where the product &, | 3¢,/ 0x|
is numerically but not parametrically small.

Minding the above said, we present the model com-,
plete set of boundary conditions in a physically .
plausible form:

o, 1 ¥
HE=0"E, 5 t=0=0, (2

fdxa—;’(z=0)=a¢m=2n, (5b)
0
Po(x=0,t=0)=-2n , py(x > »,t=0)=0,
5 (5¢)
PO, 0P,
5 =0 =—2-(1=0) . (5d)

Introduce new variablesn = g, — ¢, x = py + Zp .
Now the motion equations read:

9% _9%_o, (62)
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2 2
90 _ 91 4 (z+1)sinyg=0 (6b)
4T,

wheret = 2Tc% ty= ﬁ—rx.

It is convenient to make the analytical continuation to
the whole axis — o < x < » recalling, when necessary,
that the physically significant results should be stu-
died finally on the semiaxis 0 < x < «, and represent
the boundary conditions in a model form:

Za=0)=Ar=0)= T2)
Le=0=Te=0)=s), W
where
A 4T
=] 0TI E e
0, Iyl ‘

The charge conservation imposes the topological con-
striction:

ol
0

The solution of the linear equation (6a) takes the
form

9

1
xOn r)=§-(F(y—-t)+F(y+t))—-2n , (10
where
2t +x(z,0) , z>0 , 11
F@ =1 yaz1,00 -2z , z<0. 0

To solve the Cauchy problem for the sine-Gordon
(SG) equation (6b) we use the IST [14). Within the
IST approach, the SG equation is related to the linear
scattering problem:

L(p 1 s HWE, T32) = 0 a2

for the auxiliary spinor Jost function

WE, T A) = (&) :

where A is the spectral parameter which takes real
positive  values and * & =y/(Z + D2 T=
=t/(Z+ l)w The operatorL takes the form
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z"“’gy”)) =fdyg%’—rl=2n.
Y y

’~

~d
i 1 A
—'2‘ [( '——u COST])US

where 3, (@ = 1, 2, 3) are the Pauli matrices, and I is

% . 3,
= sinn+ 5 (=) .
13)

the unit matrix.

To construct the solution, one has to calculate the
Jost coefficients and to find zeros of the reflection
coefficient [14]. Consider the eigenfunctions W(§, 1)
with the asymptotes at £ » —

0 :
W_ = (e_iA E) ’ (14)
where A=21—1/(41)and atf »
by e ¢ Cas
¥
+ [a().) e~iAd

The functions #(1) and a(1) are the Jost coefficients;
zeros of a(4) define the solutions to the SG equation.

To calculate the initial Jost coefficients, we put in
(13) cosn(&,0) =1 which is justified by the in- -
equality T, << A. We get

ad, 0) = exp (iAly)(cos kly — 11: sin kly) , (16)

o
b3, 0) = i P sin kL an

“where k = (A2 + )2

The spectral equations a(4, 0) = 0 was analyzed in
the Ref. 15 where it has been shown that the condi-
tion [yf, = & (see the Eq. (8)) corresponds to pair of

kinks moving in opposite directions. The kink on the
semiaxis x = 0 is the only physically relevant for us.
Its asymptote at  » « is

n(x, 1) =

X — vt
dz + H2u -

= —4tan”! exp - >
vZ/chH2

(18)
whered =, /2T, Cy = v Hw/A and

v=C0><

8(z + H*T, /nA

X )1 -
v
1+ [1 - (8 + VT, /nA)z ]
19
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Fig. 1. Phase distribution in a central and neighboring chains,
Z=2.

For the parameters of TaS; [2], v = 0.98C,, .
The solution (18) itself satisfies the topological
condition
Sp=nx>o,)~-x=0,0)=21, (0

which means that the electric charge of self-trapped
electrons remains localized in a central chain at ar-
bitrary time. Indeed, combining the Eq. (20) and the
Eq. (9) we get

dpy =2t and dp =0 . 2n

All the other chains contain dipoles with charges

2e
dap=*Z+71°

(22)

the length of a dipole is proportional to 1dip ~dv =
= CO v,
Phase distribution for TaS; (Z = 2) is shown sche-

matically in Fig. 1.

The above presented solution of the Cauchy prob-
lem, though physically transparent, leaves certain
feeling of discontent because of two reasons: it is ac-
cessible only for a model boundary condition (7b),
(8). Besides, the IST method cannot even give an
estimate for the time at which the asymptote (18) is
reached.

Below we show qualitively that the principal results
(21) are, in fact, insensitive to a specific shape (8) of
f(x) and only depend on the topological constrictions
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Fig. 2. Dependence of a kink velocity on initial condition. Solid
line: result of the IST analysis; dashed line: trial function (23).

(5b), (5¢). We also show that the time of the steady-

kink-velocity formation is of the order ™! and weak-
ly depends on the shape of initial phase profile. The
time of a 2-kink steady profile formation is of order

of A/ (wT)>>w ™.
Consider the one parameter two-soliton solution to

the SG equation [16]:

cosh (Ut /(1 — Uz)l/z)

Usinh (¢/(1 - UH'?)

ng€, 1) = —4 tan ™!

L)

(23)
where U = v/C, , which obeys the initial conditions:

ngé=+40,1=0)=-21,
24
g > +w,1=0)=0.

To connect U with the initial space derivative, put
ng(€ = Iy, T = 0) = —x which gives

ly=01-UH"2an"t (1/0). 25)

For TaS, parameters, b= 0.26, we obtain v=
=0.96C, in an excellent agreement with the IST re-

sults (Fig. 2).
It is convenient to define the time of establishing
the asymptotically steady velocity, 7, , as the one

when the time derivative of a profile at a point & equals
U/2,ie.

sinh (Ur, /(1 - U})Y?)
= - 26

2
[1 + (cosh Wr_ /(1 - Uz)‘/l)u“‘) ]

We get from (26)

a-uvhH'? L+ 2"
T, = arcsinh QD

b U 3
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Combining (27) and (25) we arrive at t_~l,
(r ~1/w).

Mention should be made, at least qualitatively, how
three-dimensional effects modify the results obtained
within the framework of the model (3) which, though
takes into account the interaction with neighboring
chains, is essentially one-dimensional one. As our
model (3) mathematically is closely related to the
model of a crowdion in 3D elastic medium, we can use
the results for crowdion [17].

Numerical analysis [17 ] shows the existence of two
scales in the core of a localized charge density p,
resulting from the nonlocal nature of the model. At
large distances x>>1 ~30d (d = fvp /2T, the ex-

ponential decrease in the density p changes to the
power-law relationship p~(l, /x)3.

Whereas the density peculiar to a charged chain is
of order of py~e/d, the charge densities in neigh-
boring chains are of order of p, ~ 10" %¢/d and the
scale of a dipole field is of order of /, ~ 10d.

Furthermore, the dynamics of a charge formation
in a 3D case is more complicated than in a 1.D model.
There are two different characteristic velocities in a
3D medium: the longitudinal one C,, and the
transverse one C, ~ (T, /e)Cy<<C,. The charge
moving with the velocities v in the interval
C, <v< Co , produces the Cherenkov radiation with
the radiative force [18 ]

4

P e

It follows from the Eq. (28) that the charge which
comes into being with the initial velocity v = C;) loses

its velocity to the point C, over distance

1

1, ~ &g(e,- /T ,)? during the time 1, ~ (1/w)(ej /T,)>.
This radiative effect can be speculatively related to
the «narrow band noise» problem [1,2].
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And finally, note that in a case of a static kink, the
dipole field in neighboring chains transforms to a
quadrupole one [17].
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