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We study a steady state, bearing a heat current, Q,, in the normal state of liquid 4He with

constraining geometry, near the lambda point, at temperatures T greater than the lambda temperature,

T, . Critical order parameter fluctuations near the boundary are incorporated in the expression for the

non-local thermal resistivity. The Kapitza resistance is manifested by the additional temperature rise at

the boundary, as compared with the bulk-extrapolated value. Sensitivity of the calculations to the

application of the Dirichlet boundary condition is discussed.

PACS: 64.60.Ht, 67.40.Hf, 67.40.Pm

In the region of the lambda point of “He the
critical Kapitza resistance is a strong function of
temperature. This behavior is predicted by theory
and has been measured experimentally. It is puz-
zling that the recent experimental data [1] and the
theoretical results [2] for the additional boundary
contribution to the thermal conductivity of 4He just
above the A-point show a significant discrepancy.
Understanding the physical source of this discrep-
ancy is important for the general theory of critical
fluctuations at a second-order phase transition. In
this paper we calculate the Kapitza resistance in a
different way from that of Frank and Dohm [2] by
modeling a boundary with the heat source imbedded
in the liquid helium in the plane z=10. Such a
source produces the outward flow

09y,2>0,
Q(z):QOSignzzg_QO,2<O. €D

The resulting temperature distribution would give
the gradient
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dT,
45 =T (@) =-p(0, K)OE) , (2)

in the absence of any boundary effect, with
p(0, K) =A71(0, k) the thermal resistivity, i.e., the
reciprocal of the thermal conductivity. Then, the
Kapitza resistance is manifested by the difference:

O@) =TE) - T,(2) . (3)

The choice of zero in temperature is irrelevant and
does not affect this difference. The wave number
dependent non-local resistivity, p(k, k), determines
the spatial derivative, @'(z), by the operator equ-
ation

Q@) =T@) ~Ty@)=-lp-p0, K] O@E) . (4)
In the Fourier representation this becomes

ikO(k) = ~[p(k, K) = p(0, )] Ok) . (5)

Here we use the following notations:



o)

~ 21
00 = [ dz exp ik O == 0y,

. (6)
o) = I dz exp (-ik2) () .
Combining Egs. (5) and (6) we readily get
~ 2
O(k) = 2 [p(k, K) = p(0, K)] Oy . (7)

The Kapitza resistance is consequently

o) 2
RK:70:7
0

dk
? [p(k: K) - p(O, K)] . (8)

Making use of the bulk thermal conductivity,
A=p0, k) ~ kY 9
we can approximate the non-local resistivity by

p(k, K) = A1 H + (k/aK)2Ex/ Y (10)

with @ = O(1). The thermal conductivity critical

exponent in the crossover region is x and the critical

exponent of the correlation length is v, & = k1.
Thus,

Re=—+1, (11)

where the definite integral is

du

- 2 l 2\x,/2V O
I= » %1 +u ) 1D. (12)
0

This integral converges at both upper and lower
limits due to x/v < 1. Integration by parts yields

o)

I (13)
T[VJ-(1 + u2)1—x/2v ’
0

Noting that 1 —x,/2v > 1,2, and passing to the
new variable (u = tan X, du = sec? X), the integral
reduces to the Euler beta-function, B(m, n):
2 1 0 x
I=— ,5-N; N=—.
P 32 HE n=o, (14)

It is convenient to rewrite Eq. (11) in the form

110

_ lett
Ko
with the amplitude of the effective thickness of the
critical boundary layer

g = A (16)

(15)

given by
A=al. 7

From the slope of the log-log plot of Ahlers’ data
[3] we obtain

x = 0.46. (18)

This crossover effective exponent is well ac-
counted for by «quasi-scaling» theory [5], in which
the asymptotic dynamic scaling exponent of 0.40 is
increased by the factor of 1 +2z, , where z, was
found to equal 0.18. This brought the theoretically
expected quasi-scaling exponent up to

Xo =0.4000.18 = 0.47, (19)

in good accord with the experimental value of x.
Substituting this value of x into Eq. (14), with
v= 0.672, we obtain n =0.343, which yields
B(1,/2,1/2-n)= 7.66 and I =1.673. From the
<rule of thumb» [6] and the two-term € expansion
[7] we have @ = 2, so that A = 2.35.

In order to compare this result with the theory of
Frank and Dohm [2] we have deduced their value
for this coefficient by reading off the numerical
values for Ry from their Fig. 3 in Ref. 2. It suffices
to consider the case t =107, for which they evi-
dently predicted the value Ry =0.0268 K@dm?/W.
Multiplying by Ahlers’ [3,4] thermal conductivity
at the saturated vapor pressure and at this same
temperature, namely, A= 6.240073 W /Kdm we
find lfffD =1.67007* cm. Dividing by the correla-
tion length

§=¢,t™ =1.40007800% cm = 1.49007% cm,

we obtain for the Frank-Dohm theory the coeffi-
cient A, = 1.12.

In comparing data [1] with the Frank-Dohm
theory [2], Lipa and Li noted a significant discrep-
ancy in magnitude. The size of the boundary effect
that they observed was evidently approximately
five times greater than that predicted by Frank and
Dohm. Our treatment, presented above, predicts a
stronger effect than that of Frank and Dohm by the
factor of 2.1 (from A and lgfjf)). This factor can be
expected to get bigger when we improve our ideali-
zed «embedding» theory by introducing the Di-
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richlet boundary condition at the heat source. The
increase, however, is unlikely to be large enough to
account fully for the observed magnitude of the
effect.
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