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The non-relativistic quantum-mechanical problem on bound states of four interacting spinless electrons mov-
ing in the Coulomb field of two attractive point centers with Zy = 2 spaced at fixed distance Rg (4He2 dimer
within - Born—Oppenheimer—Heitler—London approximation) has been solved rigorously through exact
diagonalization (expansion on truncated orthonormalized basis) method. The four-spin-conditioned relativistic cor-
rections (of order ~1/cz) to the ground state level of the dimer have been calculated with exact diagonalization on
spin cluster, the spectrum and eigenvectors of the spin problem have been obtained. It is shown that pair spin cou-
pling is antiferromagnetic with exchange constant of 12 K (it provides antisymmetry of the spin-singlet ground-state
wave function for isolated *He atom with two fermions coupled within the unitary spatially symmetric shell), but
within four-electron shell of 4He2 dimer this fact yields the quintet ground state of the four-spin cluster totally
antisymmetric relative to pair permutations. The exchange within the interatomic bond depends on the interatomic
distance, so that there is a coupling between spin and phonon degrees of freedom which leads to renormalization of
phonon spectrum in condensed phase as compared to the corresponding spinless medium. This effect can be inter-

preted as a direct analog of translation-rotation interaction in molecular cryocrystals.
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1. Introduction

The most part of modern interpretations for observed
properties of liquid and solid helium is based on the postu-
late that the interatomic interaction in helium is pure van
der Waals in its nature. Atom-atom potentials [1] as a basic
concept for description of interatomic interaction in gases,
liquids and solids is well-known approach to treat physical
and chemical properties of different media, but it is not so
successful for helium condensed phases.

Specific response of superfluid helium on external elec-
tromagnetic exposure have been discovered experimentally
over last decade [2-9]. The most characteristic feature of the
mentioned experiments is a manifestation of resonant absorp-
tion on a certain temperature-dependent low-frequency mode
(of 150-180 GHz) which behaves like specific eigenstate of
superfluid phase in *He below A-point [4,8,9]. The nature of
this phenomenon is still not quite understood, but it is evident
that the corresponding effects can not be interpreted properly
without correct solution of the quantum mechanical problem
for a helium atom interacting with array of neighboring heli-
um atoms. It should be pointed clearly the intra-atomic de-
grees of freedom responsible for the resonant effects in heli-
um condensed phases.
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In this paper we present the formally exact solution for
the non-relativistic quantum mechanical problem of heli-
um-helium interaction treated within Born—-Oppenheimer—
Heitler—London approach [10,11] (four spinless electrons
moving in the Coulomb field of two nuclei with Z; =2
spaced at fixed distance Ry) improved with spin-con-
ditioned relativistic corrections of order 1/c?. The one-
parametric spectrum &,(Ry) of bound states for the prob-
lem has been obtained with exact diagonalization proce-
dure [12,13] at arbitrary values of R, (Sec. 4). We are
interested in low-temperature properties of condensed he-
lium phases, so that we keep only the spatial ground state
of the system. Then we include spin-conditioned relativ-
istic corrections of order 1/c? (spin-orbit and spin-spin
coupling). It is found that due to symmetry of the ground-
state wave function the matrix elements of spin-orbit cou-
pling (linear in spin operators) vanish, but spin-spin cou-
pling (bilinear in spin operators) gives a spin density ma-
trix which describes a four-spin cluster within internuclear
bond with mutual antiferromagnetic pair exchange of order
12 K. The spectrum and eigenvectors of the spin density
matrix have been obtained through exact Jacobi diago-
nalization of 16x16 matrix of integer elements. The ground
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state of the spin problem is triplet with eigenvectors
antisymmetric relative to the odd number of pair permuta-
tions, in this sense it is compatible with the parity of the
spatial ground state within the complete wave function of
the system. The results are discussed in Sec. 6.

2. Two interacting helium atoms (helium dimer)

Below we use the Hartree atomic system of units with
electronic mass m, =1 and spatlal scale normalized on the
Bohr radius ag = n? /me . The physical system under
study consists of six charged particles, namely, two nuclei
with the positive charges 2 = 2, = Z; =+2 and four
electrons which we denote as “a”, “b”, “c” and “d” parti-
cles with charges 2z, = 2, = Z, = Z; = -1. We suppose
the coordinate origin is coincide with one of the nucleus,
so that the radius-vector of the second one is Ry, and co-
ordinates of the electrons are r,, r,, r. and ry, respec-
tively. Thus, the Hamiltonian of the problem takes the
form

Ho(Fa o, o, Tg | Ro) = _iA(nuc)(R0)+ﬂ+
2].1 RO

+H(e)(ra,rb,rc,rd)+ Hint (fa, 1,16, Mg, Ro), (1)

where p=mg /M, (M, is nuclear mass), H® is the
pure electronic part of the problem (four mutually repuls-
ing electrons in the attractive Coulomb central field of the
first nucleus),

HA(e)(ravrb’rC!rd) = _Z |:%A(e)(rs)+ré:|+

s S

_Z (s,s'=a, b, c d), 2

s¢s | Is —

and H;, describes the attraction between electrons and
the second nucleus,

1
|nt(ra:rb’r0!rd|Ro) = Zzz ms 0. (3
S

The Hamiltonian (1) describes an exact non-relativistic
dynamics of the system, including internuclear motion. To
take into account the dynamics of heavy repulsive nucleus
we have to use a basis incorporate the functions of contin-
uous spectrum, whereas the electronic part of the problem
should be based on functions of discrete spectrum [12].
However, if we are interested in some specific applications
of the problem restricted to interatomic interactions in
condensed helium matter then the interatomic distance R
has a rather narrow range of variation, and the system can
be treated on the qualitative level within Heitler-London
approximation (HLA) [10]. The HLA Hamiltonian can be
obtained from Eq. (1) in the limit p — .
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3. Eigenstates of four-electron two-center system

The Schrddinger equation with Hamiltonian (1) within
HLA,

Ho® (fa, o, T g | Ro) = E¥(Fa My T g |Rg) . (4)

is the linear differential equation of second order in partials
depending on eleven spatial variables r,,r,, 1., ry and
one free parameter Ry. The procedure of exact diago-
nalization is described in Ref. 12 for isolated *He atom
(two electrons in a central field). The problem studied in
the present paper is more complicated despite the principal
analogy with treatment of Ref. 12. The complication is due
to essentially wider basis which is necessary for the proce-
dure, and the presence of ’external’ field (3) from the se-
cond nucleus.

We consider only bound states of four-particle Hamil-
tonian (1) with discrete spectrum &£ <0. The exact solu-
tion W(r,,r,) of the linear partial differential equation (4)
can be written as an expansion [14]

[o0)
W(ry. My fe. g [Ro) = Zcp(RO)Up(ralrb’rcvrd) ®)
p=1

over a complete set {uy(ry,ry,re,rg)} of functions
orthonormalized with standard condition

<up|uq>:de3rsu;uq:6pq, (6)
S

where s=a, b,c, d,and 3 g is Kronecker delta.
We select the basis {up(ra, 1y, 1c,rg)} as every possi-
ble direct products,

ng la my
Ny 1y My
Up(rg Ty, e fg) =
pra ¢ nC IC mC
Ng lg my
= l_I\Vnslsms (ars, 5, ¢s) (7
S

of single-particle hydrogen-like functions [15-17],

Ynim (@) = Ry (ar)Yim (8, ) = [nlm), ®)
where Y|, (9,¢) are spherical harmonics in standard de-
termination [17,18], and radial function R, (ar) depends

on radial coordinate renormalized by scale parameter [12]
o >0, and radial function is

20L3/2

nJ(n—1-1)L/(n+1)! §

|
x (ﬁj exp[ och L$12||+_1% [Zarj, 9
n n n

where L(n7‘) (x) are Laguerre polynomials [42]

R (ar) = -
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(%)

L) (x) = pi(h+ p)'z « KI(p—K)(h+ k)

(10)

is determined in univocal correspondence to a complete set
of single-particle hydrogen-like quantum numbers. The

complete basis must include all functions Un,l,my (ra),

With respect to Eq. (10) the radial functions R, (ar) can Unplpm

be represented in the explicit form,

|
iy —1)|\/(n+|)l(2°”)

Ry (ar) =

(), Ungleme (rc) and Unglamg
to aﬁ JJegenerate states with different my my, m, and my
at given ny, ny, ne, ng. by, by, o, Ig.
Rp = Ry(0,0,1) is oriented along z axis, then the projec-
tion L, of the total angular momentum of the system is the

(rq) correspondlng

If vector

integral of motion, and eigenvalues M of the operator IZZ

(mrjk are
n

—k-1)1@I+k+1)1

ek f——

M=my+m,+m,+my =0,£1,+2...

(13)

These values are good quantum numbers of the general

Note, that functions R, of the set Eq. (9) are
orthonormalized at any real positive o >0 [17]. The case
o =1 in single-particle function corresponds to the simple
hydrogen atom. For two-electron helium shell we have
o=2Zy—oc, where 0<oc<1 is the screening parameter
[12,18,19].

Each basis function number

electronic states.

problem. It means that every pure eigenstate of the Hamil-
tonian (1) can be represent as infinite superposition of di-
rect compositions of single-particle wave functions with
arbitrary m,, my, m,, my , but only under condition (13).
This property will be used below for classification of the

As a result, we will find the solution of the problem

ng ly my o
nb Ib mb Z[H pq(RO)_g(RO)Spq]Cq(RO):0! (14)
P= n. l. m (12) q=1
C 'C C
nd Id md . . .
with the basis (7). Matrix elements are (cmp. Ref. 12)
Nay Ial Mgy Na, Iaz Ma,
2
a’f 1 1 1 N I, My (1[N, b, My
Hpq(Ro):<Up|H|Uq>:—7 —2+—2+—+—2 Spq—GZ nbl Ibl mbl _n2 |2 m2 —
Ng Ny Ny s Vo g e [fs|le lep ey
ndl |d1 mdl nd2 Id2 de
Ny Ial My Na, Ia12 Ma, Nay Ial My Na, Iaz Ma,
—ZZZ My Ibl Moy 1 Moy Ibz My, +lz Moy Ibl My 1 Mo, Ibz Mo, (15)
=\ Mo IC1 M | rs —Rg [|Ne, ICz Me, 25\ Ny ICl Mg | rs =g [|Ne, ICz Me,
ndl |d1 mdl nd2 Idz md2 ndl |d1 mdl ndz Idz mdz

where s, s'=a,b,c,d and o= 2 —a is the screening
parameter [12]. Below, for simplicity, we neglect the
screening (o =0), so that o = Z;. All the matrix elements
had been calculated in Ref. 12, except of the last term in
Eqg. (15) which is a sum of expressions

[0,2%),say ® =0. Asaresult,

|
W, (Il
1 _ 2
(mhmy || r=Rg [ nalymy) =

h+ly n, | - 1)m+ml[
ZI,[ aRojw, (Ii rr:j@,q)} (16) ;
b

ny,
where (a
d

L

where ® and @ are polar and azimuthal angles of the
vector Ry, and

R = Ry (sin®cos®, sin@sin @, cos ®). (cmp. Ref. 12)

1396

I
m m

At chosen orientation of the Ry along z axis we have
® =0, so that ® can be an arbitrary value within interval

o,o];/(2|1+1)(2|2+1)['é 'g éjx

(17)

')

c . .
f] are Wigner 3j-symbols [20]. Func-

tion Z; as integral over radial variables has the form
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BIGH

I {nll I R j ,Tl'TZIV]_IVZ ( 2 jll( J i (_1)k1+k2
| arRo
N, |y nind gtla+? \nl N2) k=0 ky=0 a*172 k1,1 (M +kp)U(g + ko) (1 — k)Xt —kp)!
I+N N-1-1 k
R R
x ('+NI)+1{1 exp(-aoR )Z( ¢ 0) :l+(aocR0)'(N—I—l)!exp(—aaRo) > % . (18)
(aaRy) ko K k=0 '
Here a= nl’l + ngl, u=m-h-1, 1 =n,-1,-1, lated with basis of N =155, and this last curve runs closely

vi=m+l, vo=ny+l, A =2l +Lk, =2, +1, and
N=h+ly+k +ko+2.

All terms in Eq. (15) are matrix elements of pair inter-
actions because the Hamiltonian (1) describes only pair
interactions between non-polarized elementary particles
(electrons and protons) belonging to the interacting helium
atoms. The polarizability is only property of integrated
atom built of charges with different signs.

4. The spectrum of the problem

In the present statement the problem under study is ra-
ther close to well-known problem of many-electron dia-
tomic molecule [16]. The standard approach [16] to this
problem is based on postulate of electron motion within a
certain self-consistent field (SCF) which ignores some de-
tails of individual electronic state, but the corresponding
features can be described properly using exact diago-
nalization scheme. In this connection we will not classify
here the electronic states with standard shell notations,
referring only to conservation law for z-projection of the
total angular momentum.

We use the basis (7) [12] built as direct composition of
four five-component single-particle bases (8) with n<2
I <1, namely,

{]100), | 200Y, | 210, | 21-1), | 211y}

As a result, we obtain the total basis of 5* =625 func-
tions. However, before start of the main calculations we
make some remarks about numerical procedure using more
simpler example of hydrogen dimer (two attractive Cou-
lomb centers with 2, = 2, =1 and two interacting elec-
trons).

4.1. Hydrogen-hydrogen bond

To be sure that our procedure works in a proper way,
we calculate the problem of two electrons at two nucleus
(H-H dimer). The results are presented on Fig. 1, and they
are closely related to well-known Morse curves obtained
with the simplest variational procedure [10]. It is essential
for our procedure that there is an optimal dimension of the
basis which gives the minimal value of the calculated en-
ergy. It can be shown from Fig. 1(a) that the curve ob-
tained with basis of N =25 is much lower than one calcu-

to the curve obtained with N =4. Thus, the basis of
N = 25 should be considered as an optimal case.

Another fact is a proof of the limit Ry — 0 where after
omitting the repulsive term /R, we have to get the spec-
trum of two-electron helium atom [12]. As it seen from
Fig. 1(b), the energy spectrum of H-H in the limit Ry — 0
is of 15% higher than the exact helium spectrum [12], but
it is more essential for our goals that it is only numerical
discrepancy, and the structure of helium spectrum remains
unchanged. It means that we can trust our calculation pro-
cedure at finite Ry.

0

(a)

< -0.5F
N

-0.8
-1.0
-1.2
-14
s-1.6
w—1.8
-2.0
2.2
24
2.6

(b)

a
T T T T T T T T T T T T T T

Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0 05 1.0 1.5 2.0 25 3.0 3.5 4.0
R, Bohr
Fig. 1. Two lowest states (symmetric and antisymmetric) of H-H
dimer as a function of internuclear distance Ry (a). Plot (b)
shows the run of the Morse curves without of 1/Ry repulsion, and
the curves tend at Ry — 0 to the values adequate to correspond-
ing energy levels of simple helium atom [12]. Curves 1, 3 corre-

sponded to basis with 25 functions, and curves 2, 4 corresponded
to basis with 155 functions.
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4.2. Helium-helium bond

The total representation is reducible and splits onto ir-
reducible representations corresponding to determined val-
ue of M =m, +m,+m, +my (the projection L, of the
total angular momentum of the system on R direction is
an integral of motion). However, due to only pair interac-
tion between particles in the Hamiltonian (1) (see Egs. (2),
(3)) for each matrix element of Eq. (15) exists the condi-
tion mg +Ms, < ISl +ls. <2 which means that there are no
reason taking into account the elements with M > 2, de-
spite formally such cases are acceptable. Thus, the basis is
shortened up to 599 elements (195 elements of M =0,
288 = 2144 elements of M = +1, and 116 = 2-58 elements
of M = +2).

After diagonalization according to the procedure de-
scribed in Ref. 12 we have spectrum &;(Ry) and eigenvec-
tors with components ey () (Eg). Three Iowest levels of the

r (a)
71 .
oL
2 r 3)
<
. —3F 3)
5 7 8
—4r 3
5 4
C 1 1 1 L 1 1 1
0 1 2 3 6
R, Bohr
—4.2F
: 3
§ 3 (3)
4.4
N_//@)
4.6
= L
<
W 4.8+
5.0 (1)
e
52 (b)
1 Il 1 Il 1 Il
0.8 1.0 1.2 1.4
R, Bohr

Fig. 2. Three lowest states (Morse curves 1-3) of *He—"He dimer
as function of internuclear distance R (a). For comparison, curve
4 on Fig. 2(a) is the variational calculation from Ref. 21. Plot (b)
shows the run of the Morse curves in the vicinity of their minima.
The numbers in brackets on right margins indicate the degeneracy
of the corresponding level. The distances and energies correspond-
ing to the minima of the curves are summarized in Table 1. The
plotted functions are presented in atomic units.

spectrum as functions of R, (Morse curves [11]) are
shown on Figs. 2(a), (b). Each of the branches of the spec-
trum corresponding to the bound states (£ < 0) has a min-
imum & i at its own characteristic distance Rj i, . All
the data are accumulated in the Table 1.

Table 1. Extremal parameters of low-lying levels for *He—"He
dimer

Level Rj min & min Deg.
Bohr A a.u. eV
0.88125 | 0.46618 | -5.22163 | -142.081 | (1)
1.13875 | 0.60240 | —-4.50354 | -122.541 | (3)
0.98375 | 0.52040 | -4.34744 | -118.294 | (3)

As we can see from Fig. 2(a), the slop of the Morse
curves is rather slower then expected from the van der
Waals prediction ~1/R This fact is caused by pair corre-
lation between eIectrons (due to |rg—ry L in the Hamil-
tonian (1)) which in reality can not be neglected at
Ry — o« because all the distances |rg —ry | contribute in
the matrix elements of Eq. (15). It is consequence of the
instantaneous correlation between particle positions in
non-relativistic Schrodinger quantum mechanics. To avoid
the corresponding faults the finite speed of the signal prop-
agation between interacting particles should be taken into
account [22], but the necessary corrections becomes essen-
tial only if Ry >2-3. On the other hand, at Ry — 0 the
calculation procedure developed in the present work gives
bound states with €j(Ry) >0, whereas, in fact, the states
with positive energy must correspond to infinite motion of
the particles (dissociation of the *He-"He dimer). To de-
scribe properly the states with positive energy we have to
include in the completed basis set the wave function of the
continuous spectrum and take into account the omitted first
term in the Hamiltonian (1). However, in view of the de-
clared goals of the present paper, there are no reason to
consider the both mentioned circumstances. We are only
interested in the lowest energy levels of the system in the
narrow vicinity of R; mi, ~1 because just this case corre-
sponds to the atomic configuration typical for condensed
(liquid and solid) helium phases.

5. Relativistic corrections to the ground state of the
helium dimer

All the relativistic corrections to the helium atom were
discussed in details by Bethe [22]. There are only two of
them (spin-orbit and spin-spin coupling) which lead to the
splitting of the helium atomic levels. Spin-orbit coupling
has the Hamiltonian (cmp. with H; in Eq. (39.14) of the
book Ref. 22)
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2
5 Z30s0 .~ | T .
g(ravrb re.ra|Ro) = ¢ 4s S{ZGS[%X_IVS +
s fs

~ I _RO .
+Y 6 s—x_.vs}
3

s LIrs—Ro|

1 ~ rg—ry
- G S S5
ZOZS: SS'Z¢S Ir —ry |

x—i(Vy = Vg )}} (19)

where oy =1/137.039 is  Sommerfeld  constant,
gs =1.001145 is spin g-factor, and & is the vector with
components built of Pauli matrices,

N R L

The Thomas—Frenkel factor [19,23,24] 1/2 has been taken
into account in Eq. (19) as well.

The next correction of our interest is Hamiltonian for pair
interaction between magnetic moments of individual electrons
(cmp. with Hg in Eq. (39.14) of the Ref. 22),

5 g as |8n
g(ralrbvr(:lrd)_ . 3{3 chcss(rs_r5)+

4 s#s’

. 3((!’5
e

(nuclear spin of the *He atom is equal to zero). The
~ 8(rg —ry)-like term in the first sum within curly brackets
of Eq. (20) had been discussed by Landau and Berestetskii
[25] in 1949 when studying the interactions between elec-
tron-positron pair (1/2-spin particles with opposite charg-
es), and then it was applied to derive some relativistic cor-
rection for two-electron helium atom [26-28]. This
problem was discussed in the Bethe book [22]. It should be
noted that the goal of Ref. 25 was to describe an interac-
tion between magnetic moments of electron-positron pair,
By = (en/2myc)a,, and fi, = —(eh/2m.C)Ge, respectively.
Thus, for electron-electron pair should be described
with expression (20) of opposite sign. This fact was over-
looked by authors of Refs. 22, 26-28. Here we are try-
ing to make up for the deficiency in this problem. Only
at positive pair spin exchange the ground state of simple
helium atom (two electrons within the unitary shell) is
the singlet antisymmetric relative to spins permutation.
It will be shown below that only positive spin-spin ex-

1D e

sz [Ts—

L )&s )((rs|2_ Iy )63’ ) }}(20)

|rs Ty

5 o
g(ra’rb!rc:rd)_gs S
525’

change leads to correct parity of the spin wave function
within the ground state of 4Heg dimer (four spins with pair
exchange interaction or four-spin Heisenberg cluster). The
second sum in curly brackets of Eq. (20) is a set of direct
static pair interactions between intrinsic magnetic moments
of electrons [29].

The completed Hamiltonian of the system (Eq. (1) with
corrections Egs. (19), (20)) has to be averaged over spatial
ground state W;(ry,ry.re,rql Rg) of the helium dimer
with energy & (Ry) shown in Fig. 1 (see Seq. 4). As a
result, we have

p(64,6,.6..64| Rg) —<\P1|H0+H +HSS |W¥y) =

_51(R0)+A50(R0)Z cSs"''A‘ss(l:zo)z‘,o'so's (21)
s#s'

Thus, the operator in the right side of the Eqg. (21) is a
spin density matrix which depends only on the spin vari-
ables of the four electrons bounded in the dimer. It de-
scribes both spin-orbital coupling (linear in spin operators
6 ) and spin-spin interactions (bilinear in spin operator
pairs 6,65, S#S').

5.1. Spin-orbit coupling

Here we re-write the spin-orbital Hamiltonian (19) in
the equivalent form

Z09s 0‘5 fz (is&s) ,
3

Hgf)(ra,rb,rc,rd|R0) =

4 ls s |
(is5) ([Rox-iV;16s)
+ —_— = =
§|rs_RO| ; |rs — R0|
Z Z| o 1y —[re,—iVg]—[ry x— |v5]} 22)
s'#s [rs—ry |

where g =[rgx—iV,] is the angular momentum of an
electron. It is seen that due to specific symmetry of the
wave function Wq(ry,ry,re,rglRo) the matrix element
(1| HSo | ¥1) =0, so that the spin-orbital coupling does not
contribute to the ground-state energy of the He—He dimer. It
makes us possible to present the wave function of the ground
state as direct product of independent spatial and spin factors.

5.2. Spin-spin interaction

Now we re-write the spin-spin Hamiltonian (20) in the
form

4 {4; chcs 5([’5 =TIy )+2 ZW}

szs |Ts =T

= (Xs)i (%s )k

{5. QR O+ O i Ok
ik =¥

2
|rs_rs’|
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where i, k=x,y,z, and &, is Kronecker delta, the
standard rule for tensor indexes summation is applied.
Due to symmetry of the spatial ground-state wave func-

s#s’

~5 i 3
(P | Hgg (ra Mg 1o 1g) | 1) = ggg ad > (¥1(Ry)| {5("3 —rs')+§—

Taken into account that (| rg —ry |’3) ~1/8 we can neglect
the second term in braces of Eq. (24), and

P(Sa,6b,6¢c,6ql Ro) =

= 81(R0)+ggsza§ F(Rp) Y 665, (25)

s#s’

where

F(Ro) = [ drd®rg d(ry —rg [¥1(ra 1. Te, g IR0 (26)

in view of ¥, is real function, symmetric over all pairs of the
spatial variables. The function F(R,) is plotted on Fig. 3.

Hamiltonian (25) is a formal analog of antiferromag-
netic Heisenberg model [30] applied to four-electron clus-
ter within an integrated He dimer,

p(64,61,6¢,64|Ry) —&(Ry) =

= J(Rp)(646p +6,6 +6,64 +6,6 +6,64 +6.6 ),

(27)
where
27 B
J(Ro) = ?gsza? F(Romin) = 3.8-107° =
=1.656598-10 *%erg =12 K (28)

is exchange constant. Hamiltonian (27) can be easily pre-
pared with exact diagonalization procedure. Let us use the
16-component basis

14+
1.2
1.0
0.8

0.6
0.4

0.2

. Ry=R

min

i
i
AL 1

| 1 | 1
1.0 1.2 14

1 1 1 1 1 1 1 1
02 04 06 038
R, Bohr
Fig. 3. Exchange coefficient of the spin subsystem of *He—"He
dimer as function of internuclear distance Rp. The point Rymin

on the graph corresponds to the minimum of potential Morse
curve of the ground state on Fig. 2.

tion, the matrix element of the second sum in Eq. (23)
vanishes, and finally we have matrix element of the spin-
spin Hamiltonian

1 “ A
3}|‘P1(R0)> GOy (24)
Irs = rs|

(a(a)j ® (Ot(b)J ®(G(C)] ®(a(d)} (29)
p@)) (B(M)) (B)) \B(d)

)

are one-spin basis vectors. The Hermitian 16x16 matrix of
integer elements has been diagonalized with standard Ja-
cobi procedure. The ground state of the spin cluster is
quintet with energy 55(0) =-2J(Ry) =—24 K(itis of about
0.1% of the ground-state energy of spinless dimer), and
each of five eigenvectors of the ground state changes its
sign only after odd number of pair permutations within
basis composition (29), so that the spin ground state has
the parity compatible with Pauli principle for the complete
ground state of dimer. The most essential fact is degeneracy
of the ground state. The quintet ground state can be splitted
through some external interaction, for example, through
coupling between spin subsystem and lattice phonons be-
cause the exchange constant J(R,) of the spin subsystem is
an explicit function of the internuclear distance Rj.

Let us use the simplest lattice model of monoatomic
condensed phase (liquid or solid [31]) where the number of
sites coincides with the number of atoms in the system.
There is two spins (c}‘;1 and 6{)) belong to each site with
coordinate f, and as a result,

~ _J(Ry) ~f Af+Ryd
Hss_Tz [Gaca 0"+
f.8

where

~f ~T+RA0  ~f ~f+R ~f ~f+Rnd
vy 0 vl v sla, " | o)

where & is a unit vector directed to the corresponding near-
est neighbor from the first coordination sphere of the site f.
Thus, each bond with the neighboring atom from the first
coordination sphere contains four spins bonded by mutual
exchange of spin pairs. This scheme means mutual spin-
spin interaction between neighboring sites, each interatom-
ic bond is the above-described dimer.

If the lattice contains phonon excitations, then the lat-
tice sites f and f +Ry3 have displacements u¢ and us 5,
respectively. As a result, the distance between the sites
becomes equal to | Ryd + (ugg —U¢) |, and the Hamiltonian
(30) takes an additional term

"Aiss _”:lss"":isph’ (31)

1400 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 10



Low-energy excitations in helium-like dimer within an exact diagonalization approach

where ﬁsph describes spin-phonon interaction,

N oJ(R
Heph = (O)Z[(Ufa ug)3 |

~f~f8

[0'];0'];5+0'ao'b 51 6hd

+6,0; +6{)c{)6}, (32)
with positive derivative dJ(Ry)/0Ry >0, as it is evident
from Fig. 3. In addition, we have to include into considera-
tion the phonon Hamiltonian Hpoh [32-34],

HonPr ) =53 of “‘b’Z[(ufa—uf)SJ :

"(b)Z(uf 5 —up)?, (33)

where k=U"(Ry)/2-X(Ry), A(Rg) =U'(Ry)/2Ry, and
U(r) is the potential energy of interatomic interaction
(Morse curve, see Fig. 2). As a result, the completed Ham-
iltonian of the monoatomic system at low temperature can
be written as

HA =th+HASS+HAsph. (34)

Thus, we can conclude that the dynamics of the spin sub-
system is a principal factor in low-temperature properties
of *He. The term Hsph describes spin-phonon coupling
which has an effect on phonon spectrum of the condensed
phase. The effect in some reasons is rather close to the
mechanism of inelastic phonon scattering on the
quadrupolar o-Hy impurities in p-Ho matrix [36,37].

6. Discussion

It is seen from Fig. 2 that the minimum of the ground-
state potential curve is achieved at Ry, =0.875, and
this seems to be confusable in view of the fact that inter-
atomic distance in liquid and solid helium is of order
higher. However, we shall take into account that the po-
tential well of Fig. 2 is essentially non-parabolic. The
nuclear zero-point oscillations in this well have an equi-
librium point Rgy > Ry, and the oscillations are essential-
ly anharmonic, so that zero point energy can not be esti-
mated directly through the curvature of potential energy
curve at Ry = Rymin - TO comparison, we have shown on
Fig. 2(a) the calculation from Ref. 21. To find the real
internuclear distance in the ground state of He, dimer we
have to solve the quantum mechanical problem which
include nucleus degrees of freedom, and it will be a sub-
ject of further investigations.

The contact interaction term ~ 6,6,3(r, —r,) which
is the main contribution to the spin-spin interaction in the
ground state of an isolated two-electron helium atom
[22,26-28], was used by Landau and Berestetskii [25]
during studying the relativistic interaction between elec-
tron and positron (two one-half-spin elementary particles

with opposite charges). The delta-correlation of the parti-
cles is resulted by necessity of “cancellation of diver-
gences” in formally divergent Coulomb integrals when
calculating the matrix elements of interaction, it was clar-
ified by authors of Ref. 25 in the conclusion of their pa-
per. Note, that the cancellation of divergences is well-
known problem of the quantum electrodynamics [35]
which arises when calculating matrix elements for parti-
cles with Coulomb interactions. To include the operator
6,0y, into the problem we have to be sure that the matrix
element of 3(r, —r,) wave function of the ground state of
helium atom [12] has non-zero value at arbitrary R, (see
Fig. 3) which is quite evident in view of symmetry of
the corresponding wave function describing the ground
state of the helium atom, but the coefficient 8=/3 is in
reality only an estimation depending on the model of the
S-divergence cancellation. The spectrum of the single
bilinear operator 6,6, consists of two states (singlet
and triplet [18]) with eigenvalues -3 (singlet) and +1
(triplet), but only the parity of antisymmetric double-spin
singlet state is compatible symmetric spatial ground level
of an isolated helium atom. In addition, if the spin-spin
correlation within the unitary shell of a stable helium
atom makes its ground state lower, then the spin ex-
change in the pair of the electrons of the shell must be
positive (antiferromagnetic), so that opposite to the negative
exchange in electron-positron pair [25]. The presence of the
spin-spin relativistic correction (of order 1/02) for helium
atom was discussed by different authors [22,26-28], but
despite the evident difference in structure and properties
between >He and “He this effect was not applied to discuss
the spin contribution to interatomic interaction in con-
densed helium phases.

The situation is radically different for the pair exchange
within four-spin cluster where antiferromagnetic nature of
the exchange leads to the ground state as spin quintet with
the parity complimentary to the complete ground-state
wave function of the dimer. The exchange (of about 12 K)
on the interatomic bond depends on the interatomic dis-
tance, so that there is a coupling between spin and phonon
degrees of freedom which leads to renormalization of pho-
non spectrum in condensed phase as compared to the cor-
responding spinless medium. This effect can be interpreted
as a direct analog of translation-rotation interaction in mo-
lecular cryocrystals [38—41].

7. Conclusions

It seems that spin-spin interaction as a part of the
complete interatomic interaction (which is electromagnet-
ic in its fundamental physical nature) in liquid and solid
helium is the most essential to realize the observable
physical properties of helium condensed phases at low
temperatures. The spin-spin coupling appears as small
~1/c? relativistic correction to the main electrostatic
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interaction, but at T — 0 the corresponding effects play
the principal role in the low-temperature phenomena. On
the other hand, the matrix elements of the spin-spin ex-
change depend on charge distribution within the atomic
system, so that there is a spin-phonon coupling as a factor
of spin contribution in thermodynamics of the helium
condensed matter. The spin-phonon interaction should be
studied within a complex approach to description of the
nuclear and electronic subsystems to obtain properly both
the lattice dynamics corrected by relativistic contribu-
tions and matrix elements of the relativistic corrections
complicated by Coulomb irregularities and contributions
from nuclear degrees of freedom.
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HusbkoeHepreTnyHi 36yaXeHHs y renienogibHomy
Oumepi B pamkax MeToy TOYHOI AiaroHanisaui

K.O. Ynwwko

Meroaom TouHOI AiaroHasi3awil (PO3KIagaHHAM 32 YCIYCHUM
OPTOHOPMOBAaHHMM 0a3UCOM) CTPOTO BHUPILIEHO HEPEIATHBICTCHKY
KBaHTOBOMEXAaHIYHY 3aJady NpO 3B’S3aHi CTaHW YOTUPHOX B3ae€-
MOZII0YNX OE3CHIHOBHX €JIEKTPOHIB, IO PyXalOThCS B KYJIOHIB-
CbKOMY IOJIi JBOX TOYKOBHX LICHTPIB TsDKiHHA 3 Zp = 2, po3Ta-
IIOBaHMX Ha (ikcoBaHil Bincrani Ry (aumep 4He2 B HaOJIVDKEHH]
bopua—-Omnnenreiimepa—I elitnepa—J/lonnona). Po3paxoBano do-
THPHCIIHOBI PENISITUBICTCHKI ITONPABKH (TIOPSIIKY ~ l/Cz) 10 piB-
Hsl OCHOBHOTO CTaHy JMMepa 3 TOYHOIO [iaroHali3alli€io CIiHo-
BOTO KJIACTepa, CIIEKTPOM Ta BIACHUMHU BEKTOpaMH CIIiHOBOI
3amaun. [Tokazano, 1110 mapHUil CIIiHOBHH 3B’5130K € aHTH(epoMa-
THITHAM 3 0OMiHHOIO KoHcTaHTOIO B 12 K (BoHa 3abe3mnedye aH-
THUCHUMETPIIO CIIIHOBOT CHHIJIETHOI XBUIIbOBOI (DYHKIIT OCHOBHOTO
CTaHy JUIsl 130I60BaHOTO aTOMa He 3 JIBOMa (epMiOHAMU, TIOB’SI-
3aHMMH BCEPE/IHI YHITAPHOI IPOCTOPOBO-CUMETPUYHOT 000IIOH-
ku). OHaK B YOTHPUENEKTPOHHIH 000JIOHII aAuMepa 4He2 uei
(daxT IpU3BOAUTD 0 KBIHTETHOTO OCHOBHOTO CTaHY YOTHPHCIIi-
HOBOTO KJIacTepa, sIKHil TIOBHICTIO aHTUCHMETPUYHUH OO Hap-
HHX nepectanoBok. OOMiHHA B3a€EMOIisl BCEpEIMHI MiXKaTOMHOTO
3B’SI3Ky 3aJICKUThH BiJl MiXKATOMHOI BiJICTaHi, TaK IO ICHY€ 3B’SI30K
MiX CIIHOBUMH Ta (JOHOHHUMH PiBHAMU CBOOO/H, L0 MPU3BOIUTD
JI0 IEpeHOPMYBaHHS ()OHOHHOTO CIIEKTpa B KOH/ICHCOBaHil (a3i B
NOpIBHAHHI 3 BIANOBIAHUM Oe3ciHOBUM cepenoBuiieM. Llei
edekT MOXKHA IHTEpHPETYBATH SIK MPSAMHI aHAJIOT TPAHCIILIHHO-
00epToBOi B3a€MOIii B MOJIEKYIAPHUX KPIOKpPUCTANIAX.

Kirouosi cnosa: mixkatomua B3aemofist He—He, penstuBicTchki
MOMPaBKH, CIiH-CHIHOBA B3a€MOJIIs.

HuskosHepreTnyeckme Bo3byxaeHus
B renunenogoGHOM AvMepe B pamkax
MeToJa TOYHON AvaroHanusauum

K.A. Ynwwko

MeTonoM TOYHOM AMAroHaNU3aNK (Pa3IoKEHUS 110 YCEUEH-
HOMY OPTOHOPMHUPOBaHHOMY 0a3HcCy) CTPOrO pelleHa HepessiTh-
BHCTCKass KBAaHTOBOMEXAaHMUECKas 33a7adya O CBSI3aHHBIX COCTOS-
HHSAX YeThIPEX B3aMMOJECHCTBYIOUIMX OECCIMHOBBIX 3JIEKTPOHOB,
IBIDKYIIUXCS B KYJOHOBCKOM IIOJI€ JBYX TOYEYHBIX LEHTPOB
NPUTSDKEHUS ¢ Z( = 2, PacHoIOKEHHBIX Ha (PMKCHPOBAHHOM pac-
crostHuH Ry (mep 4He2 B nipubmkennn bopra—Ornmenreiimepa—
Ieiitnepa—Jlonnona). PaccuutaHbl 4eTHIPEXCIIMHOBBIE PETSATHBU-
CTCKHE TIOTIPaBKY (HOpsIKa ~1/CZ) K YPOBHIO OCHOBHOTO COCTOSI-
HUSl UMepa ¢ TOYHOM OUaroHalu3allMed CIIMHOBOIO KiacTepa,
CIICKTPOM M COOCTBCHHBIMH BEKTOpPAaMHU CITHHOBOI 3amaun. IToka-
3aHO, YTO MapHast CIIMHOBAs CBA3b ABIACTCS aHTH(EPPOMArHUTHON
¢ obmeHHoH koHcTaHTOH B 12 K (0Ha 0oOecrieunBaeT aHTUCHMMET-
PHIO CHIMHOBOW CHHIJICTHOW BOJHOBOW (DYHKIMH OCHOBHOTO CO-
CTOSTHHS JUISI H30JIMPOBAHHOTO aTOMa He ¢ IByMsT (pepMHOHAMH,
CBA3aHHBIMH BHYTPHM YHHTapHOH MPOCTPAHCTBEHHO-CUMMET-
puaHOH 00onouky). OQHAKO B YETHIPEXDIEKTPOHHOH 000JI0UKe
Jaumepa 4Hez 9TOT ()aKT NPUBOIAMUT K KBHUHTETHOMY OCHOBHOMY
COCTOSIHMIO UETBIPEXCIMHOBOIO KJIacTepa, KOTOPOE IOIHOCTHIO
AQHTHCUMMETPUYHO OTHOCHUTENIBHO MapHBIX MepecTaHOBOK. OOMeH-
HOE B3aUMOJICHCTBHE BHYTPU MEXATOMHOH CBSI3M 3aBHCHT OT MEXK-
aTOMHOTO PACCTOSIHHS, TAK UTO CYILECTBYET CBA3b MEXJY CIIHHO-
BBIMA U (DOHOHHBIMH YPOBHSIMH CBOOOABI, YTO IPHUBOIHUT K
HEePEHOPMHUPOBKE (JOHOHHOTO CHEKTpa B KOHIEHCHPOBAHHOH (aze
MO CPaBHEHUIO C COOTBETCTBYIOIICH OE3CIUHOBOI cpemoil. DTOT
3¢ PEKT MOKHO HHTEPIPETHPOBATH KaK MPSMON aHAJIOT TPaHCIA-
IMOHHO-BPAIIATEILHOTO B3aNMOJEHCTBHS B MOJICKYJISIPHBIX KPHO-
KpUCTaax.

KiroueBsie ciioBa: Mex)aTOMHOE B3aMMOJICHCTBUE He—He, pest-
THUBUCTCKHUE MOIIPABKHU, CIIMH-CIIMHOBOE B3aUMOJICHCTBHE.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 10 1403



	1. Introduction
	2. Two interacting helium atoms (helium dimer)
	3. Eigenstates of four-electron two-center system
	4. The spectrum of the problem
	4.1. Hydrogen–hydrogen bond
	4.2. Helium–helium bond

	5. Relativistic corrections to the ground state of the helium dimer
	5.1. Spin-orbit coupling
	5.2. Spin-spin interaction

	6. Discussion
	7. Conclusions
	Acknowledgments

