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Soliton trains in dispersive media 
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In this paper two Boussinesq-type mathematical models are described which lead to solitonic solutions. One 
case corresponds to microstructured solids, another case to biomembranes. The emergence of soliton trains in 
both cases is demonstrated by using numerical simulation. The pseudospectral method guarantees the high accu-
racy in computing. The significance of the nonlinearities — either deformation-type or displacement-type, is 
demonstrated. 

PACS: 46.40.Cd Mechanical wave propagation (including diffraction, scattering, and dispersion); 
47.35.Fg Solitary waves; 
47.54.Fj Chemical and biological applications. 
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1. Introduction

The celebrated wave equation is one of the classical 
equations of mathematical physics and describes the mo-
tion of a wave with a constant speed. For many practical 
applications this model must be generalised. One of such a 
generalisation in conservative media is called after 
Boussinesq, who derived this model for surface waves on a 
fluid layer [1,2]. Nowadays the Boussinesq-type models 
are widely used also in solid mechanics [3]. In brief, such 
models are (i) bi-directional (including the d’Alembert 
operator); and in addition (ii) include nonlinear terms (of 
any order); (iii) include higher order terms (the presence of 
space and time derivatives of the fourth order or higher) 
describing the dispersive effects [3]. In general terms, the 
Boussinesq equation may be presented in a following form: 

2
0 ( ) = ( ),tt xxu c u N u D u− + (1) 

where u  is the displacement, 0c  is the velocity and indices 
,x t  here and further denote differentiation. Operator ( )N u  

expresses nonlinear effects  

2 3( ) = ( , , , , )xN u N u u uu   (2) 

and ( )D u  describes dispersive effects 

4 4 2 2 6( ) = ( , , , , ).x t x t xD u D u u u u   (3) 

There are many studies of this type of equations derived 
using various physical assumptions [3–7]. Attention is paid 
to the mathematical correctness of models in the sense of 
Hadamard, i.e., establishing whether the initial value prob-
lem is well-posed or ill-posed [3,5]. In physical terms, the 
Boussinesq-type models describe waves in crystals [5,8], 
longitudinal waves in rods [6,9], waves in microstructured 
solids [10,7], waves in biomembranes [11], etc. 

The most remarkable phenomenon resulting from using 
models where nonlinearity and dispersion are both taken 
into account, is the possibility of existence and/or emerg-
ing of solitons. Many studies are devoted to the special 
type of dispersion when ( ) = xxxxD u u . This is typical for 
cases when the governing equation is derived on the basis 
of lattice dynamics [5]. The “well-posedness” of such a 
model is analysed in detail [12,13]. 

The Boussinesq-type equations which actually model 
weak dispersion, are not the only ones able to describe 
solitons, the sine-Gordon equation, for example, is able to 
model solitons and bound-soliton complexes [14] emerging 
in ferromagnets. The combination of the sine-Gordon and 
the Boussinesq-type equations permits to analyse the dislo-
cation (crowdion) motion in crystals [15]. This model is  

2sin 0,tt xx x xx xxxxu u u u u u− + − γ −β =  (4) 

where γ  and β are the physical parameters. Equation (4) is 
nowadays called the Kosevich–Kovalev equation describing 
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motion in a strongly dispersive medium. Other generalisations 
are possible demonstrating the richness of the model [16]. The 
striking duality of solitons and quasi-particles is noted [17]. 

Based on this brief overview, it is clear that Bous-
sinesq-type equations govern complicated dynamics. 
However, one should clearly describe the physics behind 
the mathematical models. In what follows, the focus is on 
the emergence of soliton trains modelled by the Bous-
sinesq-type equations. The attention will be paid to the 
model equations focusing on the influence of various 
nonlinearities on the emergence process together with the 
fourth-order dispersive terms. The physical background 
of models is related to the microstructured media: 
microstructured Mindlin-type solids and biomembranes 
which possess internal structure. The latter is qualified 
also as a microstructure. In Sec. 2 types of nonlinearities 
(deformation-dependent and displacement-dependent) are 
presented and analysed. Section 3 is devoted to mathe-
matical models with dispersive terms. In this case the 
inertia of a microstructure is taken into account which 
leads to dispersion operator ( ) = ( , )xxxx xxttD u D u u . This 
means that in mechanics of microstructured solids disper-
sion is more complicated than proposed in lattice dynam-
ics [5]. The emergence of soliton trains for two model 
cases is analysed in Sec. 4. Finally, the discussion and 
conclusions are presented in Sec. 5. The results obtained 
earlier are here analysed from a unified viewpoint. 

2. Nonlinearities 

In mechanics of solids the nonlinearities are caused by 
physical and geometrical effects (see [18]). According to 
the conventional continuum theory [19], the physical non-
linearity means the nonlinearity of the stress-strain rela-
tions and the geometrical nonlinearity is related to the fi-
nite deformations, i.e., to the strain tensor. The free energy 
function (potential) in terms of the strain tensor is then 
presented in the form including beside quadratic terms also 
the higher order terms. Such a form reflects better the 
shape of the potential in terms of forces between the atoms 
in the discrete lattice. Note that as far as the stress tensors 
are determined by the derivatives of the potential with re-
spect to the components of the deformation tensor, the 
quadratic terms lead to the conventional linear theory [19]. 
The first approximation of a nonlinear stress tensor in-
cludes the quadratic polynomial of displacement gradients. 
For example, in the one-dimensional case the Kirchhoff 
stress tensor is [18]  

2
11 1 2 3

1= ( 2 ) 3 3 3 ,
2x xK u u λ + µ + λ +µ + ν + ν + ν + 

 
  (5) 

where λ, µ are the elastic constants of the second order 
(the Lamé parameters) and 1ν , 2ν , 3ν  are the elastic con-
stants of the third order. It means that the velocity is de-
termined by the relation  

 
2 2

0= (1 ),xc c ku+  (6) 

where 0c  is the velocity in the unperturbed state and k  is 
the constant of nonlinearity which according to expression 
(5) is 0= 3(1 )k m+ , 1

0 1 2 3= 2( )( 2 )m −ν + ν + ν λ + µ . 
Such a situation may lead to the formation of shock 

waves, i.e., the discontinuities of the solution [18,20]. 
More complicated free energy potentials lead certainly to 
more complicated mathematical models [18] but the situa-
tion described briefly above is the fundamental case of the 
nonlinear wave motion in solids. 

In biological tissues and cells, Exp. (6) might be differ-
ent, especially when the discreteness of structures is taken 
into account. Such a situation is the case of biomembranes 
which are built by bilayers of lipid molecules. Based on 
experimental observations, Heimburg and Jackson [21] 
have proposed for longitudinal waves in biomembranes  

 2 2 2
0= ,c c pu qu+ +  (7) 

where = Au ∆ρ , Aρ  is the density and p, q are experimen-
tally determined constants. 

It means that contrary to solids with deformation-
dependent (ux) nonlinearities, for biomembranes the gov-
erning wave equation based on expression (7) includes 
nonlinearities in terms not ux but simply u, i.e., the nonlin-
earities are of displacement-type (see below). 

3. Mathematical models for dispersive waves 

In general, dispersion of waves is the separation of 
waves into constituents of different wave-lengths and may 
be caused by either geometrical or physical effects. The 
geometrical dispersion takes place in waveguides due to 
the influence of the existence of lateral surfaces [9]. The 
physical dispersion in solids is caused by the existence of 
the microstructure of the material [5,7]. In the first case 
dispersion depends on the transverse dimensions of wave-
guides, in the second case — on the scale effects. 

Here we present two nonlinear mathematical models 
where the physical dispersion is of importance. Both mod-
els are of the Boussinesq-type like Eq. (1). 

Microstructured solids. In the theory of microstructured 
solids [22,23] the behavior of the macro- and microconti-
nuum is described by the separate balance laws. In terms of 
macro-displacement u  and microdeformation ϕ , the sim-
plest free energy W is governed by a cubic function  

2 2 2 3 31 1 1 1= ,
2 2 6 6x x x x xW u A u B C Nu Mα + ϕ + ϕ + ϕ + + ϕ  (8) 

where α, A , B , C , N , M  denote material parameters [10]. 
The balance laws are derived then from the Euler–

Lagrange equations. Introducing dimensionless variables 
0= /X x L , 0 0= /T c t L , 0= /U u U  where 2

0 = /c α ρ and 0U  
and 0L  are certain constants, along with geometrical pa-
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rameters 2
0 0= ( / )l Lδ  and 0 0= /U Lε , where 0l  is the char-

acteristic scale of the microstructure, the governing 
Boussinesq-type equation of motion is derived. By using 
the slaving principle (see [23]) this governing equation in 
terms of deformation ( = XV U ) is [24]  

 
( )

( )

2

2

=
2

= ,
2

TT XX XX

TT XX X X
XX

V bV V

V V V

µ
− −

 λ δ
δ β − ν  
 

 (9) 

where 2= 1 /( )b A B− α , 0 0= /( )NU Lµ α , 2 2 2
0= / ( ),IA l Bβ ρ  

2 2 2
0= /( )CA B lν α  and 3 3 3

0 0 0= /( )A MU B l Lλ α  are con-
stants. Here I  denotes microinertia.  

This equation has a hierarchical structure [20] — two 
nonlinear wave operators (one at the l.h.s., another at the 
r.h.s.) describe motion in macro- and microstructure, re-
spectively. In such a way, this is an explicit description of 
mechanical waves in microstructured media [7,20] which 
takes into account the leading effects. The accuracy of this 
approximation is established by the analysis of dispersion 
relations of the original and approximated equations and 
depends on the ratio of velocities in macro- and micro-
structure [25]. Note also that even without the operator of 
the wave motion in the microstructure, the velocity of 
waves in the macrostucture is affected (see the structure of 
the coefficient b). It is possible to solve the inverse prob-
lem for Eq. (9) in order to determine the values of its coef-
ficients with a suitable accuracy [26]. 

Equation (9) has soliton-type solutions if the following 
condition 

 
32 2

2 2
4>c

c b

 β − ν λ 
 − µ 

 (10) 

is satisfied [26]. Here the velocity of a soliton c is a free 
parameter. It is interesting to note that for solutions of the 
highly dispersive Kosevich–Kovalev equation (4) there are 
also restrictions which govern the existence of soliton 
complexes [16]. Such conditions seem to be characteristic 
to generalised models. 

Biomembranes. These important building blocks for 
cells and nerves are built by lipid molecules which have 
hydrophobic tails directed inwards [25]. It has been demon-
strated experimentally that such bilayers are able to carry me-
chanical waves [26,27]. The molecules of a bilayer can be 
treated as a microstructure and similarly to solids, the inertia 
of the microstructure must be taken into account. 

The mathematical model for longitudinal waves in 
biomembranes including nonlinearity of the biomembrane 
expressed by Eq. (7) was derived by Heimburg and Jack-
son [21] and improved by Engelbrecht et al. [28] including 
also inertial effects. The governing equation in the dimen-
sionless form is the following:  

 

2

2
1 2

= (1 )

( 2 ) ,
TT XX

X XXXX XXTT

U PU QU U

P QU U H U H U

+ + +

+ + − +  (11) 

where = /X x l , 0= /T c t l , = / AU u ρ  and 2
0= /AP p cρ , 

2 2
0= /AQ q cρ , 2 2

1 1 0= /( )H h c l , 2
2 2= /H h l . Note that 

= Au ∆ρ  and l  is a certain length (in case of a nerve fibre it 
is the fibre diameter). The constants 1h  and 2h  are disper-
sion parameters reflecting the elasticity and inertia of the 
structure, respectively. 

The accounting of inertia (term XXTTU  ) means that the 
propagation velocity is bounded for higher frequency har-
monics [28]. Moreover, neglecting this term, i.e., the pres-
ence only the spatial fourth order derivatives in Eq. (10) 
can lead to instabilities of the solution [5]. 

4. The emergence of soliton trains 

Both mathematical models presented in Sec. 3 are spe-
cific cases of the Boussinesq-type Eq. (1) including non-
linear and dispersive terms. As well it is known, under the 
certain conditions the nonlinear and dispersive effects 
could be balanced resulting in solitons. Since the pioneer-
ing studies of Zabusky and Kruskal [29] much attention is 
paid to the emergence of solitons and soliton trains from an 

Fig. 1. (a) 2sech -type displacement U  (solid line) and defor-
mation XU  (dashed line), (b) 2sech -type deformation XU  
(dashed line) and displacement U  (solid line). 
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arbitrary input. Here we demonstrate main features of the 
emergence processes for both governing equations presented 
in Sec. 3. Note that there is a fundamental difference in solu-
tions of these equations. Equation (9) describes the defor-
mation while Eq. (10) describes the displacement. If we con-
sider soliton-type solutions for both equations then there is a 
significant difference in displacements and deformations. A 
single pulse of a displacement means actually a sign-changing 
(bipolar) profile of a deformation (Fig. 1. (a)) and a single 
pulse of a deformation means a change of the displacement 
from one niveau to another (Fig. 1. (b)) [30]. 

The following results are obtained by numerical simula-
tion using the pseudospectral method (see [31]) which 
gives high accuracy in computing. As far as the Bous-
sinesq-type equations are bi-directional, from a localised 
initial input two soliton trains will emerge, one to the right, 
another to the left. Such a solution for the Eq. (9), i.e., the 
case of a solid with a microstructure is shown in Fig. 2 
[24]. The initial input is taken  

 
2

0 0 0( ,0) = sech ( ).V X A B X X−  (12) 

where A0 is the amplitude, B0 is related to the width of the 
pulse and X0 defines the spacial shift of the input. 

The coefficients here and further for solutions of Eq. (9) 
are taken = 0.7188b , = 1.1395µ , = 0.09δ , = 45β , 

= 9.3867ν , = 1.1470λ . 
The number of solitons in a train depends on the energy 

of the initial pulse [24]. For example, two cases are shown 
in Figs. 3 and 4. 

In the case of Eq. (10), i.e., the case of a biomembrane, 
the similar situation is observed. Here one should distin-
guish between the normal ( 1 2<H H ) and anomalous 

1 2( > )H H ) dispersion. Given the values of < 0P  and 
> 0Q  [21] the following results are obtained [32]. Figure 5 

demonstrates the emergence of soliton trains for anoma-
lous dispersion and Fig. 6 — the emergence of soliton 
trains for normal dispersion. 

The significant difference between the cases demon-
strated above is the structure of a train. For microstructured 
solids the trains follow the conventional structure — the 
larger the amplitude of a soliton, the faster it propagates 
[29]. For biomembranes, however, given the values of non-
linear coefficients ( < 0P  and > 0Q ) and anomalous dis-
persion, the outcome is different. In a train smaller solitons 
move ahead and larger solitons follow with a smaller speed. 
The comparison of two cases is demonstrated in Fig. 7. 

5. Summary 

The emergence of soliton trains is demonstrated for two 
cases of nonlinear and dispersive operators in the governing 
equations of the Boussinesq type for weakly dispersive 
media: microstructured solids and biomembranes. The 

Fig. 4. Solutions of Eq. (9) in case of 0 = 1A , 0 = 0.05B  at dimen-
sionless times = 2230T  (dashed line) and = 7210T  (solid line). 

Fig. 5. Solutions of Eq. (10) in case of = 0.2186P − , = 0.0043Q , 

1 = 0.072144H , 2 = 0.001H  at dimensionless times = 15042T  
(dashed line) and = 98001T  (solid line). 

Fig. 3. Solutions of Eq. (9) in case of 0 = 1A , 0 = 0.01B  at 
dimensionless times = 2230T  (dashed line) and = 7000T  
(solid line). 

Fig. 2. Formation of trains of solitons from pulse-type initial 
condition for Eq. (9). Right- and left-going structures are plotted 
at every = 2000T∆ . For details see [24]. 
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dispersive effects in both cases are caused by the 
embedded microstructures while the competing nonli-
nearities are different. For microstructured solids, the non-
linearities are of the conventional deformation-type terms but 
for biomembranes due to the structure of bi-layers, the 
nonlinearities in terms of the governing wave equation are of 
the displacement-type. The corresponding governing 
equations allow variation over a wide range of values which 
results in the changes of nonlinear dynamics. The analysis 
demonstrates that both models permit the emergence of 
soliton trains. However, an important problem is to establish 
whether the single solitons in trains are ‘pure’ solitons or 
not. The studies reveal that the interactions of solitons 
obtained in both cases are not fully elastic. Referring to 
earlier studies out of scope of this paper [11,24], we note 
here that during the interactions the radiation occurs 
demonstrating the ‘inelasticity’ of interaction processes. So, 
strictly speaking, one should call the observed entities 
‘quasi-solitons’ which is characteristic in many solitonic 
systems with inelastic interactions [3]. 
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