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The features of phonon spectra and their effect on the vibrational heat capacity of linear chains of inert gas 
atoms adsorbed onto a substrate, which is the surface of nanotubes bound to a nanobundle. The influence of the 
substrate results both in a shift of the lower limit of the chain spectrum from zero, and in mechanical stress in the 
chain (its extension or compression) also. It is shown that in the case of a compressed chain, the non-central in-
teraction between atoms is negative (repulsive), it results in a shift of the lower boundary of the spectrum of 
transverse vibrations to low frequencies and to a shortening of the part of the specific heat temperature depend-
ence in which this dependence is close to exponential. Heterogeneity of the nanobundle structure can cause a 
change in the distances between atoms of the chain. It is shown both and analytically and numerically, that as a 
result of it, discrete levels with frequencies both above and below the quasi-continuous spectrum band can ap-
pear in the phonon spectrum of the chain. The discrete levels with frequencies below the quasi-continuous spec-
trum band lead to a further shortening of the temperature interval at which the temperature dependence of the 
specific heat is close to the exponential one. 
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1. Introduction

Quasi-one-dimensional (q1D) crystalline structures at-
tract great interest from both the fundamental and applied 
points of view, in particular, as promising materials for 
quantum computers. The interest is caused by the unique 
properties of their quasiparticle spectra, such as the root 
singularities of the spectral densities at the edges of quasi-
continuous spectrum bands, the thresholdless formation of 
discrete levels localized near defects, etc. Due to the Lan-
dau–Peierls instability [1], the existence of these structures 
is impossible without some three-dimensional substrate, 
the choice of which is associated with considerable diffi-
culties. The substrate should ensure the stability of q1D 
systems of sufficient length and, at the same time, mini-
mally distort its 1D spectral peculiarities. 

Recently the adsorption of rare-gas atoms onto carbon 
nanotube bundles is often used to obtain stable macroscopi-
cally long q1D structures [2–8]. In the grooves between the 
nanotubes, the adsorbed atoms can form linear chains of 
length ~ 10 μm. The length corresponds to the number of 

atoms in the chain ~ 103–104. For the chains of this length,
the boundary effects can be neglected. The one-dimensional 
nature of these structures is confirmed by both neutron-
diffraction studies [2] and heat capacity data [3–7]. Neutron 
diffraction studies of 4He atoms adsorbed in grooves on the
nanobundle surface have shown the periodicity of the ar-
rangement of 4He atoms in the chain [9]. Theoretical calcu-
lations have shown the presence of a periodic potential along 
the grooves on the surface of nanobundles [8]. The variation 
of amplitude of this potential depends on the relative orien-
tation and displacement of nanotubes forming the groove. 
The potential depth varies from the values slightly greater 
than zero to 40 K. All this makes it possible to describe the 
vibrational characteristics of the adsorbed chains within the 
harmonic dynamics of the crystal lattice. 

It was shown in [10] that starting with a certain fre-
quency 0ω , the vibrations of the linear chain deposited on 
the crystal surface or in the bulk, actually do not extend 
through the crystal matrix and are completely localized on 
the chain. The frequency 0ω  is determined by the contri-
bution of the interaction of an atom in the chain with the 
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atoms of the crystal-matrix in the self-interaction matrix of 
the atom in the chain, Thus, аt 0ω > ω , neither the struc-
ture nor the phonon spectrum of the crystal-matrix can 
considerably change the spectral characteristics of atoms in 
the chain. The effect of a crystal-matrix on the phonon 
spectrum of the chain can be expressed in terms of only 
one parameter, namely, the value of the initial frequency

0ω . This approximation is particularly profound for the 
vibrational characteristics of the chains of inert gas atoms 
adsorbed precisely on a carbon substrate because of the 
large difference between the Debye temperatures of inert 
gases and carbon structures. 

At 0ω < ω , the vibrational spectrum of the atoms of the 
adsorbed linear chains has a three-dimensional character 
which determines the convergence of the mean-square dis-
placements of atoms in the chain and the stability of these 
structures in a finite temperature range. The temperature 
dependence of the phonon heat capacity of the adsorbed 
linear chain necessarily contains a low-temperature inter-
val in which the temperature dependence of the heat capac-
ity is close to the exponential one. 

At 0ω > ω , the vibrations of the atoms of the chain are 
either quasi-localized or their propagation has one-
dimensional character and the spectral densities of these 
atoms are well described by simple analytical expressions 
obtained for one-dimensional models [11]. The bandwidth 
of the quasi-continuous spectrum of the chain is deter-
mined by the interaction between the atoms of the chain 
[10,11], which depends on the distance  r  between them. 
Naturally, this distance is significantly affected by the in-
teraction of adsorbed atoms of the chain with the carbon 
atoms of nanobundles. Therefore, as a rule, r  does not 
coincide with the distance  0r  corresponding to the mini-
mum of the interatomic interaction potential in the chain. 
At 0r r< , the parameter of noncentral interaction, which 
determines the width of the spectrum of transverse vibra-
tions,  is negative. It will result in a shift of the minimum 
frequency of the quasi-continuous spectrum to the low-
frequency region [11] and, consequently, to the displace-
ment of the linear part of the heat capacity [10] to the re-
gion of lower temperatures. [11]. The formation of a com-
pressed chain 0( )r r<  by atoms of inert gases seems quite 
plausible because the period of the field created by nano-
tubes in the grooves is smaller than the equilibrium dis-
tance for most inert gases [9]. Note that the negative pa-
rameter of the noncentral interaction is intrinsic to many 
solidified gases and metals [12,13]. 

The defects of nanotubes, as well as the incommensura-
bility of the periods of the adsorbed chain and of the field 
along the groove between the nanotubes, can cause a local 
change in the interaction of the atoms in the chain with 
nanotubes. In the case of a local change in this interaction, 
the distance between a pair of atoms in the chain can also 
change, which, in turn, can result in the appearing of a lo-
calized state with a frequency below the lower limit of the 

quasicontinuous spectrum of the chain [11]. It leads to a 
shift of the linear part of the heat capacity curve to the low-
temperature region. The high-temperature part of the heat 
capacity curve of atomic chains adsorbed on nanobundles 
was studied in [14]. 

In this paper, we study the effect of the difference in the 
interatomic distance r  in the adsorbed chain from the dis-
tance 0r , corresponding to the minimum of the interaction 
potential between the atoms in the chain, on its phonon 
spectrum, formation conditions and characteristics of the 
discrete vibrational levels localized at the defects. The con-
tribution of all these changes of the spectrum into the low-
temperature heat capacity is also studied. 

2. Phonon spectrum and vibrational heat capacity of an 
ideal adsorbed atomic chain 

It was shown in [10] that a chain of atoms adsorbed in a 
groove between nanotubes with a sufficiently high degree 
of accuracy can be considered as a chain in an external 
field that determines the initial frequency of its quasi-
continuous spectrum. Basing on this result, we will consid-
er the chain of atoms adsorbed in the grooves between 
nanotubes as a chain of atoms in an external periodic field. 
We take into account an interaction only between the near-
est neighbors, which is quite natural for inert gases. In this 
case, the dispersion relations have the form: 
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Here 2ε ≡ ω is the squared frequency, k is the wave vec-
tor, the indices l  and τ  correspond to the longitudinal and 
transverse vibrations respectively. For a pairwise isotropic 
interaction between atoms, the parameter of the central 
interaction α  and the parameter of the noncentral interac-
tion β  are expressed in terms of the potential of this inter-
action ( )rϕ  by the following range: 
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We note that the symmetry condition for the tensor of elas-
tic moduli should be applied to the whole system (includ-
ing not only the chain, but also the substrate), since it is the 
interaction of the chain with the substrate that ensures the 
stability of the chain. Therefore, the transverse vibrations 
of the atoms in the chain (1) are not flexural vibrations, so 
their dispersion relation is not 4( ) ~k kτε  in the long-
wavelength region. 

Unlike the positive parameter of the central interaction
lβ , the parameter of the noncentral interaction τβ  changes 

its sign according to the relative position of the atom with 
respect to the minimum of the interatomic pairwise poten-

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 405 



E.V. Manzhelii, S.B. Feodosyev, and I.A. Gospodarev 

tial of the interaction ( )rϕ . For the case of a compressed 
chain 0( ),r r<  the parameter of the noncentral interaction 
is negative. Dispersion relations for 0r r>  and 0r r<  are 
presented in Fig. 1. In what follows, the width of the con-
tinuous spectrum of longitudinal oscillations will be denot-
ed by l∆ , and the width of the continuous spectrum of 
transverse oscillations, by ( 4 / , 4 / ).l l m mτ τ τ∆ ∆ = β ∆ = β  

In [11] the problem of the vibrational properties of both 
the ideal chain of atoms in an external field and a chain 
with a defect is solved by using the Jacobian matrix meth-
od [15–17]. The space of displacements of atoms of a 
chain is represented as a direct sum of orthogonal subspa-
ces ( ) ( ) ,H H H− += ⊕  where the subspace ( )H − is the 
subspace of in-phase displacements of atoms, and the sub-
space ( )H +  is the subspace of anti-phase displacements. 
Each of them is a linear span of the sequence of vectors

{ }( )
0 0

n
n

h
∞−

=
L  and  { }( )

0 0
,n

n
h

∞+
=

L  respectively. Here, ( )
0h −

and ( )
0h +  are the so-called generating vectors, correspond-

ing to in-phase and anti-phase displacements of two neigh-
boring atoms, respectively, and L is the dynamic operator 
which has the form: 
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, l l RR l R R a R R a

ik ix ikR R
m

+ −′ ′ ′ε + β δ − β δ + δ
= δ δ +′L  
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  (2) 

(R and R′  are the coordinates of the chain atoms). 
Complete information about the vibrational spectrum of 

the chain is contained in its Green function ˆ ( )G ε =
1ˆ ˆ( ) ,I L −= ε −  where Î is the unit operator. In the formalism 

of the Jacobian matrices, all matrix elements of the operators 
( )ˆ ( )G ± ε  are expressed in terms of elements 
( ) ( ) ( )
00 0 0

ˆ( ) , ( )( )i iG h G h
± ± ±

ε = ε  [18], for which we obtain [11]: 
____________________________________________________ 
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Fig. 1. (Color online) The dispersion relations (1) are shown by the curves 1 and 2 in both fragments, for the cases r1 > r0 (a) and r2 < r0 (b), 
respectively. 
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in the subspace ( )H + : 
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_______________________________________________ 

Here ( ) min min max( ) ( ) ( )i i i iZ iε ≡ Θ ε − ε + Θ ε − ε Θ ε − ε −
max( ),i− Θ ε − ε  and ( )xΘ  is the Heaviside Θ-function. 

The values miniε  and maxiε  are squares of the minimum 
and maximum vibration frequencies respectively. Figures 2 
and 3 show the Green functions in the subspaces and for 
the longitudinal and transverse vibrations of the chain at 

0r r>  and at 0r r< . We emphasize that for transverse vi-
brations 0τ∆ < and min 0 | |τ τ τε = ε − ∆  for 0r r< . 

The density of the vibrational states of the chain has the 
form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 Im 2 .
6 l lg G G G G− + − +

τ τ
 ε = ε + ε + ε + ε  π

 

Since this function contains the spectral densities of 
transverse and longitudinal vibrations, it has square root 

singularities not only at the edges of the spectrum, but also 
within it. Figure 4 shows the dependencies ( )g ε  for 0r r>  
and 0r r< . For 0r r< , the band of the quasi-continuous 
spectrum is much wider because of high values of the in-
teraction parameter lβ , peculiar to these interatomic dis-
tances, which determines the longitudinal vibrations, and 
of negativity of the parameter τβ , which determines the 
transverse vibrations. 

The spectral densities of oscillations shown in Fig. 4 cor-
respond to heat capacity temperature dependences with dif-
ferent lengths of the parts that are close to exponential. Figu-
re 5 shows the temperature dependences of the contributions 
to the low temperature heat capacity of the chains ( )VC T =

( ) 2 ( )Vl VC T C Tτ= +  of the longitudinal ( )VlC T  and trans-
verse vibrations ( )VC Tτ  (curves 1 and 2, respectively), and 
also CV(T) — curves 3. Here T  is the temperature. The  

Fig. 2. (Color online) Real (1) and imaginary (2) parts of Green's function (3) for the cases r > r0 (a) and r < r0 (b). The upper parts of 
the both fragments show the functions ( ) ( )lG − ε ; the lower parts show the functions ( ) ( )G −

τ ε . 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 407 



E.V. Manzhelii, S.B. Feodosyev, and I.A. Gospodarev 

position of the linear-like part of ( )VC T  is determined by 
the position of the inflection point. When 0r r< , the initial 
frequency of the continuous spectrum shifts to low frequen-
cies. It results in the fact that the linear-like part of the heat 
capacity curve starts at temperatures lower than for 0r r> . 
When 0r r< , the heat capacity curve ( )VlC T  is flattened 
because of the large width of the quasi-continuous spectrum. 
At relatively high temperatures in both cases, the heat capac-
ities ( )VC T have close values. 

3. The effect of a local change in the distance between a 
pair of atoms on the vibrational spectrum 

and the phonon heat capacity 

Consider an adsorbed chain with a local defect, namely, 
an isolated pair of atoms the distance between which dif-
fers from the distance between the other neighboring at-
oms. In the technique of the Jacobian matrices this defect 
is a degenerate local perturbation [17,19]. The frequencies 
of local vibrations caused by this defect can be obtained 
from the Lifshitz equation [20], which, applied to the prob-
lem in question, can be written as: 

 ( ) ( ) ( )Re 1/i iG ± ±ε = λ . (5) 

Here ( )
i
±λ  are the operators describing the contribution of 

the defect to the operators ( )
iL −  and ( ).iL +  The operators 

( )
iL −  and ( )

iL +  are induced by operator (2) in the subspaces 
( )H −  and ( )H +  respectively for displacement along the 

crystallographic direction i . 
In the subspace of the in-phase vibrations ( )H − , the 

change in the interaction between the atoms of the chain 
defect is not shown. Therefore, the operator ( )

i
−λ  is deter-

mined only by the change in the interaction of the chain 
with the substrate, that is, the change in the initial frequen-
cy of the quasi-continuous spectrum  0 def 0 (1 )i i iε = ε + δ . 
In this case, the operator ( )

0i ii
−λ = ε δ . 

In the subspace ( ),H +  both the change in the value of 
the interaction between the atoms of the defect with the 
substrate, and the change in the interaction between the 
atoms of the defect, is shown. This change can be written 
as def (1 )i i i∆ = + η ∆ , and the operator ( )

i
+λ  can be writ-

ten as ( )
0( /2)i i i ii

+λ = ε δ + ∆ η . 
When studying the low-temperature heat capacity, the 

localized states lying below the initial frequency of the 
quasi-continuous spectrum are of considerable interest. For 
convenience, we will call them gap localized states. De-
note the square of the frequency of the gap state by gε . 
The conditions for the existence of solutions of the Lifshitz 
equation (5) can be easily obtained from the Green func-

Fig. 3. (Color online) Real (1) and imaginary (2) parts of Green's functions ( ) ( )lG + ε  (4). Notation is completely analogous to the nota-
tion used in the previous figure. 
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tions (3), (4) shown in Figs. 2, 3. The detailed description 
of these conditions is given in [11]. In this paper, we dwell 
only on the conditions of their existence. Thus, because the 
value of ( )

minRe ( )iG − ε  tends to −∞  at 0i∆ > , the gap 
levels appear at any negative values of ( )

i
−λ  (i.e., values of 

).iδ  When 0i∆ <  (transverse vibrations at 0r r< ), the 
gap vibrations localized on the in-phase vibrations of at-
oms of the chain appear at 0/(2 ).i i iδ < −∆ ε  For anti-phase 
vibrations, the gap levels appear at any negative values of 

( )
i
+λ  at 0τ∆ < . In other cases, in the subspace ( )H +  gap 

vibrations occur at  0(1 ) /(2 )i i i iδ < − + η ∆ ε . 
The energy values of the gap vibrational levels are the 

poles of the Green function of the perturbed system 
( ) ( ) ( ) ( ) ( ) ( )1
00 0 0( , ) ( , [ ] ).i i iiG h I L h± ± ± ± ± ±−ε λ = ε − − λ  The resi-

dues at these poles are the so-called intensities 0dµ  of 
these levels. If the local spectral density in a defect-free 

chain ( ) ( )1
00 00( ) Im ( )i iG± ±−ρ ε = π ε  is normalized to unit, then 

the relation ( )
000 ( ) 1 di

D
d±ρ ε ε = − µ∫   is valid for the local 

spectral density of the defect ( )
00 ( )i
±ρ ε . The positive values 

of intensities 0idµ >  correspond to the existence of dis-

crete vibrational levels. Hence, the energy values of the 
gap levels are: 
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 λ + ε = + λ  

,   ( ) 0i
±λ < .  

The condition for the existence of the gap levels ( 0)idµ >  
has the form: 

 | |i ibλ < − .  

It was also shown in [11] that in each of the subspaces, 
one phonon splits off from the quasi-continuous spectrum 
band to the gap level. 

From the Lennard–Jones potential and the condition for 
the existence of gap levels, one can obtain a diagram of the 
existence of gap levels localized in anti-phase vibrations of 
the chain (Fig. 6). Vibrations localized on defects cause a 
change in thermodynamic quantities and, in particular, in 

Fig. 4. Density of phonon states for r > r0 (a) and r < r0 (b). 

Fig. 5. (Color online) Phonon heat capacity of the chain for r > r0 
(a) and for r < r0 (b). In both fragments curves 1 are the contribu-
tions to the heat capacity of longitudinal vibrations; curves (2) are 
the contributions to the heat capacity of transverse vibrations; and 
curves (3) are the total heat capacities. The dashed line is the 
value proportional to ∂2CV(T)/∂T2 The dash-dotted line is the 
tangent to CV(T) at the inflection point. 
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heat capacity. The change in the phonon spectrum due to a 
defect can lead to simultaneous appearance of discrete le-
vels and deformation of the quasi-continuous spectrum due 
to the localized states that split off from the boundary of 

the spectrum. The deformation can be described by the 
shift function [20]. 

The change in heat capacity due to one gap level is de-
scribed by the expression: 

____________________________________________________ 
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_______________________________________________ 

The main change in the low-temperature heat capacity 
(Fig. 7) is determined by the direct contribution of the gap 
energy levels. We consider the chains of atoms with a low 
concentration of defects. In this case, we can consider the 
problem in a linear approximation with respect to the con-
centration p. The defect in question has the greatest overall 
effect on the change in the ratio of the lengths of parts of 
the heat capacity temperature dependence curve in the case 
of a compressed chain ( 0, 0).lτβ < β >  

The shape of the curves is also influenced by the term 
(6), which contains the shift function ( )ξ ε . The expression 
for the shift function of the linear chains in terms of the 
Jacobian matrix method was obtained in [21]. In this arti-
cle, we give the expressions for the shift functions generat-
ed by the defect in question. In the subspace ( )H − , the 
shift function has the form: 
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In the subspace ( )H + , the following expressions are ob-
tained for the shift function: 
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The full shift function can be written as follows: 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2l l
− + − +

τ τ
 ξ ε = ξ ε + ξ ε + ξ ε + ξ ε   . (11) 

The density of states of a chain with defects in the linear 
approximation with respect to the concentration p  is: 

 ( ) ( ) ( )i
i d i

d
g g p

d
ξ ε

ε = ε −
ε

, (12) 

where ( )g ε  is the density of states in the absence of defects. 
The case of a compressed chain is of greatest interest in the 

Fig. 6. (Color online) The areas of parameters δ and γ under which 
there exist the gap discrete levels in the subspaces generated by 
antiphase longitudinal and transverse displacements of the atoms of 
the defect. 

Fig. 7. (Color online) Phonon heat capacity of a compressed chain 
(r < r0). Curve 1 is the contribution to the heat capacity of  the 
longitudinal vibrations; curve 2 — the contribution of the  trans-
verse vibrations; curve 3 is the total heat capacity. Dashed line 
(green) the value proportional to ∂2CV(T)/∂T2 for the chain with-
out defects. Dash-dotted line (red) is the tangent to VC  at the 
inflection point. Short dash-dotted line (brown) is the value pro-
portional to ∂2CV(T)/∂T2. 
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problem of the shift of the linear-like part of the heat capacity 
temperature dependence. In the case of a small perturbation 

( )( )ii b±λ   in a compressed chain, the change of its vibra-
tional density of states is: 

( ) ( ) ( )
( ) ( )

( )
0 max

l l
d l

l l
g g g p g

− + λ λ
 ∆ ε = ε − ε = − ε +
 ε − ε ε − ε 
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where 

     ( ) ( ) ( ) ( ) ( ){ }1 Im , , .
2i i ig G G i l− +ε = ε + ε = τ

π
 (14) 

It is seen that due to the presence of defects, the vibra-
tional density of states changes mainly at the points of sin-
gularity. It directly changes the type of the singularities. 

In the case of not a small perturbation created by the de-
fect, the change in the vibrational densities of a stressed 
chain in the vicinity of the singularity points for each of the 
vibration branches is proportional to the vibrational density 
of the unperturbed chain for each of the vibration branches. 
At 0i∆ > : 
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Figure 7 shows the shift of the linear part of the tempera-
ture dependence of the heat capacity of a compressed chain 
with defects ( ) ( ) ( )V V VC T C T p C T= + ∆  toward low tem-
perature due to the direct contribution of defects at 

0.05p = , 0.61τδ = − , 0.65τη = − . 

4. Conclusions 

The stability of structure of the adsorbed linear chains 
is conditioned mainly by their interaction with the sub-

strate. Thus the interatomic distance in the chains differs 
from the equilibrium distance of the potential of the in-
teratomic interaction between atoms of the gas forming 
the chain, and the chain itself is stressed. If the distance 
between atoms in the chain is smaller than the equilibri-
um one (the chain is “compressed”), then the quasi-
continuous spectrum band of its transverse vibrations 
shifts to low frequencies. In this case, the linear part of 
the temperature dependence of the heat capacity shifts to 
lower temperatures. 

Both the stressed state of the adsorbed chain and de-
fects of nanotubes lead to the appearance of isolated de-
fects in the chain, which are local changes in the intera-
tomic distance. For transverse vibrations of the 
“compressed” chains it leads to a non-threshold for-
mation of discrete vibrational levels with frequencies 
lying below the quasi-continuous spectrum band, which 
results in further extension of the linear part on the tem-
perature dependence of the heat capacity to an even lower 
temperatures. 
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Фононні спектри та коливальна теплоємність 
квазіодновимірних структур, що утворені інертними 

газами на поверхні вуглецевих нанобандлів 

О.В. Манжелій, С.Б. Феодосьєв, І.А. Господарьов 

Вивчено особливості фононних спектрів, а також їх вплив 
на коливальну теплоємність лінійних ланцюжків атомів інерт-
них газів, які адсорбовані на підкладку, що є поверхнею пов'я-
заних в нанобандл нанотрубок. Вплив підкладки призводить як 
до зміщення нижньої межі спектра ланцюжка від нуля, так і до 
виникнення механічної напруги в ланцюжку (його розтягуван-
ня або стиснення). Показано, що у випадку стислого ланцюжка 
нецентральна взаємодія між атомами від’ємна (носить характер 
відштовхування), що призводить до зміщення нижньої межі 
спектра поперечних коливань в область низьких частот і до 
зменшення довжини ділянки на температурній залежності теп-
лоємності, на якому ця залежність близька до експоненційної. 
Дефекти структури нанобандла можуть зумовити зміну відста-
ней між атомами ланцюжка. Як аналітично, так і чисельно по-
казано, що внаслідок цього у фононному спектрі ланцюжка 
можуть виникнути дискретні рівні з частотами, які розташовані 
як вище, так і нижче смуги квазібезперервного спектра. Дис-

кретні рівні з частотами нижче смуги квазібезперервного спект-
ра призводять до подальшого скорочення температурного інте-
рвалу, на якому температурна залежність теплоємності близька 
до експоненційної. 

Ключові слова: фононні спектри, фононна теплоємність, 
лінійний ланцюжок, локалізовані стани. 

Фоннонные спектры и колебательная теплоемкость 
квазиодномерных структур, образуемых инертными 

газами на поверхности углеродных нанобандлов 

Е.В. Манжелий, С.Б. Феодосьев, И.А. Господарев 

Изучены особенности фононных спектров, а также их влия-
ние на колебательную теплоемкость линейных цепочек атомов 
инертных газов, адсорбированных на подложку, представляю-
щую собой поверхность связанных в нанобандл нанотрубок. 
Влияние подложки приводит как к смещению нижней границы 
спектра цепочки от нуля, так и к возникновению механическо-
го напряжения в цепочке (ее растяжению или сжатию). Показа-
но, что в случае сжатой цепочки нецентральное взаимодейст-
вие между атомами отрицательно (носит характер 
отталкивания), что приводит к смещению нижней границы 
спектра поперечных колебаний в область низких частот и к 
уменьшению длины участка на температурной зависимости 
теплоемкости, на котором эта зависимость близка к экспонен-
циальной. Неоднородность структуры нанобандла может обу-
словить изменение расстояний между атомами цепочки. Как 
аналитически, так и численно показано, что при этом в фонон-
ном спектре цепочки могут возникнуть дискретные уровни с 
частотами, лежащими как выше, так и ниже полосы квазине-
прерывного спектра. Дискретные уровни с частотами ниже 
полосы квазинепрерывного спектра приводят к дальнейшему 
сокращению температурного интервала, на котором темпера-
турная зависимость теплоемкости близка к экспоненциальной. 

Ключевые слова: фононные спектры, фононная теплоем-
кость, линейная цепочка, локализованные состояния. 
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