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The features of phonon spectra and their effect on the vibrational heat capacity of linear chains of inert gas
atoms adsorbed onto a substrate, which is the surface of nanotubes bound to a nanobundle. The influence of the
substrate results both in a shift of the lower limit of the chain spectrum from zero, and in mechanical stress in the
chain (its extension or compression) also. It is shown that in the case of a compressed chain, the non-central in-
teraction between atoms is negative (repulsive), it results in a shift of the lower boundary of the spectrum of
transverse vibrations to low frequencies and to a shortening of the part of the specific heat temperature depend-
ence in which this dependence is close to exponential. Heterogeneity of the nanobundle structure can cause a
change in the distances between atoms of the chain. It is shown both and analytically and numerically, that as a
result of it, discrete levels with frequencies both above and below the quasi-continuous spectrum band can ap-
pear in the phonon spectrum of the chain. The discrete levels with frequencies below the quasi-continuous spec-
trum band lead to a further shortening of the temperature interval at which the temperature dependence of the

specific heat is close to the exponential one.

Keywords: phonon spectra, phonon heat capacity, linear chain, localized states.

1. Introduction

Quasi-one-dimensional (gq1D) crystalline structures at-
tract great interest from both the fundamental and applied
points of view, in particular, as promising materials for
quantum computers. The interest is caused by the unique
properties of their quasiparticle spectra, such as the root
singularities of the spectral densities at the edges of quasi-
continuous spectrum bands, the thresholdless formation of
discrete levels localized near defects, etc. Due to the Lan-
dau—Peierls instability [1], the existence of these structures
is impossible without some three-dimensional substrate,
the choice of which is associated with considerable diffi-
culties. The substrate should ensure the stability of q1D
systems of sufficient length and, at the same time, mini-
mally distort its 1D spectral peculiarities.

Recently the adsorption of rare-gas atoms onto carbon
nanotube bundles is often used to obtain stable macroscopi-
cally long g1D structures [2-8]. In the grooves between the
nanotubes, the adsorbed atoms can form linear chains of
length ~ 10 um. The length corresponds to the number of
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atoms in the chain ~10°-10%. For the chains of this length,
the boundary effects can be neglected. The one-dimensional
nature of these structures is confirmed by both neutron-
diffraction studies [2] and heat capacity data [3-7]. Neutron
diffraction studies of *He atoms adsorbed in grooves on the
nanobundle surface have shown the periodicity of the ar-
rangement of *He atoms in the chain [9]. Theoretical calcu-
lations have shown the presence of a periodic potential along
the grooves on the surface of nanobundles [8]. The variation
of amplitude of this potential depends on the relative orien-
tation and displacement of nanotubes forming the groove.
The potential depth varies from the values slightly greater
than zero to 40 K. All this makes it possible to describe the
vibrational characteristics of the adsorbed chains within the
harmonic dynamics of the crystal lattice.

It was shown in [10] that starting with a certain fre-
quency , the vibrations of the linear chain deposited on
the crystal surface or in the bulk, actually do not extend
through the crystal matrix and are completely localized on
the chain. The frequency g is determined by the contri-
bution of the interaction of an atom in the chain with the
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atoms of the crystal-matrix in the self-interaction matrix of
the atom in the chain, Thus, at ® > wq, neither the struc-
ture nor the phonon spectrum of the crystal-matrix can
considerably change the spectral characteristics of atoms in
the chain. The effect of a crystal-matrix on the phonon
spectrum of the chain can be expressed in terms of only
one parameter, namely, the value of the initial frequency
g . This approximation is particularly profound for the
vibrational characteristics of the chains of inert gas atoms
adsorbed precisely on a carbon substrate because of the
large difference between the Debye temperatures of inert
gases and carbon structures.

At o < g, the vibrational spectrum of the atoms of the
adsorbed linear chains has a three-dimensional character
which determines the convergence of the mean-square dis-
placements of atoms in the chain and the stability of these
structures in a finite temperature range. The temperature
dependence of the phonon heat capacity of the adsorbed
linear chain necessarily contains a low-temperature inter-
val in which the temperature dependence of the heat capac-
ity is close to the exponential one.

At o> o, the vibrations of the atoms of the chain are
either quasi-localized or their propagation has one-
dimensional character and the spectral densities of these
atoms are well described by simple analytical expressions
obtained for one-dimensional models [11]. The bandwidth
of the quasi-continuous spectrum of the chain is deter-
mined by the interaction between the atoms of the chain
[10,11], which depends on the distance r between them.
Naturally, this distance is significantly affected by the in-
teraction of adsorbed atoms of the chain with the carbon
atoms of nanobundles. Therefore, as a rule, r does not
coincide with the distance r; corresponding to the mini-
mum of the interatomic interaction potential in the chain.
At r <1y, the parameter of noncentral interaction, which
determines the width of the spectrum of transverse vibra-
tions, is negative. It will result in a shift of the minimum
frequency of the quasi-continuous spectrum to the low-
frequency region [11] and, consequently, to the displace-
ment of the linear part of the heat capacity [10] to the re-
gion of lower temperatures. [11]. The formation of a com-
pressed chain (r <ry) by atoms of inert gases seems quite
plausible because the period of the field created by nano-
tubes in the grooves is smaller than the equilibrium dis-
tance for most inert gases [9]. Note that the negative pa-
rameter of the noncentral interaction is intrinsic to many
solidified gases and metals [12,13].

The defects of nanotubes, as well as the incommensura-
bility of the periods of the adsorbed chain and of the field
along the groove between the nanotubes, can cause a local
change in the interaction of the atoms in the chain with
nanotubes. In the case of a local change in this interaction,
the distance between a pair of atoms in the chain can also
change, which, in turn, can result in the appearing of a lo-
calized state with a frequency below the lower limit of the
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quasicontinuous spectrum of the chain [11]. It leads to a
shift of the linear part of the heat capacity curve to the low-
temperature region. The high-temperature part of the heat
capacity curve of atomic chains adsorbed on nanobundles
was studied in [14].

In this paper, we study the effect of the difference in the
interatomic distance r in the adsorbed chain from the dis-
tance Iy, corresponding to the minimum of the interaction
potential between the atoms in the chain, on its phonon
spectrum, formation conditions and characteristics of the
discrete vibrational levels localized at the defects. The con-
tribution of all these changes of the spectrum into the low-
temperature heat capacity is also studied.

2. Phonon spectrum and vibrational heat capacity of an
ideal adsorbed atomic chain

It was shown in [10] that a chain of atoms adsorbed in a
groove between nanotubes with a sufficiently high degree
of accuracy can be considered as a chain in an external
field that determines the initial frequency of its quasi-
continuous spectrum. Basing on this result, we will consid-
er the chain of atoms adsorbed in the grooves between
nanotubes as a chain of atoms in an external periodic field.
We take into account an interaction only between the near-
est neighbors, which is quite natural for inert gases. In this
case, the dispersion relations have the form:

4B . o ka
g (k)= of (k) =gq +%sm27,

er (k)= 02 (k) = o +%sin2 k_2a.

)

Here &= w?is the squared frequency, k is the wave vec-
tor, the indices | and t correspond to the longitudinal and
transverse vibrations respectively. For a pairwise isotropic
interaction between atoms, the parameter of the central
interaction o and the parameter of the noncentral interac-
tion B are expressed in terms of the potential of this inter-
action ¢(r) by the following range:

2 r r
()= 20 (=220,

We note that the symmetry condition for the tensor of elas-
tic moduli should be applied to the whole system (includ-
ing not only the chain, but also the substrate), since it is the
interaction of the chain with the substrate that ensures the
stability of the chain. Therefore, the transverse vibrations
of the atoms in the chain (1) are not flexural vibrations, so
their dispersion relation is not e, (k)~k4 in the long-
wavelength region.

Unlike the positive parameter of the central interaction
By , the parameter of the noncentral interaction 3. changes
its sign according to the relative position of the atom with
respect to the minimum of the interatomic pairwise poten-
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Fig. 1. (Color online) The dispersion relations (1) are shown by the curves 1 and 2 in both fragments, for the cases r1 > ry (a) and ry < rg (b),

respectively.

tial of the interaction ¢(r) . For the case of a compressed
chain (r <ry), the parameter of the noncentral interaction
is negative. Dispersion relations for r >ry and r<r, are
presented in Fig. 1. In what follows, the width of the con-
tinuous spectrum of longitudinal oscillations will be denot-
ed by A, and the width of the continuous spectrum of
transverse oscillations, by A (A} =4B,/m, A; = 4B, /m).
In [11] the problem of the vibrational properties of both
the ideal chain of atoms in an external field and a chain
with a defect is solved by using the Jacobian matrix meth-
od [15-17]. The space of displacements of atoms of a
chain is represented as a direct sum of orthogonal subspa-

ces H=H®) @H(+), where the subspace HO s the
subspace of in-phase displacements of atoms, and the sub-

space H®) s the subspace of anti-phase displacements.
Each of them is a linear span of the sequence of vectors

o),

n=0

and {L”hé”}w . respectively. Here, hé_)
n=

in the subspace HO)

- 2
Gi(OO) (e)= ™

2

Glod (e) = —[_1+ Z; (2)san (ei0 —€)

Ai|

406

[1+ Zi (e)san(e—<&jo) :

and (+) are the so-called generating vectors, correspond-
g g p

ing to in-phase and anti-phase displacements of two neigh-
boring atoms, respectively, and L is the dynamic operator
which has the form:

(€10 +2B)drr’ —Bi (Br r'+a +ORR7-a)

Lic (R,R") = m WOt
+ 2 6 , — 8 ’ +8 r_
+(8To Br)drR B;( RR™+a ™ 7R.R a)(5iy+6iz)5ik
2

(Rand R’ are the coordinates of the chain atoms).
Complete information about the vibrational spectrum of
the chain is contained in its Green function é(e) =
= (af— I:)_l, where 1 is the unit operator. In the formalism
of the Jacobian matrices, all matrix elements of the operators
G® (e) are expressed in terms of elements

®) @ 2 ) e
Goo (€)= (ho", G(e)hyp~ ) [18], for which we obtain [11]:

€—E€; ]
i max A; >0,
€—¢€jp ] (3)
€—E&; mi
i min . A <0,
€jp — €
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in the subspace H(*):

2 €—§j
Gl(g()) (8) = A_ —1—Zi (e)sgn(s—ei max) Ry i0 ) Ai >0,
1 1 max
4)
€—E&;
GI((:;O) (S)ZM 1+Zi (E)Sgn(ﬁ—ﬁi min) o IO- s Ai <0.
1 I min

Here Z; (&)= O(gj min —€) +iO(€ & min) O(&j max —€) —
—O(E—€jmax), and O(x) is the Heaviside ©-function.
The values € i, and €jmax are squares of the minimum
and maximum vibration frequencies respectively. Figures 2
and 3 show the Green functions in the subspaces and for
the longitudinal and transverse vibrations of the chain at
r>ry and atr <ry. We emphasize that for transverse vi-
brations A; <0and € min =€0—| A fOr r<ry.

The density of the vibrational states of the chain has the

form:
{e

Since this function contains the spectral densities of
transverse and longitudinal vibrations, it has square root

1
=—1Im
g(g) 67

(

I_) (e)+ GI(+) (e)+ 2[6&‘) ()+GL") (g)]}.

(a)

€ g, +A(ry)

singularities not only at the edges of the spectrum, but also
within it. Figure 4 shows the dependencies g(e) for r >y
and r<r,. For r<ry, the band of the quasi-continuous
spectrum is much wider because of high values of the in-
teraction parameter B, peculiar to these interatomic dis-
tances, which determines the longitudinal vibrations, and
of negativity of the parameter 3., which determines the
transverse vibrations.

The spectral densities of oscillations shown in Fig. 4 cor-
respond to heat capacity temperature dependences with dif-
ferent lengths of the parts that are close to exponential. Figu-
re 5 shows the temperature dependences of the contributions
to the low temperature heat capacity of the chains Cy (T) =
=Cy (T)+2Cy . (T) of the longitudinal Cy,(T) and trans-
verse vibrations G, (T) (curves 1 and 2, respectively), and
also Cy(T) — curves 3. Here T is the temperature. The

(b)
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Fig. 2. (Color online) Real (1) and imaginary (2) parts of Green's function (3) for the cases r > rg (a) and r < rq (b). The upper parts of
the both fragments show the functions G,(‘) () ; the lower parts show the functions Gﬁ‘) (e).
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Fig. 3. (Color online) Real (1) and imaginary (2) parts of Green's functions G|(+) (¢) (4). Notation is completely analogous to the nota-

tion used in the previous figure.

position of the linear-like part of G, (T) is determined by
the position of the inflection point. When r < ry, the initial
frequency of the continuous spectrum shifts to low frequen-
cies. It results in the fact that the linear-like part of the heat
capacity curve starts at temperatures lower than for r>r,.
When r <y, the heat capacity curve Cy,(T) is flattened
because of the large width of the quasi-continuous spectrum.
At relatively high temperatures in both cases, the heat capac-
ities Cy (T) have close values.

3. The effect of a local change in the distance between a
pair of atoms on the vibrational spectrum
and the phonon heat capacity

Consider an adsorbed chain with a local defect, namely,
an isolated pair of atoms the distance between which dif-
fers from the distance between the other neighboring at-
oms. In the technique of the Jacobian matrices this defect
is a degenerate local perturbation [17,19]. The frequencies
of local vibrations caused by this defect can be obtained
from the Lifshitz equation [20], which, applied to the prob-
lem in question, can be written as:

ReG ) (e) =1l®). ©)

408

Here k( ) are the operators describing the contribution of
the defect to the operators L( ) and L(+) The operators
L( ) and L( ) are induced by operator (2) in the subspaces
H( ) and H(+) respectively for displacement along the
crystallographic direction i .

In the subspace of the in-phase vibrations H )| the
change in the interaction between the atoms of the chain
defect is not shown. Therefore, the operator xi(‘) is deter-
mined only by the change in the interaction of the chain
with the substrate, that is, the change in the initial frequen-
cy of the quasi-continuous spectrum €iodef = €ig@+5;) .
In this case, the operator 7\, —£|05 .

In the subspace H ), both the change in the value of
the interaction between the atoms of the defect with the
substrate, and the change in the interaction between the
atoms of the defect, is shown. This change can be written
as Ajgef = (1+m;j)A;, and the operator ki(” can be writ-
ten as ki+ = (gjg0; +AM;/2) .

When studying the low-temperature heat capacity, the
localized states lying below the initial frequency of the
quasi-continuous spectrum are of considerable interest. For
convenience, we will call them gap localized states. De-
note the square of the frequency of the gap state by e
The conditions for the existence of solutions of the Lifshitz
equation (5) can be easily obtained from the Green func-
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Fig. 4. Density of phonon states for r > ry (a) and r < rg (b).

tions (3), (4) shown in Figs. 2, 3. The detailed description
of these conditions is given in [11]. In this paper, we dwell
only on the conditions of their existence. Thus, because the
value of ReGi(_)(emin) tends to —o at A; >0, the gap
levels appear at any negative values of ki(_) (i.e., values of
9;). When A; <0 (transverse vibrations at r <ry), the
gap vibrations localized on the in-phase vibrations of at-
oms of the chain appear at ; < —A;/(2¢gj). For anti-phase
vibrations, the gap levels appear at any negative values of
ki(” at A; <0. In other cases, in the subspace H ) gap
vibrations occur at  §; < —(1+m;)A;/(2¢jg) .

The energy values of the gap vibrational levels are the
poles of the Green function of the perturbed system

G e ) = (7, [el - L AP 0(9). The resi-
dues at these poles are the so-called intensities pyq of
these levels. If the local spectral density in a defect-free
chain p%g (e) = ™ Im Gi((;—ro) (e) is normalized to unit, then

the reIationJ;S%@(e)dg:l—udo is valid for the local

D
spectral density of the defect ﬁi(a—rg (g) . The positive values
of intensities u;y >0 correspond to the existence of dis-
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C,/R ()

Fig. 5. (Color online) Phonon heat capacity of the chain for r > ry
(a) and for r < rg (b). In both fragments curves 1 are the contribu-
tions to the heat capacity of longitudinal vibrations; curves (2) are
the contributions to the heat capacity of transverse vibrations; and
curves (3) are the total heat capacities. The dashed line is the
value proportional to ach(T)/aTz The dash-dotted line is the
tangent to Cy/(T) at the inflection point.

crete vibrational levels. Hence, the energy values of the
gap levels are:

) xi(i)<o.

The condition for the existence of the gap levels (ujq > 0)
has the form:

7\’i<_|bi|'

It was also shown in [11] that in each of the subspaces,
one phonon splits off from the quasi-continuous spectrum
band to the gap level.

From the Lennard-Jones potential and the condition for
the existence of gap levels, one can obtain a diagram of the
existence of gap levels localized in anti-phase vibrations of
the chain (Fig. 6). Vibrations localized on defects cause a
change in thermodynamic quantities and, in particular, in
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heat capacity. The change in the phonon spectrum due to a
defect can lead to simultaneous appearance of discrete le-
vels and deformation of the quasi-continuous spectrum due
to the localized states that split off from the boundary of

€

ACy (T)=Y| Fleig T)-F(eimnT)- | F(&T)

i €

i min

The main change in the low-temperature heat capacity
(Fig. 7) is determined by the direct contribution of the gap
energy levels. We consider the chains of atoms with a low
concentration of defects. In this case, we can consider the
problem in a linear approximation with respect to the con-
centration p. The defect in question has the greatest overall
effect on the change in the ratio of the lengths of parts of
the heat capacity temperature dependence curve in the case
of a compressed chain (B, <0, B; > 0).

The shape of the curves is also influenced by the term
(6), which contains the shift function &(e) . The expression
for the shift function of the linear chains in terms of the
Jacobian matrix method was obtained in [21]. In this arti-
cle, we give the expressions for the shift functions generat-
ed by the defect in question. In the subspace H ) the
shift function has the form:

Y G B P
&g_)(g)zlarCCOt 2b| _7\" 8_ Eimin ) Bi>0, (7)
r kg ) €imax — €
TG A ——
&g_)(e):iarccot 2|b'|;r_?' ,S'ma)_( _8 , Bi<0.(8)
i A €~ &imin

Fig. 6. (Color online) The areas of parameters & and y under which
there exist the gap discrete levels in the subspaces generated by
antiphase longitudinal and transverse displacements of the atoms of
the defect.

410

T a&; (¢)
o€

the spectrum. The deformation can be described by the
shift function [20].

The change in heat capacity due to one gap level is de-
scribed by the expression:

2
de |, F(s,T):kB( nfe ) sinh‘z( /e ) (6)

2kgT 2kgT

In the subspace H®) | the following expressions are ob-
tained for the shift function:

o) =

§E+)(e)=larccot 2 ?3;' LS B; >0,
n A €~ E€imin

©)
ST I P

§€+)(s)=larccot 2|b'|(+?' £ Fimin | B <0.
s Xi €jp—¢€

(10)

The full shift function can be written as follows:
ge)=8 (e+8" (@)+2[ D +e ()] av

The density of states of a chain with defects in the linear
approximation with respect to the concentration p is:

9iq(e)=gile)- p%g(e), (12)

where g(e) is the density of states in the absence of defects.
The case of a compressed chain is of greatest interest in the

C,/R
r r<r,

Fig. 7. (Color online) Phonon heat capacity of a compressed chain
(r < rg). Curve 1 is the contribution to the heat capacity of the
longitudinal vibrations; curve 2 — the contribution of the trans-
verse vibrations; curve 3 is the total heat capacity. Dashed line
(green) the value proportional to BZCV(T)/aT2 for the chain with-
out defects. Dash-dotted line (red) is the tangent to Cv at the
inflection point. Short dash-dotted line (brown) is the value pro-
portional to ach(T)/aTz.
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problem of the shift of the linear-like part of the heat capacity
temperature dependence. In the case of a small perturbation
(xi(ﬂ < by) in a compressed chain, the change of its vibra-
tional density of states is:

Al
Ag(e)=9q (e)-9(e)=p - g1 (e)+
€—€0 € max —¢
(+) (-)
+2p[ A M Jgr(s), (13)
€—€min €rmax —€

where

gi(e)= iIm {Gi(_) (e)+Gi(+) (e)} i=I1 (14)

2n

It is seen that due to the presence of defects, the vibra-
tional density of states changes mainly at the points of sin-
gularity. It directly changes the type of the singularities.

In the case of not a small perturbation created by the de-
fect, the change in the vibrational densities of a stressed
chain in the vicinity of the singularity points for each of the
vibration branches is proportional to the vibrational density
of the unperturbed chain for each of the vibration branches.
At Ai >0:

Xg_) ~ 2b; +7L§+) G (Ei max)

e—!ierir:naxAgi (€)=p 2by _xg‘) xg+) 2
ot A A ) ai(eimin)
lim Ag;(e)= p| ————-—- ,
E—€{ min ( ) Kg_) 2b +7\,€+) 2
(15)
at A; <O0:
(+) ) ) g (e
) A 2|bi|+7‘i 9i (8| max)
lim Ag;(e)=p - )
€—€imax ( ) 2|b||_7\-f+) XE_) 2

2|bi|—7ug+) ~ XE_) 9i (Si min)
]

lim Ag;(e)=p

€€ min ;\’€+)

(16)

Figure 7 shows the shift of the linear part of the tempera-
ture dependence of the heat capacity of a compressed chain
with defects G, (T)=Cy (T)+ pAC, (T) toward low tem-
perature due to the direct contribution of defects at
p=0.05, 6, =-0.61, n, =-0.65.

4, Conclusions

The stability of structure of the adsorbed linear chains
is conditioned mainly by their interaction with the sub-
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strate. Thus the interatomic distance in the chains differs
from the equilibrium distance of the potential of the in-
teratomic interaction between atoms of the gas forming
the chain, and the chain itself is stressed. If the distance
between atoms in the chain is smaller than the equilibri-
um one (the chain is “compressed”), then the quasi-
continuous spectrum band of its transverse vibrations
shifts to low frequencies. In this case, the linear part of
the temperature dependence of the heat capacity shifts to
lower temperatures.

Both the stressed state of the adsorbed chain and de-
fects of nanotubes lead to the appearance of isolated de-
fects in the chain, which are local changes in the intera-
tomic distance. For transverse vibrations of the
“compressed” chains it leads to a non-threshold for-
mation of discrete vibrational levels with frequencies
lying below the quasi-continuous spectrum band, which
results in further extension of the linear part on the tem-
perature dependence of the heat capacity to an even lower
temperatures.
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DOHOHHI CNeKkTpu Ta KonmBarbHa TENNTOEMHICTb
KBa3iOAHOBUMIPHUX CTPYKTYP, LLO YTBOPEHI iIHEPTHUMM
rasamu Ha NoBEpPXHi ByrrneLeBnx HaHobaHanis

O.B. Manxenin, C.b. ®eogockes, |.A. locnogapbos

BuBueHo ocoGimBOCTI (POHOHHUX CIEKTpIiB, a TAaKOXK iX BIUIUB
Ha KOJIMBAJIbHY TEIUIOEMHICTD JIIHIHHUX JIAQHIIOXKKIB aTOMIB iHepT-
HUX Ta3iB, sIKi afcOpOOBaHi Ha MiIKIAJKY, IO € TIOBEPXHEIO MOB'S-
3aHUX B HAHOOAHUT HAHOTPYOOK. BIUTUB MmiKIaAKy MPH3BOAUTS SIK
JI0 3MIIICHHST HIKHBOT MEXI CIIEKTpa JIAHITFOXKKA BiJl HYJISI, TaK 1 10
BHHHKHEHHS] MEXaHIYHOI HANPYTH B JIAHIIOXKKY (foro po3TsaryBaH-
Hs a00 ctucHeHHs). [loka3aHo, 0 y BUMAJAKY CTHCIIOTO JIAHITFOKKA
HELCHTpaJIbHA B3aEMOJIisI MDXK aTOMaMH Bil’€éMHa (HOCHUTb XapaKTep
BIJIITOBXYBaHHS), IO TPHU3BOJWUTH N0 3MIICHHS HIDKHBOT MEXi
CIIeKTpa TMOMEPeYHHX KOJMBAaHb B OOJIACTh HU3BKUX YaCTOT i JIO
3MEHILICHHS JIOBKHHY JIUISTHKA Ha TEMIICPATYPHIi 3aJIeKHOCTI Ter-
JIOEMHOCTI, Ha SIKOMY Il 3aJIC)KHICTh OJIM3bKa 10 EKCIIOHEHI[IHHO.
Jedextn cTpykTypu HaHOOAH 1A MOXKYTh 3yMOBUTH 3MiHY BijcTa-
HEl MK aToOMaMU JIAHILIFOJKKA. SIK aHamiTUYHO, TaK 1 YMCENLHO I10-
Ka3aHO, 10 BHACIIJIOK LBOTO Yy ()OHOHHOMY CIICKTPi JIAHITFOKKA
MOXXYTh BUHUKHYTH JUCKPETHI PiBHI 3 YaCTOTaMH, SIKi PO3TAILIOBaHi
SK BUIIE, TaK 1 HIDKYE CMYTH KBazibesnepepBHOro crexrpa. Juc-
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KPEeTHI PiBHI 3 4aCTOTaMH HIDKYIE CMYyTH KBa3i0e3epepBHOTO CIIeKT-
pa IPHU3BOMATH [0 TIOAANIBIIONO CKOPOUCHHS TEMIIEpPaTypHOro iHTe-
pBaily, Ha SIKOMY TeMIIepaTypHa 3aJIeKHICTh TEIIOEMHOCTI OU3bKa
JI0 eKCIIOHEHIIIITHOT.

KitouoBi cioBa: (OHOHHI CHEKTpH, (OHOHHA TEMJIOEMHICTB,
JIHIAHAN JTaHIIOXKOK, JIOKAJII30BaHl CTaHH.

®OHHOHHbIE CMEKTPLI M KonebaTenbHas TENNIoeMKoCTb
KBa3OAHOMEPHbIX CTPYKTYP, 06pasyembIX NHEPTHLIMU
rasamm Ha NOBEPXHOCTU YINepoHbIX HaHoGaHANoB

E.B. Manxenun, C.b. deogocbkes, N.A. Nocnogapes

M3ydaens! 0coOeHHOCTH ()OHOHHBIX CHEKTPOB, a TAKOKE UX BIUS-
HHE Ha KOJIeOaTeNIbHYIO TEIIOEMKOCTh JIMHEHHBIX IIETIOYEK aTOMOB
HMHEPTHBIX I'a30B, aJICOPOMPOBAHHBIX HAa MOJUIOXKKY, HPECTABIIIO-
IIyt0 co00i MOBEPXHOCTH CBSI3AHHBIX B HAaHOOAHT HAHOTPYOOK.
BrmstHuIe MOTIOKKY IPUBOJUT KaK K CMEIIEHHIO HIDKHEH TpaHHIbI
CIIEKTpa LEMOYKH OT HyJIsI, TAK M K BO3HUKHOBEHHIO MEXaHUYECKO-
TO HaINpsDKEHMS B IIETOYKe (€€ pacTsDKEHNIO WK cxaTuio). [Tokasa-
HO, 4TO B CIIy4ae C)KaTOH LIENOYKHU HELEHTPAIbHOE B3aUMOJIEHCT-
BHE MOXKIy AarOMaMH  OTpHUIATEIbHO  (HOCHT — Xapakrep
OTTAJIKMBAHMS), YTO MPHBOAUT K CMEILEHHIO HIKHEH TIpaHMIBI
CIIeKTpa IONEPEeYHBIX KoJeOaHWH B 00JIACTh HU3KHMX 4YacTOT M K
YMEHBIICHUIO [JIMHBI y4acTKa Ha TeMIepaTypHOH 3aBHCHMOCTH
TEIUIOEMKOCTH, Ha KOTOPOM 3Ta 3aBUCHMOCTh OJIM3Ka K SKCIOHEH-
UaIbHOW. HeoqHOPOOHOCTD CTPYKTYphl HaHOOAHIa MOXKET 00y-
CIIOBUTH V3MEHEHHE PACCTOSHUI MeXmy aroMamu nernodku. Kak
AHAJIMTUYECKH, TaK ¥ YHUCIECHHO IOKA3aHO, YTO MPH 3TOM B (DOHOH-
HOM CIIEKTpE LEMOYKH MOTYT BO3HUKHYTH JUCKPETHBIE YPOBHH C
YacTOTaMH, JEKAIIUMHU KaK BBILIE, TaK U HIDKE TOJNOCHI KBa3HHE-
NIPEPHIBHOTO CHEKTpa. JIMCKpeTHBIE YPOBHH C YacTOTAMH HIDKE
TMOJIOCHI KBAa3HHEMPEPHIBHOTO CMEKTpa MPHBOAAT K JanbHEHIIEMy
COKpAIIICHUIO TEeMIepaTypHOTO HHTEpBaja, Ha KOTOPOM TeMIlepa-

TypHas 3aBUCUMOCTb TEIUIOEMKOCTH OJIM3Ka K 9KCHOHEHIIHATBHOMN.

Kunroueswie crosa: q)OHOHHbIe CIICKTPBI, q)OHOHHaS[ TCIJIOCM-
KOCTb, JIMHEHHas IICNI0YKa, JJOKAJIM30BAaHHBIC COCTOSHUSA.
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