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The possible dielectric instabilities and phase transitions in high-T . superconductors are analyzed within the

pseudospin-electron model involving Hubbard type electron correlations as well as their interaction with local an-
harmonic vibrational modes. The calculation of the dynamic dielectric susceptibility y(w, q) is performed in the
generalized random phase approximation. The instabilities with respect to the polarization and/or charge fluctuations
are obtained from the temperature dependences of x(w, q). The behavior of low-frequency modes in the vicinity of
these instabilities is investigated. The case of the infinity narrow electron band is considered in details.

This report presents the results of the investi-
gations of the dynamic dielectric susceptibility of the
local anharmonic model in the theory of high-T  su-

perconductors. The model involves the characteristic
features common for all high-T', superconductors, i.e.

the presence of two-dimensional tightly-bounded
CuO, layers separated by the layers with soft dy-

namic configurations characterized by anharmonic

effective potentials (e.g., anharmonic vibrations of

apex oxygen ions of YBaCuO type compounds) [1,2].
In this context, the model Hamiltonian
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was proposed by Miiller [3] (see also [4]. Hamil-
tonian (1) describes the strongly correlated electrons
of CuO, sheets coupled with the local anharmonic

vibrations represented by pseudospin variables.

In the Hubbard operators representation, the
Hamiltonian (2) is diagonal for Q = 0, and for Q = 0
it can be reduced to the diagonal form with the help of
rotational transformation |R) = ap, |r) (for details

see [5,6 ], which results in the Hamlltoman
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n = 0, n,= 2, ny=n,= 1 (n, = n;) are the eigen-

values of electron number operator (the tilde indi-
cates the states with Sf = —1/2). Operators

X" = [m)(n| are defined on the basis of single-site
vibronic states |”if My S;). The detailed consi-

deration of single-electron spectrum of model (1) was
performed in [5,6 ]in Hubbard-1 approximation. The
interaction with the anharmonic mode splits energy
levels of ordinary, Hubbard model 0, E; and 2E,+ U

into sublevels (4) (vibronic states). As the result
each Hubbard single-electron band splits into four
subbands.

The problem of the possible coexistence of ferro-
electricity and superconductivity in high-T  com-
pounds is under discussion starting from the dis-
covery of the high temperature superconductivity
(see, e.g., [7,8)]. There are no direct observations of
ferroelectricity in high-T - superconductors due to the

presence of the small conductivity in the normal di-
rection to the conducting planes CuO, but in some

articles the observations of the pyro- and piezoelectric
effects [9] and anomalies of dielectric susceptibili-
ty [10] were reported.

In order to investigate the possible instabilities of
the system with respect to the polarization or charge
density fluctuations the semi-invariant Matsubara’s
Green functions

lm (T —-T)= (TA[(T)Am(T »e (&)

(where A, A' = n, §%), which determine the corres-
ponding contributions to the transverse dielectric
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susceptibility and XAA'=

= KA = KAPKTA [ KM for regimes u = const and
n = const, respectively), were calculated. In the case
of YBaCuO structure the pseudospin component of
the transverse polarization vector (4 = §%) is con-
nected with the apex oxygen motion in the double
well potential and the electron component (A = n)
with the electron charge redistribution between the

(XAA’ = KAA’

4
ij(wn) = gé(w ) El cos? 2p (b +b) —
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CuO,, layers and other structure elements (reservoir

of the electrons which fix the value of the chemical
potential). ‘
In the case of zero hopping ty= 0 the exact ex-

. . : AA'
pressions  for correlation functions x™° (w,) =

= xfsl(w Wt x:’i’(w ) (@ = por n) are obtained:
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x;’fl(w”) = xf",’l(w”) =0, x{(@,) = 0in n = const regime (cos 2p, = (n, g — h)/[(n, g - m? + Q21/2) Here
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is the semi-invariant of the first order. The terms with factors d(w,) contribute to the so-called isothermal
susceptibility. Dynamical part of susceptibility is determined by the pseudospin contribution

Q%6+ b.) thBa V(n g — h)? + Q@

(8)

4
sS 1
*g @) =5 2,

r

and appears only at non-zero tunneling frequency Q.
Its poles gives the energies of the pscudospin excita-
tions. One can see from (6) and (7) that the character
of the temperature dependence of the susceptibility
(in the same manner as for the Ising model) strongly
depends on the values of the longitudinal and
transversal fields A and Q. The change of the electron
concentration which may be caused by the charge
redistribution between the reservoir and conducting
layers reflects in the change of the intensities of the
low-frequency excitations (Fig. 1),

o
w
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Whereas at n = const regime the chemical potential
is always in one of the subbands (or between them),
in the regime u = const it becomes possible that the
chemical potential goes out from (or enters into) the
energy band. If the chemical potential moves inside
the band with the change of the electric field, then the
clectron concentration (average occupancy of states)
in laycr changes. This can correspond to the so-called
electric-ficld effect observed in HTSC com-
pounds [11].

The influence of the electron hopping on the charge
and pseudospin correlation functions is analyzed in
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Fig. 1. Imaginary part of xﬁs(m) vs. electron concentration n
(h/g=1.1,Q/g=05,T/g=0.5.

the case Q = 0 which is simpler for consideration. For
Q = 0, the Green'’s functions (§) can be expressed in

terms of functions KE,‘;:’)(I -1)= (7‘5(7”(1)5(‘,1,‘{(1’)) .

the Fourier transforms of which can be presented in
the form [12]

K(w, , q) =B {b(q) + 'TI(O, q)b(q)IT'(0, q) +

+ 'TI(0, @)b(q) + o(@IT'(0, )}S(w,) + 1" (w, , Q) ,

()]

where the «full» semi-invariant of the second order
satisfies the Dyson type equation b(q) =5+
+ B11(0, 9)5(q) -

The last term in (9) determines the dynamic part of
susceptibility.

Summing up the diagrams determining renormal-
ized loops IT, 'I1, IT’, IT’’, we have restricted ourselves
to the contributions from the ladder diagrams with
antiparallel lines (so-called generalized random
phase approximation [13]) constructed by zero-or-

der loops I, , 'TI,, T , Ty (see, [12,14)).

The numerical calculations of the static dielectric
susceptibility x  (q, 0) were performed for different

points of the Brillouin zone. We may separate three
regions corresponding to different values of asym-
metry parameter A (<0, 0<h<g, h>g with dif-
ferent behavior of susceptibility. This is caused by the
rearrangement of the single-electron spectrum at the
pointsh=0andh=g [6].

In the case opposite to tq = 0 the presence of the

electron transfer leads to the appearance of divergen-
ces on the temperature dependences of the functions

x;fs and xjs (existing in the certain range of

parameter values)”. Out of the vicinity of this diver-
gence the temperature behavior of the pseudospin
component of susceptibility is similar to the one ob-
tained in the case of zero hopping.

For h>0 and h < g such divergences exist only at
q = 0 (I'-point) and can be treated as the manifesta-
tion of the dielectric type instabilities which appear in
the pseudospin subsystem (i.e. system of anharmonic
oscillators) under the influence of the effective inter-
actions. The denominator in the expression for sus-

ceptibility xss becomes zero at the temperature of the
divergency T"*. This denominator is connected with

the factor (1 — Eﬁ)—l, which appears as the result of
the summation of polarization loop series. The total

loop H;js describes the effective interaction between
the states |7} and | s) of the cells i and j via conducting

electrons. The corresponding phase diagram T vs. n
and q (where q is changed along the I'-M line in the
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Fig. 2.7 vs.nand qath/g = 1.05 (@) and h/g = 0.9 (b) (U~ ,
W/g=0.2).

* These divergences are very similar to the one reported in Ref. 10 for Yﬁa2Cu3O7_a .
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2D Brillouin zone) is shown in Fig. 2,a, where the
surface limiting the stability region is plotted.

For 0 < A< g besides the dielectric instability at I’
point the instability at q = (V4 , %a) (M point) with
respect to the charge ordering is manifested
(Fig. 2,0). This instability at M point corresponds to
the one obtained within the mean field approximation
(MFA) [14]. :

The above mentioned singularities are observed on
the temperature dependences of the isothermal sus-
ceptibilities. We have also considered the features of
the dynamic susceptibility which for our model is
determined only by the charge—charge correlation

function "

For the cases 2> gand A <0 there is a divergence in
the temperature dependence of dynamic susceptibili-
ty at the temperature T** lower then the correspond-
ing one for the isothermal susceptibility.

In order to get the dynamic susceptibility

(iw, > Aw) one should calculate the zero-order loops

I, , T, H('), H(')'. Their real and imaginary parts in
the 2D case that is considered possess van Hove sin-
gularities and contain contributions from the intra-
and interband transitions.

The corresponding changes in the low-energy
spectrum (the frequency dependence of the suscep-
tibility) are investigated. The complicated spectrum
caused by the van Hove singularities at high tempera-
tures is seriously changed in the vicinity of T"". Here
the spectral density of states indicates the presence of
relaxation type mode. Its relaxation rate is the linear
function of wave vector and the corresponding relaxa-
tion time follows the Curie-Weiss temperature de-
pendence.

For the parameter values when the instability with
respect to charge ordering exists there are no any
divergences on the temperature dependences of the
dynamic susceptibility and the anomalies of the tem-
perature behavior of the low-frequency spectrum are
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absent. That means that the charge ordering insta-
bility obtained within the pseudospin-electron model
is caused by the mean-field effects which is in agree-
ment with the calculations performed in the mean-
field approximation in [14].

The obtained considerable increase in the contri-
bution into transverse dielectric susceptibility from
pseudospin and electron subsystems can lead to the
increasing of the effective interelectron coupling con-
stant A. The high values of x ((0) and especially the

anomalies of this function can influence the transition
into the superconducting phase.
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