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The isochoric thermal conductivity of Kr0.63Xe0.37 solid solution has been investigated for three samples with 
different molar volumes in the temperature range from 80 K to the onset of melting, as well as the thermal con-
ductivity of the ternary (Kr0.63Ar0.185Xe0.185) and quaternary (Kr0.63Ar0.12Xe0.12(CH4)0.13) solid solutions. It is 
found that for multi-component alloys, the thermal conductivity reaches a minimum, whereby adding more im-
purity atoms in the solid solution does not affect the thermal conductivity in agreement with the recent 
nonequilibrium molecular dynamics calculations for argon. The phonon contribution to the total thermal conduc-
tivity depends significantly on molar volume of sample and impurity concentration, in contrast to the contribu-
tion of diffusive modes, which is practically independent of these factors. 
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Introduction 

Rare gas solids (RGS) Ar, Kr and Xe refer to the sim-
plest substances whose atoms are connected by a weak van 
der Waals interaction and interatomic potential can be rela-
tively easily modeled. They form crystals with fcc structure 
and do not have phase transitions up to the melting point. 
As a consequence the RGS are ideal objects for comparing 
experimental data with theory. A large number of experi-
mental [1–9] and theoretical [10–19] studies have been 
devoted to examination of their thermal conductivity. Ini-
tially, a theoretical analysis of the thermal conductivity of 
dielectric crystals was carried out using the Boltzmann 
transport equation for phonons [20]. It is assumed that in a 
perfect crystal at temperatures of the order and above cor-
responding Debye temperature (T ≥ ΘD) the main mecha-
nism determining magnitude and temperature dependence 
of the thermal conductivity κ(T) is phonon–phonon interac-
tion. Above ΘD the lifetime of three-phonon scattering 
processes is inversely proportional to temperature while 
the specific heat and phonon group velocity are considered 
as temperature independent. In combination with the kinetic 
theory of phonon gas, this leads to the well-known κ ∝ T 

–1

dependence of the thermal conductivity of dielectric solids 
[20]. In practice the T –1 dependence is actually observed at 
some fraction of the Debye temperature, for example at 
ΘD/4 for argon and at ΘD/10 for silicon. 

More sharp decrease of thermal conductivity with in-
creasing temperature observed in the heavy RGS at a satu-
rated vapor pressure was initially erroneously attributed to 
higher-order four-phonon interactions [3]. It was later 
shown experimentally [7–9] that such behavior is related to 
the thermal expansion of the crystal (the molar volumes of 
RGS changes on the order of 10% in temperature interval 
from 0 K to the melting point), and the isochoric thermal 
conductivity can be described as the sum of two contribu-
tions: from propagating phonons and localized "diffuse" 
modes: κ = κph + κdif, or 

κ = A/T+B, (1) 

where the coefficients A and B do not depend on tempera-
ture. Afterwards, the isochoric thermal conductivity of 
RGS and a number of molecular crystals was described in 
the framework of standard Debye expression for thermal 
conductivity [20] under the assumption that the mean-free 
path of a phonon cannot become less than half of its wave-
length or lattice constant. This idea was first proposed by 
Roufosse and Klemens [21]. Accounting for this circum-
stance leads to the fact that the thermal conductivity is de-
scribed, respectively, by the expressions κ = A/T 

2 + B and
κ = A/T 

3/2 + B [22,23]. In both cases, the phonon contribu-
tion to the thermal conductivity decreases steeper than in 
the case of 1/T dependence, because the borderline be-
tween high-frequency “diffusive” modes and low-frequen-
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cy phonons is shifted downward with increasing tempera-
ture and, consequently, the number of phonon modes de-
creases. 

While simple Debye model of thermal conductivity 
does yield useful insight, it has substantial limitations. The 
weakness of this approach is that it assumes a linear dis-
persion law up to the end of Brillouin zone and a quadratic 
density of phonon states thereby it completely ignores the 
real dispersion of phonons and the real density of their 
states. The assumption that a solid has the Debye disper-
sion leads to the contribution of high frequency phonons 
being substantially overvalued because actual zone-edge 
phonons have a much smaller group velocity than the 
sound velocity. Attempts to artificially incorporate the dis-
persion into consideration using fitting parameters do not 
lead to satisfactory results [24]. 

In recent years ab initio calculations of the thermal 
properties of disordered systems based on the Green Cubo 
approach using molecular (MMD) or lattice dynamics 
methods have developed extensively [25–27]. This method 
makes it possible to calculate as well the thermal conduc-
tivity of ordered solids, in particular, the thermal conduc-
tivity of crystalline argon [14–19]. Using MMD and the 
Green–Kubo method, it was shown that the thermal con-
ductivity of a Lennard-Jones fcc crystal of argon is de-
scribed by two time constants associated with the attenua-
tion of the autocorrelation function of the heat flow. The 
first time scale is associated with short-wave phonons, 
which have an average mean-free path equal to half the 
wavelength, and corresponding contribution to the thermal 
conductivity does not depend on temperature. The second 
time scale is longer and corresponds to acoustic phonons 
with a mean-free path greater than half their wavelength, 
and corresponding contribution to the thermal conductivity 
decreases with increasing temperature. Advances in the 
measurement and computation of thermal phonon transport 
properties are detailed for example in [27].  

Despite the abundance of information, it can be argued 
that the dependence of the isochoric thermal conductivity 
of Ar, Kr and Xe on temperature and molar volume has not 

been strictly established by experiment. It was assumed 
initially that the coefficients A and B depend in the same 
way on the molar volume κ = (A/T+B)(V0/V)g, where V0 is 
molar volume at 0 K, V is molar volume of a sample, and 

( )ln / ln Tg V= − ∂ κ ∂  is the Bridgman coefficient [9]. In 
the later it was shown that this is not true [23]. To clarify 
the temperature dependence of the isochoric thermal con-
ductivity of RGS experimental data for of Ar, Kr and Xe 
were represented in the reduced coordinates κT(T), 
κT 3/2(T 

3/2) и κT 
2(T 

2) (see Figs. 1–3). In all mentioned 
above coordinates, when the corresponding dependence is 
fulfilled, the experimental points must lie on a straight line. 
An unambiguous conclusion about the degree of depend-
ence of thermal conductivity on temperature is difficult to 
make on the basis of the graphs. It is only possible to af-
firm that the isochoric thermal conductivity is described 
with good accuracy by the expression κ = A/T 

n+B, where 
n varies between 1 and 2 with the appropriate choice of 
coefficients A and B. The dependence κ = A/T+B is well 
satisfied for krypton and xenon, and for argon it is valid 
only above 90 K. This may be due to the fact that the De-
bye temperature of argon (93.3 K) is higher than its triple 
point (83.8 K). In the future we will use this dependence 
because it proceeds from more accurate physical represen-
tations and is confirmed by direct ab initio calculations. It 
was shown recently that the interface between fast acoustic 
phonons with the dispersion law close to the sound 
(propagons) and phonons, which propagate much slower 
(diffusons), whose dispersion law is different from the sound 
one, coincides with the first van Hove singularity [28,29]. 

Point defects cause additional scattering of phonons 
and, consequently, a decrease in thermal conductivity. At 
low concentrations, the point defects give a small constant 
additive to the thermal resistance W = 1/κ at high tempera-
tures. In the case of strong scattering, the thermal conduc-
tivity is usually weakly dependent on the impurity concen-
tration. The isochoric thermal conductivity of solid krypton 
with methane and xenon admixtures was studied in the 
temperature range T ≥ ΘD in number of studies [22,30–34], 
there are also examples of ab initio calculations of the ther-

Fig. 1. Isochoric thermal conductivity of Ar (Vm = 22.14 cm3/mole) [7] represented in coordinates: κT(T) (a), κT 

3/2(T 

3/2) (b), 
κT 

2(T 

2) (c). 
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mal conductivity of solid argon with impurities [35–37]. 
The Kr–CH4 system demonstrates the complete solubility 
of the components, the same occurs in the Kr–Xe system 
above 75 K [38]. It was found that as the impurity concen-
tration increases, the phonon contribution to thermal con-
ductivity decreases, and the thermal conductivity itself 
approaches its lower limit as it was interpreted by Cahill, 
Watson and Pohl [39]: 

 
1/3

2/3
min

1 ( 2 )
2 6 B l tk n v vπ κ = + 
 

, (2) 

where lv  and tv  are the longitudinal and transverse sound 
velocities, n is the number of atoms (molecules) per unit 
volume. With an increase in the impurity concentration 
above 10%, the thermal conductivity remained almost un-
changed [22,32]. It was also found that as the part of heat 
carried by the “diffuse” modes increased, the Bridgman 
coefficient ( ln / ln )Tg V= − ∂ κ ∂ decreased from the value 
g ≈ 9–10, which is characteristic for pure crystals up to 
g ≈ 3–4, more typical for glasses and amorphous solids. 

Expression (2) is essentially a modification of the Ein-
stein model of thermal conductivity in which atoms in a 
crystal lattice perform harmonic oscillations of the same 
frequency and are connected by harmonic forces. In order 
to eliminate the uncertainty in the choice of the Einstein 

frequency, Cahill, Watson, and Pohl [39] modified the the-
ory by including vibrations with a larger length. Thermal 
conductivity is determined by random walk of thermal 
energy between neighboring localized quantum mechanical 
oscillators, the lifetime of each of which was assumed to 
be equal to half the oscillation period. It is clear that such a 
description sins with all the deficiencies inherent in the 
primitive Debye model, primarily due to ignoring the real 
dispersion law and density of states of phonons, and we 
can talk only about how justified its use for the evaluation 
of the lower limit of the thermal conductivity.  

The revival of interest in the systems mentioned above 
is connected with the need to systematize and re-evaluate 
the experimental results on the basis of a more realistic 
model and to refine the volume dependence of the coeffi-
cients A and B in the expression (1) for the thermal con-
ductivity. It was also stimulated by the theoretical calcula-
tions [37], where the effect of mass disorder on the thermal 
conductivity of alloys with four or more components was 
evaluated. To predict the thermal conductivity of solid so-
lutions, modeling using the nonequilibrium molecular dy-
namics (NEMD) method was performed using the Len-
nard-Jones potential (LJ) and one to five atomic 
components. It was shown that for multicomponent solu-
tions, the thermal conductivity reaches a minimum, as a 

Fig. 2. Isochoric thermal conductivity of Kr (Vm = 27.1 cm3/mole) [8,9] represented in coordinates: κT(T) (a), κT 3/2(T 3/2) (b), κT 2(T 2) (c). 

Fig. 3. Isochoric thermal conductivity of Xe (Vm = 34.6 cm3/mole) [9] represented in coordinates: κT(T) (a), κT 
3/2(T 

3/2) (b), κT 
2(T 

2) (c). 
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result of which the addition of impurities to it does not 
affect the thermal conductivity. NEMD calculations show 
that to further reduce the thermal conductivity of multi-
component solutions, local deformation fields must be per-
turbed by a change in the interatomic force field. In addi-
tion it was shown that with additional scattering due to 
changes in the local force field (i.e., phonon scattering due 
to changes in the bond and / or volume) the NEMD pre-
dicts that the thermal conductivity of the crystalline alloy 
may be lower than in the amorphous phase. This suggests 
that for solid solutions with five or more kinds of atoms the 
inclusion of local strain-field for additional phonon scatter-
ing can lead to an isotropic crystalline material with ultra-
low thermal conductivity that can be lower than the pre-
dicted minimum limit for the corresponding amorphous 
phases. All of the above prompted us to study the thermal 
conductivity of the three-component Kr, Ar and Xe and 
four-component Kr, Ar, Xe, and CH4 solid solutions. 

Experimental results and their discussion 

Studies at a constant volume can be realized for molec-
ular solids having relatively high compressibility and large 
coefficients of thermal expansion. If a solid sample of a 
sufficiently high density is grown in a high-pressure cell, it 
can subsequently be cooled at a practically constant vol-
ume, while the pressure in the cell decreases. Usually, it 
falls to zero at some characteristic temperature T0, below 
which the condition of constancy of the density is violated. 
Further cooling of the sample may be accompanied by its 
cracking and detachment from the cell walls. At constant 
density melting of the sample occurs in a certain temperature 
interval and its beginning shifts toward high temperatures. 
According to the melting curves of RGS [40] this shift may 
be of 40–50 K at a pressure of 100 MPa in the cell. 

The present studies were carried out by the steady-state 
heat flux method in a cell of coaxial geometry [41]. The 
samples were grown at pressures from 30 to 100 MPa, 
produced using an auxiliary thermo compressor, with the 
temperature gradient along the cell being about 1.5 K/cm. 
After growing of the sample the inlet capillary was blocked 
by freezing with liquid nitrogen, and the sample was an-
nealed at a temperature of 100 K for 4–5 hours. At the end 
of measurements the sample was re-condensed into a thin-
walled vessel and its mass was determined by weighing. 
The molar volume of the sample was calculated from the 
known volume of the measuring cell and the mass of the 
sample. The systematic measurement error was ± 4%. 

The isochoric thermal conductivity of Kr0.63Xe0.37 sol-
id solution was investigated for three samples with molar 
volumes Vm of 32.0, 31.5 and 31.2 cm3/mole (denoted as 
Nos. 1–3, respectively) in the temperature range from 80 K 
to the onset of melting (see Fig. 4). Figure 5 shows isochoric 
thermal conductivity of pure Kr (Vm = 28.5 cm3/mole, aste-
risks), solid Kr0.63Xe0.37 solution (Vm = 31.2 cm3/mole, 

No. 3), as well as triple Kr0.63Ar0.185Xe0.185 (No. 4, trian-
gles) and quadruple Kr0.63Ar0.12Xe0.12(CH4)0.13 (No. 5, 
squares) solid solutions. A closer view of the thermal con-
ductivity of solid solutions is shown in the inset. Samples 
No. 1 and No. 2 were grown at pressures of 30 and 60 MPa, 
respectively, samples No. 3, 4, and 5 were grown at pres-
sures of 90 MPa. The smoothed values of the isochoric 
thermal conductivity are shown by solid lines. The concen-
tration of solutions is indicated for the gas phase. 

Information on the phase diagram of the ternary and 
quaternary solutions is absent, but separately all components 
are unrestrictedly dissolved in Kr at pre-melting tempera-
tures [38]. The Bridgman coefficient, calculated from our 
experimental data for Kr0.63Xe0.37 solution, is 3.7 ± 1.5 
at 100 K, which is close to 4.0 ± 1.5 for a solid solution 
Kr0.86Xe0.14 [32]. For reference the lower limit of the 

Fig. 4. Isochoric thermal conductivity of solid Kr0.63Xe0.37 solu-
tion for three samples with different molar volumes (Vm) of 32.0, 
31.5 and 31.2 cm3/mole, (denoted as Nos. 1–3, respectively). 

Fig. 5. Isochoric thermal conductivity of pure Kr (Vm = 28.5 
cm3/mole, asterisks), solid Kr0.63Xe0.37 solution (Vm = 31.2 
cm3/mole, No. 3), as well as triple Kr0.63Ar0.185Xe0.185 (No. 4, trian-
gles) and quadruple Kr0.63Ar0.12Xe0.12(CH4)0.13 (No. 5, squares) 
solid solutions. A closer view of the thermal conductivity of solid 
solutions is shown in the inset. 
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thermal conductivity κmin of Kr, calculated according to 
the Eq. 2 using data of [40] is 1.1 mW⋅cm–1⋅K–1 [22]. Di-
rect calculations of the lower limit of thermal conductivity 
by the NEMD method for Kr were not carried out, howev-
er, it can be estimated from calculations for LJ Ar using 
the method of reduced coordinates [3]. According to the 
estimates, its value is 1.4 mW⋅cm–1⋅K–1, which is some-
what higher than the value obtained from Eq. (2). 

It is seen that the thermal conductivities of double, tri-
ple and quaternary solid solutions are close to each other 
and to the calculated lower limit of thermal conductivity 
κmin. The isochoric thermal conductivity near its lower 
limit weakly depends on temperature, molar volume of the 
solutions, concentration of the components, and addition of 
new ones, as predicted by NEMD calculations using the LJ 
potential for argon [37]. To determine the dependence of the 
coefficients A and B on the molar volume, the experimental 
results for the solution Kr0.63Xe0.37 were presented in coor-
dinates κT(T). All of them fit well into straight lines, and the 
coefficients were determined by extrapolation. The partial 
Bridgman coefficient ( ln / ln )A Tg A V= − ∂ ∂  is 13 ± 1.5. 

The total Bridgman coefficient is averaged over phonons 
and diffusive modes [23] 

 ph dif
A Bg g g

κ κ
= +

κ κ
. (3) 

Due to the weak dependence of the parameter B on the 
density, the Bridgman coefficient ( ln / ln )B Tg B V= − ∂ ∂  
is determined from the slope of the lines in the coordinates 
κT(T) with a large error. Therefore, we calculated it from 
the already known coefficients g and gA and relation (3). It 
is equal to gB = 2 ± 1.5. According to the data of [22,32], 
the Bridgman coefficient ( )ln / ln Tg V= − ∂ κ ∂  decreases 
from g ≈ 9–10, characteristic for pure Kr, to g ≈ 3–4 with an 
increase in the impurity concentration of Xe or CH4 to 10%.  

The experimental data [22,32] for different concentra-
tions of Xe and CH4 are presented in Figs. 6 and 7 in coor-
dinates κT(T). Information about the impurity concentra-
tion, molar volumes of samples Vm, coefficients A, B and 
the Bridgman coefficients ( )ln / ln Tg V= − ∂ κ ∂ are also 
shown in Table 1. It can be seen that for the Kr0.63Xe0.37 

samples with different molar volumes, the coefficient A 

Fig. 6. Isochoric thermal conductivity of Kr with CH4 admixture 
represented in coordinates κT(T). 

Fig. 7. Isochoric thermal conductivity of Kr with Xe admixture 
represented in coordinates κT(T). 

Table 1. Impurity concentration, molar volumes Vm of samples, fitting coefficients A and B, Bridgman coefficients ( ln / ln )Tg V= − ∂ κ ∂  

Solution Vm, cm3/mole A, mW/cm  B, mW/(cm⋅K)  g 

pure Kr 28.5 195 0.45 9.4±1.5 
Kr0.97(CH4)0.03 28.6 120 0.95 8.5±1.5 

Kr0.937(CH4)0.063 28.8 44 1.1 7.7±1.5 
Kr0.855(CH4)0.145 29.25 16 1.2 5.2±1.5 

Kr0.966Xe0.034 29.0 80 1.05 8.0±1.5 
Kr0.928Xe0.072 29.5 43 1.1 5.5±1.5 
Kr0.86Xe0.14 30.0 17 1.0 4.0±1.5 
Kr0.63Xe0.37 32.0 22 1.0  

3.7±1.5 
 

Kr0.63Xe0.37 31.5 27 1.0 
Kr0.63Xe0.37 31.2 30 1.0 

Kr0.63Ar0.185Xe0.185 – 29 1.0 – 
Kr0.63Ar0.12Xe0.12(CH4)0.13 – 32 1.0 – 
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responsible for the phonon contribution depends signifi-
cantly on the density (molar volume), while B describing the 
diffuse contribution is practically constant. The same applies 
to concentration dependence. Coefficient A changes practi-
cally by an order of magnitude from pure Kr to solid solu-
tions with a maximum concentration of impurities, while B 
is practically the same except for pure Kr where it is twice 
lower. Estimates of the partial Bridgman coefficients from 
the data of [22,32] for different concentrations of Xe and 
CH4 in Kr vary within gA = 12–18 and gB = 1–4. Theoreti-
cal estimates give gA = 3γ + 2q – 1/3 for phonon modes and 
gB = γ + 1/3 for “diffusive” modes [23,33,42], where γ is 
the Grüneisen parameter and q = (∂lnγ/∂lnV)T ≈ 1 [42,43]. 
Taking the value of γ = 2.85 for Kr [40], we have gA = 10.3 
and gB = 2.5, which is in reasonable agreement with the 
experiment. 

Conclusions 

The isochoric thermal conductivity of Kr0.63Xe0.37 sol-
id solution has been investigated for three samples with 
different molar volumes in the temperature range from 
80 K to the onset of melting, as well as the thermal con-
ductivity of the ternary (Kr0.63Ar0.185Xe0.185) and quater-
nary (Kr0.63Ar0.12Xe0.12(CH4)0.13) solid solutions. The 
thermal conductivities of double, triple and quaternary 
solid solutions are close to each other and to the calculated 
lower limit of thermal conductivity κmin. The thermal con-
ductivity weakly depends on temperature, density, compo-
nent concentration and addition of new ones, as predicted 
by NEMD calculations using the Lennard–Jones potential 
for argon. Addition of a methane impurity to the ternary 
Ar/Kr/Xe solution did not lead to a decrease in the thermal 
conductivity below κmin. It is shown that coefficient A re-
sponsible for the phonon contribution depends essentially 
on the density (molar volume) and the impurity concentra-
tion, while the coefficient B describing the diffuse contri-
bution is practically constant. The Bridgman coefficient 

( ln / ln )Tg V= − ∂ κ ∂  decreases from g ≈ 9–10, characteris-
tic for pure Kr, to g ≈ 3–4 with an increase in the concen-
tration of Xe and CH4 impurities above 10%. The partial 
Bridgman coefficients for different concentrations of Xe 
and CH4 in Kr vary within gA = 12–18 and gB =1–4, which 
agrees reasonably with the theoretical estimates gA = 10.3 
and gB = 2.5. 
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Нижня межа теплопровідності 
мультикомпонентних розчинів затверділих 

інертних газів 

В.О. Константинов, А.В. Карачевцева, 
В.П. Рєвякін, В.В. Саган 

Досліджено ізохорну теплопровідність твердого розчину 
Kr0,63Xe0,37 для трьох зразків з різними молярними об’ємами 
в інтервалі температур від 80 К до початку плавлення, а та-

кож теплопровідність потрійного (Kr0.63Ar0.185Xe0.185) та 
чотирьохкомпонентного (Kr0.63Ar0.12Xe0.12(CH4)0.13) твердих 
розчинів. Виявлено, що для багатокомпонентних розчинів 
теплопровідність досягає мінімуму, в результаті чого подаль-
ше додавання домішкових атомів в твердий розчин не впли-
ває на теплопровідність відповідно до недавніх розрахунків з 
використанням методів нерівноважної молекулярної динамі-
ки (NEMD) для аргону. Фононний внесок в теплопровідність 
істотно залежить від молярного об’єму зразка та концентра-
ції домішки, на відміну від вкладу дифузних мод, який прак-
тично не залежить від цих чинників. 

Ключові слова: теплопровідність, затверділі інертні гази, 
тверді розчини, фонон, дифузон. 

Нижний предел теплопроводности 
мультикомпонентных растворов отвердевших 

инертных газов 

В.А. Константинов, А.В. Карачевцева, 
В.П. Ревякин, В.В. Саган 

Исследована изохорная теплопроводность твердого рас-
твора Kr0,63Xe0,37 для трех образцов с разными молярными 
объемами в интервале температур от 80 К до начала плавле-
ния, а также теплопроводность тройного (Kr0,63Ar0,185Xe0,185) 
и четырехкомпонентного (Kr0,63Ar0,12Xe0,12(CH4)0,13) твер-
дых растворов. Обнаружено, что для многокомпонентных 
растворов теплопроводность достигает минимума, в резуль-
тате чего дальнейшее добавление примесных атомов в твер-
дый раствор не влияет на теплопроводность в соответствии с 
недавними расчетами с использованием методов неравно-
весной молекулярной динамики (NEMD) для аргона. Фонон-
ный вклад в теплопроводность существенно зависит от мо-
лярного объема образца и концентрации примеси, в отличие 
от вклада диффузных мод, который практически не зависит 
от этих факторов. 

Ключевые слова: теплопроводность, отвердевшие инертные 
газы, твердые растворы, фонон, диффузон.
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