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The isochoric thermal conductivity of Krg g3Xeg 37 solid solution has been investigated for three samples with
different molar volumes in the temperature range from 80 K to the onset of melting, as well as the thermal con-
ductivity of the ternary (Krg g3Aro.185X€0.185) and quaternary (Krg g3Arg.12Xeg.12(CH4)o.13) solid solutions. It is
found that for multi-component alloys, the thermal conductivity reaches a minimum, whereby adding more im-
purity atoms in the solid solution does not affect the thermal conductivity in agreement with the recent
nonequilibrium molecular dynamics calculations for argon. The phonon contribution to the total thermal conduc-
tivity depends significantly on molar volume of sample and impurity concentration, in contrast to the contribu-

tion of diffusive modes, which is practically independent of these factors.
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Introduction

Rare gas solids (RGS) Ar, Kr and Xe refer to the sim-
plest substances whose atoms are connected by a weak van
der Waals interaction and interatomic potential can be rela-
tively easily modeled. They form crystals with fcc structure
and do not have phase transitions up to the melting point.
As a consequence the RGS are ideal objects for comparing
experimental data with theory. A large number of experi-
mental [1-9] and theoretical [10-19] studies have been
devoted to examination of their thermal conductivity. Ini-
tially, a theoretical analysis of the thermal conductivity of
dielectric crystals was carried out using the Boltzmann
transport equation for phonons [20]. It is assumed that in a
perfect crystal at temperatures of the order and above cor-
responding Debye temperature (T > ®p) the main mecha-
nism determining magnitude and temperature dependence
of the thermal conductivity «(T) is phonon—phonon interac-
tion. Above ®p the lifetime of three-phonon scattering
processes is inversely proportional to temperature while
the specific heat and phonon group velocity are considered
as temperature independent. In combination with the kinetic
theory of phonon gas, this leads to the well-known « oc T
dependence of the thermal conductivity of dielectric solids
[20]. In practice the T dependence is actually observed at
some fraction of the Debye temperature, for example at
®p/4 for argon and at ®p/10 for silicon.

More sharp decrease of thermal conductivity with in-
creasing temperature observed in the heavy RGS at a satu-
rated vapor pressure was initially erroneously attributed to
higher-order four-phonon interactions [3]. It was later
shown experimentally [7-9] that such behavior is related to
the thermal expansion of the crystal (the molar volumes of
RGS changes on the order of 10% in temperature interval
from 0 K to the melting point), and the isochoric thermal
conductivity can be described as the sum of two contribu-
tions: from propagating phonons and localized "diffuse"
modes: k = Kph + Kdif, OF

Kk = A/IT+B, (1)

where the coefficients A and B do not depend on tempera-
ture. Afterwards, the isochoric thermal conductivity of
RGS and a number of molecular crystals was described in
the framework of standard Debye expression for thermal
conductivity [20] under the assumption that the mean-free
path of a phonon cannot become less than half of its wave-
length or lattice constant. This idea was first proposed by
Roufosse and Klemens [21]. Accounting for this circum-
stance leads to the fact that the thermal conductivity is de-
scribed, respectively, by the expressions k = A/T 2+ Band

=AT 4B [22,23]. In both cases, the phonon contribu-
tion to the thermal conductivity decreases steeper than in
the case of 1/T dependence, because the borderline be-
tween high-frequency “diffusive” modes and low-frequen-
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cy phonons is shifted downward with increasing tempera-
ture and, consequently, the number of phonon modes de-
creases.

While simple Debye model of thermal conductivity
does yield useful insight, it has substantial limitations. The
weakness of this approach is that it assumes a linear dis-
persion law up to the end of Brillouin zone and a quadratic
density of phonon states thereby it completely ignores the
real dispersion of phonons and the real density of their
states. The assumption that a solid has the Debye disper-
sion leads to the contribution of high frequency phonons
being substantially overvalued because actual zone-edge
phonons have a much smaller group velocity than the
sound velocity. Attempts to artificially incorporate the dis-
persion into consideration using fitting parameters do not
lead to satisfactory results [24].

In recent years ab initio calculations of the thermal
properties of disordered systems based on the Green Cubo
approach using molecular (MMD) or lattice dynamics
methods have developed extensively [25-27]. This method
makes it possible to calculate as well the thermal conduc-
tivity of ordered solids, in particular, the thermal conduc-
tivity of crystalline argon [14-19]. Using MMD and the
Green—Kubo method, it was shown that the thermal con-
ductivity of a Lennard-Jones fcc crystal of argon is de-
scribed by two time constants associated with the attenua-
tion of the autocorrelation function of the heat flow. The
first time scale is associated with short-wave phonons,
which have an average mean-free path equal to half the
wavelength, and corresponding contribution to the thermal
conductivity does not depend on temperature. The second
time scale is longer and corresponds to acoustic phonons
with a mean-free path greater than half their wavelength,
and corresponding contribution to the thermal conductivity
decreases with increasing temperature. Advances in the
measurement and computation of thermal phonon transport
properties are detailed for example in [27].

Despite the abundance of information, it can be argued
that the dependence of the isochoric thermal conductivity
of Ar, Kr and Xe on temperature and molar volume has not

been strictly established by experiment. It was assumed
initially that the coefficients A and B depend in the same
way on the molar volume k = (A/T+B)(Vo/V)?, where Vg is
molar volume at 0 K, V is molar volume of a sample, and
g =—(8Ink/8InV), is the Bridgman coefficient [9]. In
the later it was shown that this is not true [23]. To clarify
the temperature dependence of the isochoric thermal con-
ductivity of RGS experimental data for of Ar, Kr and Xe
were represented in the reduced coordinates «T(T),
KT3/2(T /2) u kT 2(T 2) (see Figs. 1-3). In all mentioned
above coordinates, when the corresponding dependence is
fulfilled, the experimental points must lie on a straight line.
An unambiguous conclusion about the degree of depend-
ence of thermal conductivity on temperature is difficult to
make on the basis of the graphs. It is only possible to af-
firm that the isochoric thermal conductivity is described
with good accuracy by the expression k = A/T "+B, where
n varies between 1 and 2 with the appropriate choice of
coefficients A and B. The dependence k = A/T+B is well
satisfied for krypton and xenon, and for argon it is valid
only above 90 K. This may be due to the fact that the De-
bye temperature of argon (93.3 K) is higher than its triple
point (83.8 K). In the future we will use this dependence
because it proceeds from more accurate physical represen-
tations and is confirmed by direct ab initio calculations. It
was shown recently that the interface between fast acoustic
phonons with the dispersion law close to the sound
(propagons) and phonons, which propagate much slower
(diffusons), whose dispersion law is different from the sound
one, coincides with the first van Hove singularity [28,29].
Point defects cause additional scattering of phonons
and, consequently, a decrease in thermal conductivity. At
low concentrations, the point defects give a small constant
additive to the thermal resistance W = 1/« at high tempera-
tures. In the case of strong scattering, the thermal conduc-
tivity is usually weakly dependent on the impurity concen-
tration. The isochoric thermal conductivity of solid krypton
with methane and xenon admixtures was studied in the
temperature range T > ®p in number of studies [22,30-34],
there are also examples of ab initio calculations of the ther-
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Fig. 1. Isochoric thermal conductivity of Ar (Vp, = 22.14 cm3/mole) [7] represented in coordinates: «T(T) (a), xT
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Fig. 2. Isochoric thermal conductivity of Kr (Vi =27.1 cm3/mole) [8,9] represented in coordinates: xT(T) (a), KTS/Z(TS/Z) (b), xT 2(T2) (©).

mal conductivity of solid argon with impurities [35-37].
The Kr—CHy system demonstrates the complete solubility
of the components, the same occurs in the Kr—Xe system
above 75 K [38]. It was found that as the impurity concen-
tration increases, the phonon contribution to thermal con-
ductivity decreases, and the thermal conductivity itself
approaches its lower limit as it was interpreted by Cahill,
Watson and Pohl [39]:

1/3
(=
Kmm=5(—] ken®(v +2%), @)

6

where v, and v; are the longitudinal and transverse sound
velocities, n is the number of atoms (molecules) per unit
volume. With an increase in the impurity concentration
above 10%, the thermal conductivity remained almost un-
changed [22,32]. It was also found that as the part of heat
carried by the “diffuse” modes increased, the Bridgman
coefficient g =—(0Inx/0InV); decreased from the value
g~ 9-10, which is characteristic for pure crystals up to
g ~ 3-4, more typical for glasses and amorphous solids.

Expression (2) is essentially a modification of the Ein-
stein model of thermal conductivity in which atoms in a
crystal lattice perform harmonic oscillations of the same
frequency and are connected by harmonic forces. In order
to eliminate the uncertainty in the choice of the Einstein

frequency, Cahill, Watson, and Pohl [39] modified the the-
ory by including vibrations with a larger length. Thermal
conductivity is determined by random walk of thermal
energy between neighboring localized quantum mechanical
oscillators, the lifetime of each of which was assumed to
be equal to half the oscillation period. It is clear that such a
description sins with all the deficiencies inherent in the
primitive Debye model, primarily due to ignoring the real
dispersion law and density of states of phonons, and we
can talk only about how justified its use for the evaluation
of the lower limit of the thermal conductivity.

The revival of interest in the systems mentioned above
is connected with the need to systematize and re-evaluate
the experimental results on the basis of a more realistic
model and to refine the volume dependence of the coeffi-
cients A and B in the expression (1) for the thermal con-
ductivity. It was also stimulated by the theoretical calcula-
tions [37], where the effect of mass disorder on the thermal
conductivity of alloys with four or more components was
evaluated. To predict the thermal conductivity of solid so-
lutions, modeling using the nonequilibrium molecular dy-
namics (NEMD) method was performed using the Len-
nard-Jones potential (LJ) and one to five atomic
components. It was shown that for multicomponent solu-
tions, the thermal conductivity reaches a minimum, as a
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Fig. 3. Isochoric thermal conductivity of Xe (Vi = 34.6 cm3/mole) [9] represented in coordinates: «T(T) (a), T
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result of which the addition of impurities to it does not
affect the thermal conductivity. NEMD calculations show
that to further reduce the thermal conductivity of multi-
component solutions, local deformation fields must be per-
turbed by a change in the interatomic force field. In addi-
tion it was shown that with additional scattering due to
changes in the local force field (i.e., phonon scattering due
to changes in the bond and / or volume) the NEMD pre-
dicts that the thermal conductivity of the crystalline alloy
may be lower than in the amorphous phase. This suggests
that for solid solutions with five or more kinds of atoms the
inclusion of local strain-field for additional phonon scatter-
ing can lead to an isotropic crystalline material with ultra-
low thermal conductivity that can be lower than the pre-
dicted minimum limit for the corresponding amorphous
phases. All of the above prompted us to study the thermal
conductivity of the three-component Kr, Ar and Xe and
four-component Kr, Ar, Xe, and CHy solid solutions.

Experimental results and their discussion

Studies at a constant volume can be realized for molec-
ular solids having relatively high compressibility and large
coefficients of thermal expansion. If a solid sample of a
sufficiently high density is grown in a high-pressure cell, it
can subsequently be cooled at a practically constant vol-
ume, while the pressure in the cell decreases. Usually, it
falls to zero at some characteristic temperature Tg, below
which the condition of constancy of the density is violated.
Further cooling of the sample may be accompanied by its
cracking and detachment from the cell walls. At constant
density melting of the sample occurs in a certain temperature
interval and its beginning shifts toward high temperatures.
According to the melting curves of RGS [40] this shift may
be of 40-50 K at a pressure of 100 MPa in the cell.

The present studies were carried out by the steady-state
heat flux method in a cell of coaxial geometry [41]. The
samples were grown at pressures from 30 to 100 MPa,
produced using an auxiliary thermo compressor, with the
temperature gradient along the cell being about 1.5 K/cm.
After growing of the sample the inlet capillary was blocked
by freezing with liquid nitrogen, and the sample was an-
nealed at a temperature of 100 K for 4-5 hours. At the end
of measurements the sample was re-condensed into a thin-
walled vessel and its mass was determined by weighing.
The molar volume of the sample was calculated from the
known volume of the measuring cell and the mass of the
sample. The systematic measurement error was + 4%.

The isochoric thermal conductivity of Krgg3Xeg. 37 sol-
id solution was investigated for three samples with molar
volumes Vp, of 32.0, 31.5 and 31.2 cm3/mole (denoted as
Nos. 1-3, respectively) in the temperature range from 80 K
to the onset of melting (see Fig. 4). Figure 5 shows isochoric
thermal conductivity of pure Kr (Vi = 28.5 cm3/mole, aste-
risks), solid Krgg3Xep37 solution (Vy = 31.2 cm3/mole,
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Fig. 4. Isochoric thermal conductivity of solid Krg gzXeg 37 solu-
tion for three samples with different molar volumes (Vp,) of 32.0,
31.5and 31.2 cm3/mole, (denoted as Nos. 1-3, respectively).

No. 3), as well as triple Krg g3Arg.185Xeg.185 (No. 4, trian-
gles) and quadruple Krge3Arg.12Xeg.12(CH4)o.13 (No. 5,
squares) solid solutions. A closer view of the thermal con-
ductivity of solid solutions is shown in the inset. Samples
No. 1 and No. 2 were grown at pressures of 30 and 60 MPa,
respectively, samples No. 3, 4, and 5 were grown at pres-
sures of 90 MPa. The smoothed values of the isochoric
thermal conductivity are shown by solid lines. The concen-
tration of solutions is indicated for the gas phase.
Information on the phase diagram of the ternary and
quaternary solutions is absent, but separately all components
are unrestrictedly dissolved in Kr at pre-melting tempera-
tures [38]. The Bridgman coefficient, calculated from our
experimental data for KrggsXeg37 solution, is 3.7 + 1.5
at 100 K, which is close to 4.0 £ 1.5 for a solid solution
KrogeXep.14 [32]. For reference the lower limit of the
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Fig. 5. Isochoric thermal conductivity of pure Kr (Vy, = 285
cmslmole, asterisks), solid KrggsXegs7 solution (Vy, = 31.2
cm3/mole, No. 3), as well as triple Krg gzArp.185Xep.185 (No. 4, trian-
gles) and quadruple KrggzArg12Xep12(CHg)o.13 (No. 5, squares)
solid solutions. A closer view of the thermal conductivity of solid
solutions is shown in the inset.
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Fig. 6. Isochoric thermal conductivity of Kr with CH,4 admixture
represented in coordinates kT(T).

thermal conductivity kmin of Kr, calculated according to
the Eq. 2 using data of [40] is 1.1 mw-cm LK [22]. Di-
rect calculations of the lower limit of thermal conductivity
by the NEMD method for Kr were not carried out, howev-
er, it can be estimated from calculations for LJ Ar using
the method of reduced coordinates [3]. According to the
estimates, its value is 1.4 mW-cm K, which is some-
what higher than the value obtained from Eq. (2).

It is seen that the thermal conductivities of double, tri-
ple and quaternary solid solutions are close to each other
and to the calculated lower limit of thermal conductivity
Kmin- The isochoric thermal conductivity near its lower
limit weakly depends on temperature, molar volume of the
solutions, concentration of the components, and addition of
new ones, as predicted by NEMD calculations using the LJ
potential for argon [37]. To determine the dependence of the
coefficients A and B on the molar volume, the experimental
results for the solution Krg g3Xeg.37 were presented in coor-
dinates «T(T). All of them fit well into straight lines, and the
coefficients were determined by extrapolation. The partial
Bridgman coefficient ga =—(0In A/0InV); is 13+15.
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Fig. 7. Isochoric thermal conductivity of Kr with Xe admixture
represented in coordinates kT(T).

The total Bridgman coefficient is averaged over phonons
and diffusive modes [23]

Kph T
g=—"rga+—gp. ©)
K K

Due to the weak dependence of the parameter B on the
density, the Bridgman coefficient gg =—(InB/dInV )1
is determined from the slope of the lines in the coordinates
«T(T) with a large error. Therefore, we calculated it from
the already known coefficients g and ga and relation (3). It
is equal to gg = 2 = 1.5. According to the data of [22,32],
the Bridgman coefficient g =—(dInk/dInV ), decreases
from g ~ 9-10, characteristic for pure Kr, to g ~ 3—4 with an
increase in the impurity concentration of Xe or CH, to 10%.

The experimental data [22,32] for different concentra-
tions of Xe and CHg are presented in Figs. 6 and 7 in coor-
dinates xT(T). Information about the impurity concentra-
tion, molar volumes of samples Vy, coefficients A, B and
the Bridgman coefficients g =—(dInk/dInV ). are also
shown in Table 1. It can be seen that for the Krg g3Xep.37
samples with different molar volumes, the coefficient A

Table 1. Impurity concentration, molar volumes Vi, of samples, fitting coefficients A and B, Bridgman coefficients g = —(0In«k/oInV )t

Solution Vi, cm /mole A, mW/cm B, mW/(cm-K) g
pure Kr 28.5 195 0.45 9.4+1.5
KI’O.97(CH4)0_03 28.6 120 0.95 8.5+1.5
Kro.937(CH4)0.063 28.8 44 1.1 7.7£1.5
Kl’o_355(CH4)0_145 29.25 16 1.2 5.2+1.5
Kr0,966Xe0,034 29.0 80 1.05 8.0+1.5
Kr0,928Xe0,072 29.5 43 1.1 5.5+1.5
Kro.g6X€0.14 30.0 17 1.0 4.0+15
KI’().63X80.37 32.0 22 1.0
Kro.63Xeg.37 315 27 1.0 3.7x15
Kro.s3X€g.37 312 30 10
Kro.63Ar0.185X€0.185 - 29 1.0 -
Kro,63Ar0.12X€0.12(CH4)0.13 - 32 1.0 -
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responsible for the phonon contribution depends signifi-
cantly on the density (molar volume), while B describing the
diffuse contribution is practically constant. The same applies
to concentration dependence. Coefficient A changes practi-
cally by an order of magnitude from pure Kr to solid solu-
tions with a maximum concentration of impurities, while B
is practically the same except for pure Kr where it is twice
lower. Estimates of the partial Bridgman coefficients from
the data of [22,32] for different concentrations of Xe and
CHy in Kr vary within ga = 12-18 and gg = 1-4. Theoreti-
cal estimates give ga = 3y + 2q — 1/3 for phonon modes and
gs =y + 1/3 for “diffusive” modes [23,33,42], where v is
the Griineisen parameter and q = (élny/dInV)t ~ 1 [42,43].
Taking the value of y = 2.85 for Kr [40], we have ga = 10.3
and gg = 2.5, which is in reasonable agreement with the
experiment.

Conclusions

The isochoric thermal conductivity of Krg g3Xeg 37 sol-
id solution has been investigated for three samples with
different molar volumes in the temperature range from
80 K to the onset of melting, as well as the thermal con-
ductivity of the ternary (Krg s3Aro.185Xeo.185) and quater-
nary (Krg.g3Arg.12Xep.12(CHa)o.13) solid solutions. The
thermal conductivities of double, triple and quaternary
solid solutions are close to each other and to the calculated
lower limit of thermal conductivity kmin. The thermal con-
ductivity weakly depends on temperature, density, compo-
nent concentration and addition of new ones, as predicted
by NEMD calculations using the Lennard—Jones potential
for argon. Addition of a methane impurity to the ternary
Ar/Kr/Xe solution did not lead to a decrease in the thermal
conductivity below kmijn. It is shown that coefficient A re-
sponsible for the phonon contribution depends essentially
on the density (molar volume) and the impurity concentra-
tion, while the coefficient B describing the diffuse contri-
bution is practically constant. The Bridgman coefficient
g =—(0Ink/dInV); decreases from g ~ 9-10, characteris-
tic for pure Kr, to g ~ 3—4 with an increase in the concen-
tration of Xe and CHy4 impurities above 10%. The partial
Bridgman coefficients for different concentrations of Xe
and CHg in Kr vary within ga = 12-18 and gg =1-4, which
agrees reasonably with the theoretical estimates ga = 10.3
and gg = 2.5.
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HwxHA Mexa TennonpoBigHOCTI
MYSNbTUKOMMNOHEHTHUX PO34MHIB 3aTBEpainmnx
iHepTHUX rasis

B.O. KoHcTaHTuHOB, A.B. KapauyeBLeBa,
B.l1. PeBsikiH, B.B. CaraH

JocnimkeHo i30X0pHY TEIUIONPOBIAHICTh TBEPIOTO PO3UUHY
Krp 63X€p 37 471 TPHOX 3pa3KiB 3 PI3HUMU MOJIAPHUMH 00’ eMaMu
B inTepBaii temnepatyp Bix 80 K 1o modaTky mmaBieHHs, a Ta-
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Kok Tertonposianicts motpiaoro (KrpgzArg.185Xep.185) Ta
yotupboxkommoneHTHOro (Krg g3Arg.12Xeg 12(CH4)0.13) TBepaux
po3unHiB. BussieHo, 1mo Uit 6araTOKOMIIOHEHTHHX DPO3YMHIB
TEIIONPOBIHICTD JOCATae MiHIMyMy, B pe3yJIbTaTi 4OTO M0/aib-
IIe J0JIaBaHHA JOMIIIKOBHX aTOMiB B TBEpAMH PO3UMH HE BILIH-
Ba€ Ha TEIUIONPOBITHICTE BIAMOBITHO 0 HEJABHIX PO3PaXyHKIB 3
BHKOPHMCTaHHSM METO/IB HEPiBHOBAXKHOT MOJICKYJIAPHOI JUHAMI-
xu (NEMD) ms aprony. ®oHOHHHI BHECOK B TEIUIONPOBIIHICTD
ICTOTHO 3aJI©XKHUTh BiJi MOJSIPHOTO 00’ €My 3pa3ka Ta KOHLEHTpa-
1ii JOMIIIKY, Ha BIAMIHY BiJ BKJIAAy TU(Y3HUX MO, SIKHH MpakK-
TUYHO HE 3AJICKUTH BiJl INX YUHHHUKIB.

KirowoBi cioBa: TEIUIONPOBINHICTH, 3aTBEpALNI IHEPTHI rasm,
TBEp/i po3YHHH, POHOH, TH(DY30H.

HwkHWI npegen TennonpoBogHOCTH
MYIbTUKOMMOHEHTHbIX PACTBOPOB OTBEPAEBLLMX
WHEPTHbIX ra3oB

B.A. KoHcTaHTMHOB, A.B. Kapayesuesa,
B.IM. PeBsikuH, B.B. CaraHn

HccnenoBana M30XOpHAsi TEIUIOMPOBOIHOCTh TBEPIOTO pac-
tBOopa Krgg3Xep 37 411 Tpex 00pasloB ¢ Pa3sHBIMH MOJIIPHBIMU
o0bemamu B uHTepBasie Temneparyp ot 80 K no Hawana mnasie-
HHSL, a TAakKe TEILIONpOBOJHOCTH TpoiHoro (Krge3Arg 185X€p,185)
u getbipexxommonenTHoro (Krge3Arg 12Xeg 12(CHa)o,13) TBep-
IBIX pacTBOpoB. OOHAPYKEHO, YTO A MHOTOKOMIIOHEHTHBIX
pPacTBOPOB TEIUIONPOBOAHOCTh AOCTHIaeT MUHUMYMA, B PE3YIib-
TaTe 4ero JajabHeiIiee JoOaBIeHNe MIPUMECHBIX aTOMOB B TBEp-
JbIif PACTBOP HE BIMSIET HA TEIUIONPOBOAHOCTh B COOTBETCTBHH C
HEJJaBHUMHU pacyeTaMH C HCIIOJIBb30BAHHEM METOJIOB HEpaBHO-
BecHOM MonekynsapHoi nuHaMuku (NEMD) nst aprona. ®donoH-
HBII BKJIQJ B TEIJIOIPOBOJHOCTH CYIIECTBEHHO 3aBUCHT OT MO-
JsIpHOTO 00BeMa 00pa3la U KOHLEHTPALUN IPUMECH, B OTJIMYHE
ot BKiaga JuQdy3HBIX MO, KOTOPHIH MPAaKTUYECKH HE 3aBHCHUT
0T 3TUX (AKTOPOB.

KiroueBsle crioBa: TEIIIONPOBOAHOCTH, OTBEP/ACBIINE WHEPTHEHIC
rasbl, TBEpble pacTBOPEL, GOoHOH, MK HY30H.
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