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Biinductance LC circuit is considered and envelope modulation is reduced to the complex nonlinear
Schrodinger (CNLS) equation. The Benjamin — Feir (or modulational, as it is sometimes called) instability
for the CNLS equation is investigated and reduced to the Lange — Newell criterion.

Poseaadaemovca LC-aanuyro2, 041 aAK020 M00YAAUIA 006I0HOI 3600UMbCA 00 KOMNAEKCHO20 HeAIHIli-
Ho?20 pisHanHa lllpedinzepa (KHPIII). Busuaemwvcsa necmitikicmb 3a bBenoxcaminom ma @etiepom (o
iHOO0I Hasusaembcsa mooyaayiinow) oaa KHPII i 3600umubcsa 0o kpumepiio Jlanza — Hvtoseaaa.

1. Introduction. Our work deals with the derivation of a nonlinear wave equation for electromag-
netic wave propagation on a nonlinear dissipative biinductance transmission line [1—4] shown

in Fig. 1.
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Fig. 1. A typical section for a distributed nonlinear dissipative transmission line.

In this transmission line, C'(V)) ~ C; — CnyV, where Cy is a nonlinear capacitor such as a
“VARICAP” or a reverse-biased p — n junction diode, the capacitance of which depends on the
voltage applied across it. One can write the set of partial differential equations for the currents
and voltages as

Lolons + Roloy, = Vo1 — Vo, (1)

L1]2n+1,t + RIIQn-‘,—l = Vén - V2n+17 (2)
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Qongt = Iop — Iopp1 — GVay, (3)

Qon+1t = Iopnt1 — lont2 — GVopya, 4)

where Iy, is the current through the inductance Lo and the resistance Ro, ()2, being the charge
density stored in the 2n-th capacitor, V3, is the ac voltage across it, subscript ¢ denotes the
differentiation with respect to t.

The dependence of Q(V') (Q is a charge density, Coulomb/length) must be specified before
we proceed. The simplest choice is to expand Q (V') in a Taylor series as

Q(V) = Co(V —aV?). ©)

From (1)-(4), we can eliminate the currents, and using (5), we obtain the following set of
discrete equations:

CU@(VQN - aVin) + Lo a(‘/?n - aVQn) + Gav&n =
1 1 RyG
- E(%n—l - ‘/Qn) - E(VQn - V2n+1) - T2V2na (6)
0? RyCy O d
COﬁ(VmH — aV22n+1) + I, a(VQn_i_l - aVQQn_H) + GaVQnJrl =
1 1 RyG
= E(V2n — Vopy1) — E(‘@n+1 — Vopyo) — %2‘/2n+1 (7)
with the duresses
Ryl = RiLo, L1 > Lo. (8)

If we denote by W, (¢) the voltage of the even cells V3, and by V,, the voltage of the odd
cells V11, system (6), (7) becomes

%V, RyC) oV, 0?V2 Ry V2
Co 5 +(L2 +G>8ta00(at2 L28t>_
1 1 RyG
- E(anl - Vn) - E(Vn - Wn) - Tzvm (9)

PW, [ RaCo oW, 2W?2 Ry OW?2
CO 8752 +< L2 +G> ot —CLC()( 8752 +L72 ot ) =
1 1 RoG

withn = 1,2, ..., N, where N is the number of cells considered.
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2. A CNLS equation. In this section we consider the propagation of a group of waves
centered around the wavenumber k and the frequency w. To accomplish this, we use the semi-
discrete approximation method [5-7]. We follow Taniuti and Yajima [8] and seek the solution
V,.(t) of the odd cells in the form

Vi(t) = eVii(n, t) exp{if} 4+ e*Vao(n, t) exp{2i6} + (¥) (11)

where ¢ is a small, dimensionless parameter related to the amplitudes, 6 = 2kn — wt = 0(n, ).
Here (x) stands for the complex conjugate of the preceding expression. We use the following
ansatz [7] to decouple the two equations (9),(10):

b
Wn(t) = o1exp{ik} <V11 +ebiVing + 52521/11” + 0852‘/1*1‘/22> exp{if} + (*) +

+ o9e? exp{2ik} (Vag + ec1Vag o + CoVi1 Vi1 2) exp{2i6} + (%), (12)

where o1, 02, b1, ba, cg, c1, and cg are complex constants to be determined; here the subscript
x denotes the differentiation with respect to x. We order the damping coefficients so that the
effects of the damping and the nonlinearity appear in the same perturbation equations. Thus

we let
RQC()

)
Substituting (13) into (9) and (10) we obtain

+ G = %p. (13)

R
CoVnar + Vs — aCy (Vritt + L;V’E’J =

1 1
- f(Wn—l - Vn) - 7(Vn - Wn) - 525‘/”7 (14)
1

R
CoWnt + EQMWn,t —aCy (Wg,tt + I;Wr%t> =

_ L
- £

b

Vn_Wn
(Vi = W) = -

(W — Viy1) — €20W,,. (15)
In order to determine Vi1 and Va9, and the constants o1, o9, b1, bo, cg, ¢1, and cg we insert
Vi (t) from (10) and W,,(¢) from (11) and their derivatives into (14) and (15), and impose to the
resulting equations to be equivalent. These operations yield many equations distinguished by
the powers of £ and the powers of exp{if}.
Equations of (g, exp{if}) give

1 RoG exp{—ik expiik
<—Cow2+L+£2> Vi1 :(71< pil }-i- pli }> Vi,

(16)

exp{ik} exp{—ik} B oo, 1 ReG
< I + I Vi1 = o1 | —Cow +L+7L2 Vi1,
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Fig. 2. Dispersion curve for the linearized version of the transmission line shown
in Fig. 1 for the Low Frequency mode.

where
L_1 1
L Ly Ly
From (16) one derives the linear dispersion relation
1 [1  RG 1 4
2 2 02
= — |= +4/— — k 17
Y TG [L L \/L2 LiLy o (17)

which is illustrated in Fig. 2 and Fig. 3 for the line parameters Ly = 28uH; Lo = 14uH;
Co = 540pF; Ry = 109; and G = 38,6-107°Q~! when 0 < k < /2.

The dispersion relation (17) provides two types of frequency modes: the Low Frequency
(LF) mode in the region w; < w < wq (Fig. 2) and the High Frequency (HF) mode for w3 <
< w < wy (Fig. 3), where the cut-off frequencies w1, we, w3, and wy are defined by

o = G 1 (2 BG

" Voeony P \Neo\n T L, )
oo [EERG 1 (2 BG
57V G, 0 T\ \T T L, )

1 [cosk n sink
7
L Lo |’

From (16) we deduce
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Fig. 3. Dispersion curve for the linearized version of the transmission line shown
in Fig. 1 for the High Frequency mode.

where

1 1 1 1 1
Hy = —Cow?® + 17 —|—RL22G, andL—0 =" L—2.Fr0m (8) we have Io <0.

From equations of (¢2, exp{if}) we have

. expq{ —ik exp|—ik 2exp{—ik
—2iCowViis = 01 [( Pil } 4 PEQ }> by — p[i}] Vit a—
) 207 expqik
—2iCowVi1 = <1L11){} — Ho> Vi1,

which gives

4 1 2k
by = 3 <+COS( )>—1.
LiH; \ Ly Ly

Equations of (g2, exp{2i6}) yield

20k —2k ) R
Ho — 300w2 B exp{ ? } + exp{ ? } oo | Vag = aCl 402 — ini V121,
Lo Ly | Lo

Lo Ly

—2ik 2ik} |
[(Ho - 3C0w2) 02 — <exp{ il + P2 }> Vg = aCy (—4w2 - in?01> V1217
] 2
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from where we obtain

(Ho — 3Cow?) <2w201 + iaf?) + <2w2 + 1122) (eXpEZ_%} + eXp{sz})
2 2

2 Ly
o9 = i
Ry . o R\ [exp{2k} exp{—2ik}
(2w2 + Z[Q) (Ho - 300(,02) + <2w20'1 + ZO'%_L2> < L2 + Ll
and
—2aCyw <2w + zRQ>
Vo = exp{2ik} I;(p{ 2ik} Vit
Hy — 2 _ _
0 — 3Cow < T + I ) o2

Equations of (g2, exp{if}) give

j ; R .
Co(Virge — 2iwVinyg) —iwpVin + [2a00w (w + ZL2> _ Hocs} Vi Voot
2

. {Ul exp{—ik}

Hy
W1 —1) — 2y | Viyaw = 0,
I (201 — 1) 5 2} 11, 0

(18)

Cy (Vll,tt — 2in117t> —iwuViy + |:CLCU<,U20'T20'2 + (HO + CLCoiw]L%z> 68:| X
2

b * 1k
X Vi3 Vag + [(Ho +aChiw) 5 — Ulexp{’}} Vit zo—

— Coby [in + aR2] Vll,;vt = 0.
Lo

The compatibility condition for the nonlinear term V7 Vaa gives
R
aCy [Qw <w + ZLz> — w22§]
Ry

2H Coiw—
ota OMLQ

cg =

and the compatibility condition for Vi1 ;, gives

b — 2[o1 (2b1 — 1) exp{—ik} + o] exp{ik}]
2 L1 [2Hy + aCyiw] '

Using Galilea transformation
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in the second equation of (18) and by going into the reference frame moving with the group
velocity V;, = dw/dt, we derive the resulting equation for V7; that describes the evolution of
the wave packet

Vi + PViee +Q V1|2 Vi +ilVip = 0 (19)
where
1 | exp{ik} L bo dw\
P = Plk)= —(H 20 (=) -
*) = 560w | orLy  — (Ho+aChiw) 5 = Co (dk)
dw . Ry
—% <2C’0b12w + GCUbl .[/2>:| )

al 2w+ 2@ aCowQU—; + | Hp + aC’oiw& cs
L2 g L2

Q=Q(k) = o~ ‘ :
Hy — 3Cow? (exp{2zk;} N exp{ 22k}> o
Lo Ly
w
= ——.
2C,

Equation (19 is a CNLS equation. If we denote by P,, Q,, and I',. the real parts of P, @, and T,
respectively and by P;, @;, and I'; the imaginary parts of P, ), and I, respectively, then we can
write

P=P+iP, — Q=Q +iQ, T =TI,+il;
3. Envelope modulational instability for the CNLS equation. In this section we consider the
modulation of the envelope of the unstable periodic solution of Eq. (19) by considering the first

perturbation of the amplitude of a plane wave [7, 9, 10].
First we investigate periodic solution of Eq. (19). Thus we seek a solution in the form

Vi1 = Aexp {z (12;5 — JJT)} (20)
where A is a complex constant, &> and k are real constants. Substituting (20) into (19), we obtain
O—k*P+|APQ+T =0. (21)

Next we perturb ;. That is, we let
Vii = [1+b] Aexp {z (zzgfaﬂ} + (%) (22)

where b = b(¢,7) is assumed to be infinitesimal. Substituting (22) into (19), using (21) and
keeping only linear terms in the perturbation quantity, we obtain

iby + Pbee + 2ikPbe + |A|* Q (b +b%). (23)
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Since (23) has constant coefficients, one can represent its solutions in the form
b(&,7) = brexp{i (K4 Qr)} +byexp{—i (KE+QFr)} (24)
where by, be, K, and Q are constants. Substituting (24) into (23) yield
(Q+K2P+2/;KP— ]A\QQ) by — |A]> Qby = 0, y
|A]? Q*by + (Q — K2P* 4+ 2kKP* + |A]? Q*) by = 0. )
For a nontrivial solution the determinant of the coefficient matrix (25) must vanish. That is,
[+ (2RKP, +i (K2P, — |AP Qi))r = X +iY, (26)
where

X = K*'P? — A*K*P? — |A[* Q? + 2K?|A]* PQ; — 2K*|A]* (P,Q, + P,Qi)

Y = 4kKP, (K*P, - |APQ.).
If we introduce the notations
1 1
H1::|:\/2 (X—}—\/W) andezﬂ:\/2 <_X+\/m> (27)

then from (26) we have

Q= (—zléKPT + H1> +i (\AP Q; — K*P, + HQ) . (28)

We deduce from (24), (27), and (28) that for the boundedness of b({, 7) (as 7 — +00) it is
necessary and sufficient that at least one of the following conditions occurs
a) K is a solution of equation

|A?Q; — K*P;+ Hy = 0 (29)

b)
|A*Q; — K2P; &+ Hy > 0. (30)

We should note that condition (29) means that € is real and condition (30) means that the
imaginary part of €2 is positive.

It follows from (28) that for €2 to be complex so that b(&, 7) is unbounded (as 7 — +00) it
is necessary and sufficient that the wavenumber of the perturbation K should be a solution of
system

1

\/2 (—X VX2 + Y2> +APQ: — K2P, < 0,
1

—\/2 (~X + VXZHY?) +14P Qi - K°P; < 0.

31)
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A necessary condition for (31) to have a solution is that

A2 Q; — K*P; < 0. (32)
It follows from (32) that
K2 > |AP QP it Pi > 0 (33)
and
K2&|AP QP if P < 0. (34)

From (33) we have K > |A] QiPi_l, if P,Q; > 0and K > 0if P;Q; < 0, and from (34) we
have 0 < K < |A|/Q;/P; if P,Q; > 0. We have the following conclusions:
i) if P,Q; > 0 and either P, > 0 and K > |A| QiPZ-_1 or P, < 0and 0 < K <

< |A]1/Q1P;! then for the modulational instability for the plane wave in the nonlinear di-
ssipative transmission line, it is necessary that

K*4(2P2 + P?) + |A|' @?
2K?|AJ?

PrQr + PZQZ > > 0; (35)

ii)if P, > 0, P,Q; < 0and K > 0, then for the modulational instability for the plane wave
in the nonlinear dissipative transmission line, it is necessary that

KY2P? + P2+ A" @2 2K AP PQ: _

PTQT+‘PiQi > 2K2|A|2

(36)

From (35) and (36) we obtain
PrQr + PZQZ >0

which is the well known Lange and Newell’s criterion [10] of the modulational instability.
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