sa

du3nka HnM3knx Temnepatyp, 1995, 1. 21, Ne 4, c. 446-450

YAK538.915

Quantum topological effects in a metallic ring with an
Anderson impurity

A A. Zvyagin

B. I. Verkin Institute for Low Temperature Physics and Engineering of the Ukrainian Academy of Sciences,
47, Lenin Ave., 310164, Kharkov, Ukraine

Submitted November 4, 1994, revised December 5, 1994

Spin and charge persistent currents in a metallic ring with an Anderson impurity are studied. It is shown that the
impurity changes are caused by the external magnetic and electric fluxes — the Aharonov—Bohm and Aharonov—
Casher type oscillations (the magnitudes and the periods) — in contrast with the normal metallic case. For instance,
the Aharonov—Bohm oscillations look like the type II superconductor. situation. These effects are-a manifestation of

the Luttinger liquid nature of the considered system.

In recent years physicists have been greatly inter-
ested in the quantum behavior of low-dimensional
systems, especially at low temperatures, where the
quantum effects play an essential role. Quantum fluc-
tuation effects are known to. show themselves most
vividly in low-dimensional systems, where they are
enhanced by singularities in the density of states.
When describing the low-temperature behavior of
low-dimensional many-body quantum systems one
has to rely on the exact solutions of the Schrodinger
equations because approximate methods like the
mean-field theory and modifications or the perturba-
tion theory can yield results that are incorrect even
qualitatively. One of the most productive methods al-
lowing the exact solution of the Schrodinger equation
is the Bethe ansatz, or the algebraic quantum inverse
scattering method {1 . There is a large number of 1D
quantum models (spin or strongly correlated electron
many-body systems), for which the exact solution
(eigenfunctions, eigenvectors and correlation func-
tions) has been found by this method. Among these
systems one can distinguish the exact solutions for
the quantum electron and spin systems with impu-
rities, see, e.g. the review papers [2—-4]. The ther-
modynamical properties (as the size of the system
goes to infinity) of an electron gas with a single im-
purity remain the same as for the non-interacting
electrons, and the interaction mainly changes the
properties of the impurity. But the lowest excitations
(charge and spin) are changed with respect to the
electron gas situation,

It is well known that the nonforce topological effect
of the electric and magnetic fields on charged par-
ticles with a magnetic moment manifests itself, e.g. in
the quantum effects of Aharonov—Bohm (AB) (5]
and Aharonov—Casher (AC) [6]. These effects are
due to acquisition by the wave functions of particles
with charges and magnetic momenta of phases
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proportional to the fluxes of the magnetic and electric
fields, respectively. The gauge invariance of the
electromagnetic field is the reason why the particles
moving along closed trajectories exhibit this property.

During several last years the systems of the great-
est interest in this connection are those in which the
topological effect of the electric and magnetic fields
reveals itself along with quantum features related to
the nature of particle interactions in solids. The
simplest way to see such topological effects in con-
densed matter is to study microscopically the persist-
ent charge and spin currents in the 1D ring of inter-
acting electrons. A number of theoretical papers have
been published in which the persistent currents were
studied with the help of exact methods, e.g. the Bethe
ansatz [7-18] and the bosonization techni-
que [19,20]. Development of the theory was en-
hanced by experiments studying the thermodynami-
cal characteristics (the magnetic momenta, which are
the another way of describing the persistent currents)
in mesoscopic rings [21-241. It was understood that
the topological influence of the electromagnetic field
fluxes cause the virtual creation and annihilation of
the excitations of the system at the left or right Fermi
points. For the ground state, this means the virtual
processes for the lowest excitations forming the Dirac
seas of the system for the gapless excitations, see, e.g.
in [25]. The response of the system to the external
magnetic and electric fluxes for the gapless situation
is of mesoscopic scale « L™2, where L is the number
of sites. For the gap situation, the response is propor-
tional to exp (—~LA/v ) , where A is the gap, and v ;is

the Fermi velocity of the excitation. The same method
is used to calculate the correlation functions for the
strongly correlated 1D systems [9,26,27 }.

From this point of view it is interesting to examine
theoretically the free electron model on a ring with
the impurity, enclosed into the external magnetic flux
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@ or into the electric flux F of radially directed
electric ficld generated by a charged string in the
middle of the ring with F = 4nt, where 7 is the linear
density of the charge on the string. The theoretical
description for the ring with the Kondo-like impurity
was carried out in [28].

In this paper we study the topological effect of the
magnetic and electric field on the electrons moving in
the ring with the Anderson impurity. We show that
the persistent current oscillations (both spin and
" charge) change their properties with respect to the
system without impurity. The AB oscillations are cha-
racterized by two periods: @, and ®,/2, where & =

= hc/eis the ordinary metallic flux quantum, and the
AC oscillations have the metallic period of F, = hc/u

where u is the magnetic moment of an electron. The
situation looks like a Hubbard chain with attraction
between the electrons, where the electrons are bound
in pairs. The ground state of the system is connected
with the Dirac sea filled by unbound electrons and
electron pairs, depending on the magnetic field value,
like type II superconductors. The magnitude of spin
and charge persistent current oscillations depends on
the magnetic moment of the ring and the band filling.
For nonzero temperature 7', the spin and charge per-
sistent currents in the system, as usual, are of order

of exp (—L/E), because T # 0 causes a nonzero value -

of the correlation length £ in the 1D system.

We can solve the quantum problem with the Bethe
ansatz equations only for the dispersion law of the
electrons linearized near the Fermi point (let the
Fermi velocity be equal to unity). The ground state
energy of electrons on the ring with the Anderson
impurity is equal to the series in L~
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where the first term describes the free «bulk» elect-
rons in the thermodynamical limit, the second is con-
nected with the behaviour of the impurity, and the
third is connected with the excitations (or, what amo-
unts to the same, with the topological fluxes effects,
see, e.8., [8 D).

The magnetic and electric field nonforce effects
change the periodic boundary conditions for the
quantum numbers k/. and 1,, to the twisted

ones [8,16 1and the equations for the sets of quantum
numbers k 7 (the quasi-momenta) and 4 , (the real part

of the pair rapidities) describing low-lying states are
[3,16,28 ] (we study the case in which the impurity is
at the site «0»)

b F

T
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where N is the number of electrons in the ring; M is
the number of paired electrons [29]; [ f and J a™

integer or half-integer numbers depending on the
values of N and M:

plk) =2 arctg_k f
I' is the resonance level width; ¢, is the energy of the
d electron;

gk) = QUD) 'k — ¢, ~ U/2)?
U > 0 is the impurity level repulsion; and

X(A) = ey + U/2 = (UDV P + @2 + 1/ 312

YA) = (D) [-4 + @2 + 1741712

The energy of N electrons with M bound clectrons
is equal 1o

2 k+22x(/1) )

j=2M+1

One can see obviously, that Egs. (2), (3) are peri-
odic in @ and F with the periods @ and F, , respec-
tively. That is why we can replace in Egs. (2), (3) the
phase shifts (®/®;) - {®/®y} and so on, where {x}
means the fractional part of x to the nearest [ ; and
J, (141

Using the method of the finite size corrections
calculations, see, e.g. [30 ], one obtains for the energy

correction connected with the electromagnetic field
fluxes

2e,(D, F) =vy X

ol ) e R

Fo

2
P F 2P
+ Vi [221 (Dl+ {653}4' Fg ) + 2y, (DZ_ l;ﬁo—})] ,
(5
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where the numbecers ZDl=] +/

max min ° 21)2 =
=J ., determine the initial phase shift of the
spin and chargc persistent current {15 ; Vg g are the
Fermi velocities of the unbound electrons and pairs,
respectively:

2rp(k)v py = g_i , k=8B, (6
d
2ro(Awp, = 5’/-[‘ , A=0Q, D

which are determined from the integral equations

o

f a, (g(k) = AkR) d @)
0

e(k) =

oc

Kk(A) = — 2x(4) — f a,(A —v)kv) dv -

Q
B
- f g (kya;(A — g(k))e(k) dk , ()
where the kernels are
2n
a (z) = —s——n . §10))
n( ) n‘(nz + 422) ,

The densities of the quantum numbers k and A can
be calculated from the equations [31,32]

plk) = 7_17_; + &' (k) f a;(8(k) ~ o@) di , @b
+Q '
o(d) + f ad = v)o) dv =
Q

5 |
- in@ - f @@ - gk)pky dk , U2

and the first term in Eq. (1), e _ , is equal to

B

= f k (k) dk + 2 f x(o@)ydr . (13)

ao
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We have omitted in Egs. (8)-(12) the terms of or-
der of L1 because we are interested in the response
of the «bulk» electrons but not of the impurity. The
Iiwnits of integrations yields from
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B 2
N 4
7= fp(/hdk+2 fa(l)dﬂ 14
R
z 1
5= 5f (k) dk . (15)
-

Notec that in the last equations one has to integrate

over the finite limits, in order to avoid divergences,

and there are no divergences in Egs. (8)-(12) [32].
With regard to %k (,k=1,2) one can say that

they are the dressed charges of the excitations at the
Fermi points
2y = ‘Eij k=B >

i=0

i7j=172,

see [9,30]. To determine the dressed charges for the
system with an Anderson impurity we have to solve
the set of integral equations:

>0

Spty =1 +fa;(g(k)—?t)§21(l) di , (16

Y
£1,(k) = f ay(gk) = NipA)dd ,  AD)
0
‘521()”) == J.ajz('1 - 1/)521(1’)(11/ -
Q
B
- [ ewaa - s wa, v
§p) =1~ f a,(A = v)E, () dv —
Q .
B

- f g'(k)a,(h — g(k)E Lk dk . (19)

-—oC

One can see that for free electron gas without
impurity the dressed charges are equal to the bare
ones:zy =2y, =1 ,2,=2z, = 0.

One can obviously see from Eq. {§) that the ground
state energy is a periodic function of fluxes, and,
therefore, the oscillations of the charge and spin per-
sistent currents arise in the ring with the magnetic
and electric fluxes, respectively. It is seen that spin
persistent current induced by the electric flux oscil-
lates with period £ . the ordinary «metallic» period

of the oscillations. It is connected with the movement
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of virtual unbound electron excitations from the one
Fermi point to the another one, caused by the electric
flux. As to the charge persistent current oscillations,
induced by the magnetic flux, we can see that these
oscillations consist of two periods: the first one (®) is

connected with the movement of the virtual unbound
electron excitations, as for the spin persistent current
but the second, one (P,/2) arises from the movement

of the virtual pair excitations. ®,/2 — periodic oscil-

lations mean, obviously, that the charge of the pair is
" 2e. The situation is analogous to the Hubbard model
with the attraction between electrons, and looks like a
«toy» model for the type II superconductor. Note that
we are in 1D, and thus even for the ground state the
real order parameter for our system is equal to zero.

So, we face with the «strange» situation: the ther-
modynamical properties of the «bulk» electrons are as
of the free electron gas, but the mesoscopic response
reveals the effective electron-electron interaction,
caused by the coupling with single impurity. That
«stranges property s, naturally, the manifestation of
the Luttinger liquid nature of the 1D quantum im-
purity system [33]. For our case the persistent cur-
rents are connected with Haldane’s topological num-
bers J {331 ‘

The magnitudes of all types of the oscillations de-
pend strongly on the impurity level filling and the
magnetization of the system. If the unbound electrons
or pair excitations had gaps, the mesoscopic response
« L2 would not exist, and the persistent currents
would be of the order of exp (—L).

For the situation with the opposite sign of U,
U<0, {29], the ground state is described by two Di-
rac seas one for unbound electrons, and another, in-
stead of pairs, for the spinons. That is why the AB
period of charge persisient current oscillations in this
case is equal to @ , as it must be, and the AC oscilla-

|

tions contain, two harmonics. The first period, as in
the former case is equal to F , and is caused by the

unbounnd electron excitations. The second one, Fo/ 2,

is connected with the excitation of a spinon (with the
magnetic moment 2u). That situation is analogous to
the Hubbard model with the repulsion between the
electrons {14].

" In the Kondo limit, we naturally see that the AB
oscillations have only one period ®,, because the

«bulk» electrons are coupled to the impurity only with
the magnetic degrees of freedom, and the AC oscilla-
tions resemble the repuisive Hubbard model {14,28 ).
The charge persistent current is the same as is the
orbital magnetic moment of the total ring, so we could
see the «underscreened» or «overscreened» situation
for the system under consideration similarly the
situation for the multichannel Kondo problem [341.
But the calculation of the influence of the external
electromagnetic fluxes on the impurity is of higher

®Ou3vka Kuakux Temnepartyp, 1995, 1. 21, Ne 4

order in the 1/L effect and needs special considera-
tion.

The values of o(B) and p(Q) can be obtained from
the Refs. 31,32. One can solve the set of equations
(16)-(19) numerically, depending on the number of
unbound spins and the number of pairs in the system.
The simple analytic solutions we can obtain for the
nonmagnetic situation H=0, B=-w, p=0,
vy |, p= 0, where H is the magnetic ficld value. We
have for the symmetric case, where 2¢ 4=~ U, and

Q= £ =1, &,=(/)V2 £ =0, &=
= (1/2)"/2,
Thus, for this case we have only ®,/2 periodicity of

the charge persistent current, becausc the ground
staie is formed by the Dirac sea filled with clectron
pairs only. It is easy to see that the Fermi veleciiy of
the pairs is equal to 1 in this limit.

To conciude, in present paper we have studied the
topological effect of the fluxes of the electric and mag-
netic fields on the spin and charge persistent currents
in a metallic ring with an Anderson impurity. We have
shown that the electroa-impurity interaction caused
electron-clectron coupling of a Luttinger liquid na-
ture, which is the origin for the «<nonmetallic» oscilia-
tions of the persistent currents in the ring. Thesc
currents are connected with the topological virtual
excitations of the Dirac seas and are of the mesoscopic
scale L™ 2.
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