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We follow the step by step progression of events while approaching Curie temperature 7' from

below using *’Co substituent as microprobe in an emission Méssbauer study combined with resistivity

measurements. In the temperature range 033< T,/T.<1, the material consists of a mixture of

ferromagnetic and paramagnetic regions within the same matrix. An increase of the amount of

paramagnetic fraction is accompanied by a decrease in electron delocalization in the ferromagnetic

regions. At T = T, the electrons are localized to neighboring Mn* /Mn3* pairs only, in about 46% of

the paramagnetic species. The strength with which Mn atoms are bound to the neighbors also decreases
progressively and rather steeply in the range 0.65< T/T . = 1. Zero field resistivity, p,, follows linearly
with the amount of paramagnetic phase in the range 0.65<7/T . < 1 and still show metal-like behavior

up to 7/T . =1.03

PACS:76.80.+y

Substitution of La3* by Ca®* converts antiferro-
magnetic insulator LaMnOjy into the mixed valence
Mn3* /Mn** ferromagnetic metal which undergoes
transition into the paramagnetic semiconducting
state at T, . According to the double exchange
model [1], the probability of electron hopping be-
tween Mn3* and Mn** via 0% is controlled by
relative orientation of neighboring Mn spins and is
the highest when Mn ions are ordered ferromagneti-
cally. This accounts qualitatively for the correlation
between magnetic and transport properties in doped
manganites. The «colossal magnetoresistance» (CMR)
recently observed in this system [2-9] is the focus
of considerable attention both because of the poten-
tial applications for devices and the challenge to
fully understand the basic nature of the transition

and the associated CMR. The several orders of
magnitude decrease of resistivity in a few tesla
magnetic field near T suggests that there is a
healthy interplay between magnetic order, elec-
tronic behavior, lattice distortions, and elastic pro-
perties of the material. In a search for these correla-
tions the simultaneous macro- and microscopic
measurements performed on the same sample would
be very valuable. Emission Mossbauer spectroscopy
offers such a unique possibility.

Here we report the results of an emission
Mossbauer effect study, where only a few tens of
parts-per-million of Mn is substituted by °’Co with
minimal perturbation of the manganite system, in
conjuction with simultaneous resistivity measure-
ments. We follow the progressive enrichment of the
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ferromagnetic component in Mn** with decreasing
electron delocalization as we approach the T from
below. This is accompanied by a sharp decrease in
the binding of the Mn to its neighbors. To obtain
Méssbauer data, we diffused a couple of millicuries
of carrier-free ®’Co into a compacted pellet of
La, ¢Cay ;MnOg (sample 2, T, = 237 K) measuring
2.5x2.7%x12 mm by a two step thermal treat-
ment, viz. at 950 °C for 4-5 h followed by 6 h at
900 °C, both under O, flow. A gas flow cryostat
was modified to allow the four probe resistivity
measurements while collecting Mossbauer data.

The material was prepared by conventional solid
state reaction and characterized by x-ray diffraction
and magnetization measurements.

The temperature-dependent resistivity plot and
Méssbauer spectra of La,, Ca, 21\/[11(57C0)O3 at cor-
responding temperatures are shown in Fig 1. The six
line spectrum is characteristic of a magnetically
ordered material while a singlet or doublet (in the
case of non-zero electric field gradient on the lattice
site occupied by °7Co) are an indication of a para-
magnetic state. We found that even at 7/T, = 0.33
(not shown), the sample contains only 90% of
magnetic fraction, the rest is paramagnetic. The
presence of only a single symmetrical sextet with
relatively narrow line widths (similar to one shown
in Part I of this paper for sample I Fig. 4,b) shows
that the sample consists of a single phase, and that
the microprobe, °7Co, occupies the unique crystal-
lographic site of Mn. The ferromagnetic component
converts into the paramagnetic state rather gradu-
ally up to T /T = 0.85. Thereafter, there is a rapid
increase in the concentration of the paramagnetic
component till it becomes 100% at T~ = 237 K. The
coexistence of ferromagnetic and paramagnetic re-
gions within the same matrix distinguishes it from
conventional ferromagnetics [10] and could be re-
sponsible for its peculiar transport and magnetic
properties. For instance, a plot of the resistivity as
a function of the amount of ferromagnetic fraction
in the temperature range 0.65 < T,/T <1 is linear
(Fig. 2). Tt means that the current flows exclusively
through filamentary ferromagnetic regions sur-
rounded by paramagnetic inclusions in accord with
the recently proposed model [11]. The paramagnetic
phase present below T, may be a major source of
carrier scattering from 7,/T .= 0.6 to T .

The Curie temperature as determined by the
Méssbauer effect, i.e. the temperature at which the
sextet collapses completely, just corresponds to the
maximum of the derivative dp, /dT. It is notewor-
thy that the change from metal-like conductivity to
the thermally activated behavior is above the tran-
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sition into the paramagnetic state by 7 K (Fig. 1).
One can perhaps rationalize this observation in the
following fashion. At T, the static magnetic order
as seen by Mossbauer effect measurements vanishes.
However, the temperature-dependent line shapes
(i.e. broadening) of the sextet below T (Fig. 1)
are indicative of the presence of some dynamic
magnetic correlations in quasistatic magnetic re-
gions. Correlation between these spin fluctuations
could persist above T (with frequencies higher
than about 10"" s™! | which are above the limit of
Méossbauer effect time scale) which would permit
the probability of double exchange to be non-zero.
This would account for the metallic behavior up to

T/T. =1.03. Non-coincidence of T, and maxi-
mum of resistivity has been reported by several
researchers.

We also observe a decrease in the magnitude of
the chemical shift of the ferromagnetic species as a
function of temperature (Fig. 3). The chemical shift
is determined by the s-electron density on the
daughter nucleus °”Fe, which in turn is determined
primarily by the shielding from 3d-electron density
— the higher the shielding the smaller will be the
s-electron density and larger the magnitude of the
chemical shift. Taking into account the expected
negative thermal shift with increasing temperature
due to the second order Doppler effect [12], the
chemical shift () for the ferromagnetic component
clearly undergoes a very sharp anomalous decrease
in the range 0.65<T,/T. =1 (Fig. 3). This obser-
vation is very insightful. The ferromagnetic species
is progressively getting enriched in Mn** (Fe?").
One can infer that the Mn** ions are sharing the
delocalized electrons with less and less number of
Mn3* as T, is being approached.

The paramagnetic component above T consists
of two species (Fig. 4) with the following
parameters at room temperature. Species I.
0=0.44 mm/s, Area= 54%;  Species 1L
0=0.21 mm /s, Area = 46%. The chemical shift for
species T corresponds to daughter >7Fe3* (at Mn3*)
while that for species 1T corresponds approximately
half-way between that for>’Fe3* and 7Fe?*, assum-
ing 8 = 0 for °’Fe** at 300 K [13]. Therefore, in the
paramagnetic state, 46% of material consist of
Mn3* /Mn#* pairs with the electron shuttling be-
tween a pair, while in the remaining 54% of the
material there is no delocalization of electrons and
the species contains only Mn3*. The observation of
46% Mn** /Mn3* pairs by emission Mssbauer spec-
troscopy translates to the presence of 23% of Mn#*
because 57Co(°Fe) sitting in a Mn3* site and sha-
ring an electron with a Mn%* neighbor cannot be
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Fig. 1. The extent of ferromagnetic to paramagnetic state conversion and the change of resistivity in LaO.SCaO.2Mn(57C0)O3 as a
function of temperature: P, paramagnetic component; M, ferromagnetic component . For the sake of simplicity, the two paramag-
netic species (see text) have been approximated to a singlet without loss in accuracy in the computer analyses of Mossbauer spectra

recorded in a wide velocity range.

distinguished from a 57Co(°’Fe) situated in a Mn%*
site and sharing an electron with a Mn3* neighbor
if the exchange rate is faster than the reciprocal life
time of the excited state of the Mossbauer probe
(107 s7'). This also constitutes an elegant procedure
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for determining the concentration of holes in man-
ganites. Since 20% units of Mn** arise from Ca
substitution, the remaining presumably arise from
cation vacancies created by thermal treatment in
O, ambient [14]. We attribute the localization of
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Fig. 2. A plot of resistivity versus ferromagnetic fraction in the
temperature range 0.65 < 7,/T. <1 .
the electrons to Mn3* /Mn#* pairs to the distortions
of the Mn—O octahedra with respect to each other
introducing asymmetry. Our observations support
the small polaron model [10,15-20] in the sense
that the electrons are strictly localized between
Mn*#/Mn3* pairs above T .

The normalized total area under the spectrum is
plotted as a function of temperature in Fig 5. The
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Fig. 4 Decomposition of Mdossbauer  spectrum  of

LaO.SCaolen(WCO)O3 in paramagnetic state. Species T and II
correspond to two different valence states of the daughter 57Fe
(see text).
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Fig. 3. A plot of the center (chemical) shift of ferromagnetic

(M) species versus temperature for LaO_S(ZaO_ZMn(S7C0)O3 . The
solid line is a guide for the eyes.

area of the spectrum represents the recoil-free
Maossbauer events and is thus a measure of the
strength with which Mn is bound to its neighbors
(i.e. the Debye—Waller factor). There is a dramatic
drop of the area in the range 0.65 < T,/T, =1 and
a minimum is attained at T.. This clearly indicates
that the amplitude of vibration for Mn is pretty
large near T, . This can again arise from torsional
oscillations between Mn—O octahedra. The ferro-
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Fig. 5. A plot of normalized area under the Mdossbauer spec-
trum as a function of temperature. The solid line is a guide for
the eyes.
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magnetic metal to paramagnetic insulator transition
is accompanied by significant expansion ( = 13%) of
the lattice [21-24]. An anomalously large ampli-
tude of vibration for Mn (and Q) atoms around
T has been reported in [18,24,25] which was
predicted earlier [20].

The conversion to the paramagnetic state,
anomalous changes in chemical shift of the ferro-
magnetic component, and a decrease in the total
area of the spectrum, take place continuously in a
wide temperature range and not precipitously at a
well- defined transition temperature. The decrease
in density of states as determined by photoemission
studies [16,26] and density of holes by Hall effect
[27] for the TL.a—Ca—Mn—O system also show a
similar progressive change over a span of tempera-
tures. Perhaps these observations are indicative of
the first order transition or/and the intrinsically
heterogeneous nature of the doped oxide systems (a
property shared by the high temperature supercon-
ductors).

We observe almost zero quadrupole splitting for
the ferromagnetic state and small values
(<0.15 mm /s) for the two paramagnetic species.
The magnitude of quadrupole splitting depends on
the degree of deviation from spherical distribution
of the electron cloud (viz., electric field gradient)
around °’Fe nucleus. Therefore one would expect
that the Mn—O bond lengths should be nearly equal
in the ferromagnetic state. This rules out only the
static Jahn—Teller distortions and not the dynamic
ones [19,28]. On the other hand, the non-zero
quadrupole splittings (about 0.15 mm /s) for both
of the paramagnetic species are indicative of the fact
that the Mn—O bond lengths are unequal. It is
presumably due to a small Jahn—Teller distortion
static or dynamic [15,18,20,29]. More importantly,
the Mn—0O bond lengths would differ for each of the
paramagnetic species because of differing Mn va-
lence. This is borne out by the powder neutron
diffraction studies of Caignaert et al. [23] and Dai
et al. [24]. They observe that the Mn—O bond
lengths are nearly equal below T and that there is
a distribution of bond lengths in the paramagnetic
state. These observations are contrary to ones made
by Radaelli et al. [22].

In summary, moving along the py(7T) plot and
collecting Mossbauer spectra at specified tempera-
tures, we obtain an insight into the microscopic
nature of some transport and magnetic properties of
the La—Ca—Mn—-O system. The presence of para-
magnetic regions far below T is believed to be a
major source of carrier scattering from T,/T, = 0.6
to T, . Noncoincidence of T, and the peak of
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Py(T) is attributed to the spatial correlations of the
spin fluctuations in a narrow temperature range
above T, . We also get a good measure of the
different stages of the transition starting with com-
pletely delocalized electrons in the ferromagnetic
phase with Mn3* /Mn%* ratio of about 3.5. As T
approaches T’ from below, the ferromagnetic phase
is continually enriched in Mn*" with decreasing
extent of electron delocalization. Finally, at
T >T. , the electrons are localized to neighboring
Mn#*/Mn3* pairs only, in a considerable portion of
the paramagnetic species. We also found a minimum
of recoil-free fraction at T, . The Mn atoms are
undergoing larger mean square displacements in the
paramagnetic phase.
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