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Small-amplitude oscillations of magnetization
accompanying long-lived spin-precession in SHe-B
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Frequency spectrum of small-amplitude oscillations of magnetization against the background of

coherently precessing (phase-correlated) spin modes in superfluid 3He placed in a strong magnetic field

depends on the magnitude of spin polarization S and spin-orbit structure of dynamical ordered states.

Spectrum of these oscillations is calculated for unconventional precessing modes in He-B characterized

by S =S, /2, where S, is the value of S at equilibrium.

PACS: 67.57.Lm

The coherent dipole-dipole interaction between
nuclear magnetic moments in the superfluid phases
of liquid 3He defines (along with other symmetry-
breaking terms) the spin-orbit structure of the equi-
librium and dynamic (time-dependent) ordered
states of SHe-A and 3He-B.

In the presence of a static magnetic field
H, = Hog and a low-amplitude transverse rf field
of frequency w the stable and metastable (long-
lived) spin-orbit configurations are realized at the
minima of the thermodynamic potential

Fr=F+aS, (1)

which is constructed in the coordinate frame rotat-
ing with an angular velocity w = w2 (S denotes the
spin-density). In Eq. (1) F is the sum of the Zee-
man and the dipole-dipole energies, so that

F=-0,8S+Up,, (2)
where w, = u)og with the TLarmor frequency
w, = gH, . Since

F=(-w)S, +Up, (3)
in the absence of the first (spectroscopic) term (at
the Larmor resonance w = wo) the stationary spin-
orbit configurations (in the rotating coordinate

frame) are defined by the minima of Up .
For 3He-B

5 .
Up =15 X5@p /9XSP R =1/2,  (4)
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where X is the magnetic susceptibility; Qp is the
frequency of the longitudinal NMR; and the or-
thogonal matrix R describes the relative rotations
of the spin and orbital spaces:

R = RORMD-1 35)

Here R(®) and R() are the matrices of 3D rotations
of the spin and orbital degrees of freedom, respec-
tively. Parametrizing these rotations by the triples
of Euler angles (ag , B¢, Yg) and (o, , B, ,v,),
we find

Spfgzgz lﬁ%“ +5)(1+1)cos (a+y) +
1
+5 (1=s)1-1)cos(@-y)+

STTHATD) (osa+cosy),  (6)

where s, =cosBg, I, =cosf; , a
Y=Ys~ VY-

The absolute minimum of (4) is realized at
Sp R =1,/2. It occurs, in particular, for the nonpre-
cessing states with s, =1 and -1/4 <[ < 1. The
dynamic counterpart (a mirror image [, - s,) of
this set of equilibrium states is the Brinkman—Smith
(BS) spin-precessing mode with [ =1 and
-1/4 <5, < 1. In the BS mode the magnetization is
precessing exactly at the Larmor frequency w, and
the Leggett—Takagi (LT) relaxation mechanism is
completely switched off (S L= const).

=dag -0, , and



At w# ), where in the rotating coordinate
frame the action of the static magnetic field is
eliminated only partly, a new hierarchy of the
long-lived spin-precessing states is stabilized in
3He-B. These states do not correspond to the abso-
lute minimum of U, and the LT relaxation mecha-
nism is operative. Among them the most thoroughly
explored is the HPD state [1,2] generated at
w > @y, . In this situation the spectroscopic term in
(3) pushes the left boundary s, =-1,4 of the BS
state farther to the left, and the spin-precessing
states with /, = 1 and -1 <5, < —1/4 are formed at
the balance of the dipole-dipole and spectroscopic
forces. For the case where w exceeds w, only
slightly the spin-precession takes place at
s,= -1/4 and the LT relaxation is rather slow.
Due to the presence of the spectroscopic term, the
HPD transforms to the precessing two-domain con-
figuration in the presence of the magnetic field
gradient.

An effective way of analyzing other possible
long-lived spin-precessing states in SHe-B is to
consider the case of a strong magnetic field with
w, >> Qp . In this situation the dynamic variables
a and y, which appear in expression (4) for the
dipole-dipole potential, are naturally arranged as
the fast and slow linear combinations (on the long
time scale 1,/Qp). As a good starting approximation
one can discard the rapidly oscillating terms in U,
and deal with the average potential U, that con-
tains only slow variables: s, and [, and possibly
some slow combination of a and y. In this way, it is
easy to construct a proper first-order solution for
the coherently precessing spin-states and then to
explore small-amplitude oscillations of magnetiza-
tion [proportional to (Qp /. w0)2 << 1], superim-
posed on the «mean-field» solution.

When constructing the above-described «mean-
field» (average) picture, it should be realized that
the answer for UD depends crucially on the magni-
tude S = |S| of the spin-density of a particular pre-
cessing state. For the conventional case of .S close to
its equilibrium value S, = (X5 /g)H|, a slow angular
variable surviving the averaging procedure is
¢ = a + yand corresponding expression for UD was
extensively used in Ref. 3. The series of homogene-
ously precessing, metastable states different from
HPD were established as a result of establishing a
balance between UD , the spectroscopic term, and
the action of the finite-amplitude transverse rf field.

The new metastable spin-precessing states were
found in Ref. 4 for unconventional situations with
S=5,/2 (the HS state) and S =25, (the DS
state). In these cases (again for w, >> Qp)
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— 1 ' '
Uy = 10 Xp(@p /91 + 2522 + (1= (1 - ) +

+§?f(1”—’§§)’(’1’—’7§) A +1)(1+1)cosdl. (D

where the slow angular variable ¢ = o + 2y(2a +Y)
for the HS(DS) state. Considering the case of an
exact Larmor resonance (0w = uy) and noticing that
the stationary value ¢ =11, we see that there are
two  degenerate  spin-orbit  configurations:
(s,= 075, 1,= 0.3), and s, » [, . These metas-
table, coherently precessing, spin states are at the
minima of UD , not at the true minimum of an exact
dipole-dipole potential U, . For this reason the
HS(DS) states, as well as all metastable precessing
states considered in Ref. 3, are characterized by the
small-amplitude oscillations of the magnetization
against the background of the «mean-field> dynam-
ics. These oscillations are driven by the dipole-di-
pole torque, which is nonzero for the metastable
dynamic states. For them the LT relaxation is also
operative (as mentioned above, only for the HPD at
W= it is anomalously slow because of the close-
ness to the BS mode). In what follows we study the
frequency spectrum of the small-amplitude oscilla-
tions of the magnetization, accompanying the long-
lived (metastable) spin-precessing state in 3He-B
with § =5, /2 (HS mode). This question was ex-
plored recently by means of the computer simula-
tion [5]. Here we describe the results of an analytic
approach based on the self-consistent separation of
the fast and slow spin-dynamics appropriate to the
strong field case [6] (w, >> Qp).

Using two pairs of canonically conjugate vari-
ables (a, P) and (¢,S) with ¢ =a +2y and
P=S5, - 1+ S, we write the Leggett equations in a
dimensionless form

. O
a=—1+sa—f, P=—8if,
orP Ja
(8)
. o O
¢=2g5—1/2)+aa—f5, S=—2£if,
0 aSD G5l0]

where the time is measured in units of 1/w,,
(P, S) is measured in units of S,, and &f=
=Up /w, S, with € = % Qp /(,00)2 << 1. In order
to solve the system of equations (8) to the first
order in €, we use a new set of variables a, P, ,
and S according to the transformation

a=o+eu P S, ¢|a),
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0=0 +euy, S=5+eu (9)
with yet unknown functions u; of slow @, S, ¢)
and fast (a) variables. In what follows ¢ is a slow
variable (along with P and S) since we consider a
«resonating» regime with .S = % + €0.

Implying that a, P, S, and ¢ satisfy a set of
equations

L . o _

a =-1+e4,(P, S, 9), P =eA,P, S, 9),

0 0 (10)
¢ =¢(20 +A¢(F, S, 9), S=¢eA(P, 5,9,

we can easily obtain a set of equations for u;

a (11)
0
a¢=2w£+us|]—A¢, = 6f - A
§§ 0 a¢

Here the functions A; of the slow variables p, S,

and ¢ are found according to the condition for the

absence of secular terms in the solution of Egs. (11)

(lim [u;| < ). In this way it can be established that
ag=d 4=

oP- 7 da (12)

A¢=2mf+aSE,A —zaf
95 o’

where f and ug denote time-averaged parts of the

corresponding functions of the fast variable o

(without loss of generality it can be assumed that
all w; = 0). Isolating a rapidly oscillating part of the
dlpole dipole :_epergy f=f-7 and noticing that

;= (u; /00)a = -0u; /0a, from Egs. (11) we
find that
—— — — of —
,S, = - td y
ug( ¢ | ) 57 @
@35 510=(L . (13)
p da

—— — — of —
P, S, a)=2 | =da.
ug( ¢ | a) 5
Stationary values of the variables P, S, and ¢ are
found according to the equations

of _ of of
y == = O — = — . (14)
o ob s~ °
The first of these equations is satisfied identi-
cally since f is independent of a. The second one

shows that the stationary value ¢, = Tand from the
last one we see that

1 af
S = 7—a£ (15)

From the relation S, =P + 15 S we conclude
that the low-amplitude high-frequency oscillations
of S, and S are given by

&,=5,-3,=eu@),

(16)
&S, =8, §D = EuD(a) ,
where
u(a)—u ((X)+ ! u(C()
17)
ur(0) = ﬂ x 5 (u(0) — u,(@)s,) .

z

Now we can easily pass to S and S y components:

S, = FD cos o + a(uD(a) cos O — §D ua(a) sin Q) ,
(18)

Sy = FD sin a + a(uD(a) sin o + §D ua(a) cos ) .
In order to obtain the final results for &S, , &S,
and &S, we must construct, according to Egs. (13),
the oscillatory contributions u,(a), u,(a), and

uy(0). After some algebra, from Eqgs. (4), (6), and
(7) it can be shown that

fla) = . [(1 +5,)(1 + 1)* cos (o + §) + (1 = 5,)°(1 = 1,)* cos (3a = §)] +

8

+ %WT:_S-E)_G—:E) @1 +s )1 +1) gd;os o + cos

O
+(1-s)1-1) %os o + cos
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o - 3a + 60
q)+cos 2¢D+
O

Sa - ¢[00
+ cos (20 — ¢) + cos 5 q)D]]*'
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3 0 4
+Z(1 —sg)(1 —lg) %0520( + cos (0 — ) + g cos—
+(s, 1, -1/2) %1 +s,)(1 + 1) cos
O

L ——
+2 V(1 - 33)(1 —722) %os o + cos

Using this expression, after some lengthy calcu-
lations, we find

(@) =

3
=Z [a,(s,, I,) cos no + a,(S,, 1,) sin (n=")al ,
n=1

(20)
ug(a) =
3
=z [b,(s,, 1) cos no + b,y (s, 1) sin (n="0)al ,
n=1 (21)
and
— 1
U (a) = X
a 1 - sg

3
XZ[cn(sz , 1) sin no + cn_1/2(sz , 1,) cos (n="1)al,
n=1

(22)
where the coefficients a, b, and ¢ are given in the
Appendix.

According to Eqs. (16) and (18) we finally
arrive to the following answer for the small-ampli-
tude oscillating components &S, , 8S ., and 6Sy :

3
3S.(t) =¢ z [a, cos no + @,y sy SN (n="r)al ,
n=1 (23)
3
3S (1) = % € z [d®) cos (n+1)o + dgl_) cos (n—1)a +
n—1

+ df;_)% sin (n+Y2)a + dg'_)% sin (n—%2)a] ,

(24)
3
z [dg;f) sin (n+1)a - dg_) sin (n—1)a +

n=1

1

3S,(t) =5 €
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30 - ¢0
a-+¢_+§COS a2 ¢E+
+ 3a -
2¢+(1—SZ)(1—l2)cos 2¢+
a-6ém
5 - 19)

H

+ dg;'_)% cos (n—V2)a — dfi__)% cos (n+'2)al ,

(25)
where d®) =b + 1 .

Inspection of Eq. (23) shows that the spectrum
of longitudinal oscillations of magnetization super-
imposed on the HS precessing mode comprises high-
frequency harmonics with W= Wy, 20y, 3wy,
P Wy ¥ w, , and % W, . The same set of harmon-
ics governs the small-amplitude oscillations of
transversal components of the precessing magnetiza-
tion [see Eqs. (24) and (25), keeping in mind that
4§ = d), = 0],

It should be stressed that the coefficients
a(s, , 1) are symmetric with respect to the inter-
change s, - I, (see the Appendix), so that the
«mirrors precessing HS states found in Ref. 4 for
the case of a Larmor resonance (w = w,) are charac-
terized by identical longitudinal oscillations. In
contrast to this observation, the coefficients enter-
ing the expressions for &S, and &S, have no spin-or-
bit symmetry and measurement oz the spectrum of
transverse small-amplitude oscillations in the case
of HS mode at w = w, can discriminate between the
two above-mentioned degenerate spin-orbit states.
It can be checked that in the case of the precessing
mode T (s,= 0.75, I,= 0.3) the oscillations with
W= w, have the largest amplitude. Next are
contributions of w = (V2 W, , W,), which have about
four times smaller amplitudes. In the case of the
precessing mode 11 (s, = 0.3, [, = 0.75) the oscil-
lations with o =2 w, are again the strongest, but
now contributions of comparable amplitudes come
from w = (Y2 Wy » 20Y).

Away from the Larmor resonance (w # w,) the
states T and II are displaced from their initial
positions. In particular, as has been demonstrated in
Ref. 7, in the presence of sufficiently large negative
spectroscopic term ((w < @y)) the state I moves
toward a spin-orbit configuration s, = 1, [,= 0,
while the state II loses its stability. Expressions for
3S,, 85, , and 6Sy are especially simple for this HS
precessing state:
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3S,(t) = —€(cos o —2sina,/2),

3S () = % esina/2, (26)

85, (t) = % gcos a/2 .

The HS coherently precessing mode in the spin-
orbit configuration s,= 1, [,= 0 was recently
observed experimentally [8]. It has been identified
by means of application of a transverse 90° rf pulse,
after which the measurement of the amplitude of an
induction signal has allowed to establish the magni-
tude of the spin polarization of the precessing state.
It is certainly the most direct way to identify a
spin-precessing mode with S =S, /2 and s, = 1.
At the same time, the spectroscopy of small-am-
plitude oscillations of magnetization accompaning
phase-correlated spin-precessing states could serve
as an additional source of information about their
spin-orbit structure.

We would like to thank Prof. V. Dmitriev for
providing us with his recent experimental results
prior to publication.

Appendix

We give here the expressions for the coefficients
appearing in Egs. (23)-(25). We introduce the
transverse components s;= V1 =52 and /= V1 =72

a;=3s,s51, 15 —% (1+s)’ (1 +1)*,
! 2
ay = 4 36 lp” = st = s)lg (1= 1)1,
1
a3 =~ 15 (sp )%,
ay = -4(1 + sz)(1/2 —-s)(1 + ZZ)(1/2 - lz) ,
2
a5 = =3 st + )l (0 +1) -
= 2(1 - sz)(1/2 +s)(1 - lz)(1/2 +1)],

2
a5/2=§sD(1—lz)ZD(1—lz). (A1)

These coefficients have spin-orbit symmetry
(they are invariant at s, ~ [,). On the other hand,
the coefficients b and ¢ have no such symmetry:
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1

1
by =5 55314 =5 (1 +5)(1 +1)*] = 32 1

z'0%z

1
by =7 [2+s)1 =s)lg(1 - 1) =3sys, B,

1
by =5 sg (1 =s)(1 - 1)?,
by sy = =235, I, + 2572 = s,)(1 + L)(%2 = L)],
- 2 1
b3/2 =-3 (1 +s)(% - s (1 +1) +

+ 25y (o +s)t -)(A+ )T,

2
bsn=-5(=s)a+s)1=Dly;  (A2)

¢z SD% (1+s)(1 +1)% =35, zé@— 6(1 - 2531 L,
c, = % sys, - (1 -s) e +s)l(1-1),
c3 = —2bg,
¢y = AIB(L = 25D 1, +

+sq (L +4s)1 + )R- 1],

Cy 9 = % [sg (1 —4s )t = 1)(Ya+1) -
- (t+s)(2 -5 (1 + )],

Cs sy = 2b5 5 - (A3)
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