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This paper presents a brief review of the electron properties in two-dimensional systems which contain zero-range
scatterers and which are subjected 10 a magnetic field. The electron spectrum is described for a periodic arrangement
of point scatterers and rational magnetic flux per unit cell. Delocalized states on the Landau levels are constructed for
the case of positional disorder. The electron localization in a one-diménsional disordered set of scatterers is studied.

Application to the study of electron transmission through quantum dots and ballistic channels is reviewed.
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1. Introduction

Fifty years ago llya Mikhailovich Lifshits published
a paper, entitled «On the Theory of Degenerate
Regular Perturbations. 1. Discrete Spectrum», in the
Journal of Experimental and Theoretical Physics.
This paper was a starting point of a series of papers in
which I. M. Lifshits developed his famous theory of
degenerate perturbations and successfully used it in
studying the vibrations of disordered lattices. The
theory of degenerate perturbations was found to be a
very effective tool for investigation of the local modes
- that appear outside of an initial spectrum. I. M. Lif-
shits emphasized that an «important class of pertur-
bations, which can be reduced to the form of a
degenerate perturbation, corresponds to local pertur-
bations with a very short ranges. For an electron
described by the Schrodinger equation, the local per-
turbation corresponds to a zero range or point poten-
tial,which was first introduced by E. Fermi [2,3 ] for
three dimensional (3D) systems. Today the point
potential model is one of the very popular models in
solid state physics and nuclear physics (see, e.g., the
monographs in Ref. 4 and 5§ and the more recent
mathematical review papers {[6,7]). This model is
especially useful for studying the electronic proper-
ties of 2D systems in a magnetic field. These systems
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are ideal objects for application of the local perturba-
tion theory because of a very rarefied initial spectrum.
It consists of a zero measure set of the infinitely
degenerate, discrete Landau levels [8,9]) that leave
empty almost all of the energy axis for the new states
which occure as a result of degenerate perturbation
and which are described by the Lifshits theory (see -
Egs. (2) and (3) below).

This paper is actually a mini-review dealing with
the electron properties of 2D systems with point
potentials and magnetic field. In Sec. 2 we describe
the main points of the Lifshits theory of degenerate
perturbations in the modern formulation, the defini-
tion of a point potential, and modification of the main
equations of the degenerate perturbation theory for
the case of an glectroh moving in an external field and
in a field of a set of point potentials. In Sec. 3 we recall
the well-known basic results concerning electron
dynamics in-the presence of a magnetic field, obtain

- the scattering amplitude of a point potential in a mag-

netic field, and describe qualitatively the structure of
electron Spectrum in a magnetic field and in a field of

. asingle point potential and of a set of point potentials.

The Bloch-type electron eigenstates in a field of an
ordered set of point potentials and in a so-called ra-
tional magnetic field are described in Sec. 4, in which
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the dispersion laws and energy-flux diagram
(Hofstadter-type butterfly [10] are obtained. Two-
dimensional systems containing a disordered set of
point potentials are considered in Sec. 5. Here we
describe the delocalized states on the Landau levels
(Subsec. 5.1), the density of states (DOS) for some of
the exactly solvable models (Subsec. 5.2), and the
electron localization in the field of a one-dimensional-
ly disordered set of point poteniials (Subsec. 5.3). In
Sec. 6 we deal with the application of point potentials
to the theory of mesoscopic objects such as quantum
dots (Subsec. 6.1) and ballistic conducting channels
(Subsec. 6.2). In Sec. 7 we give a brief list of some of

the unsolved problems and conclude this mini-review.

2. Degenerate perturbations and point potentials

Let us consider a quantum system described by a
Hamiltonian H + V. The degenerate perturbation V
is defined as [1]

V=§ levj )(v/.| > M

where {|v i )} is a set of orthogonal and normalized

states. The perturbed cigenstates |y) with eigen-
energies E lying outside the initial spectrum of the
unperturbed Hamiltonian H are the sums of scattered
waves

[¥) = 2 WJG(E)IUJ‘> ;= Vj(”j lv),
o

)
GE)=E-1)".

As was shown in Ref. 1, the eigenenergies E and the
corresponding sets of coefficients 7; can be found

from the set of equations

z AfEy;=0. )
J .
Here

o, ’
Aij(E) = _TT(‘EL') -(1- aij)G,-j(E) )

)
Gij(E) = (vj IG(E)'U!'> ’
where Tj(E) is the scattering amplitude
L__1_sy 3)
B~ v, D

Equations (2) and (3) are the principal ingredients in
the Lifshits theory of local perturbations. In the Rus-
sian scientific literature they are often called the Lif-
shits equations (see, e.g., Ref. 11). The main point in
this theory is the expression of the perturbation in a
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form (1). Because of this form, the perturbation (1) is
the sum of the projection operators, such that the j th
operator projects the state |¥) onto a number # ; [see
Eq. (2) ]. Thus the perturbed states (2) lying outside
the initial spectrum can be mapped onto the discrete
set of coefficients 7 I which map the initial

Schrodinger equation (H + V) |y)= E|y) on the Lif-
shits equations (3). Note that these equations, in spite
of their visible simplicity, are complex equaction, be-
cause all their coefficients contain the spectral pa-
rameter (unknown eigenenergy E) in a complicated,
nonlinear way.

The Green’s operator G\ (E) = (E — HV)"l of the
perturbed Hamiltonian Hy, = H + V can be expres-

sed in terms of the Green’s operator G(E) of the un-
perturbed Hamiltonian and the same matrix A(E) (4)

G, = G+EG|vi)(A_l>ij(vj 6. ®
i ' : : .

Using expression (5) for the scattering amplitude, we
can rewrite the matrix A(E) [Eq. (4) ]in the form

AE)=A+QE),
where
d..
A.=—L,
iy I/J
and
QE) = ~Gy(B). M

The diagonal matrix A depends on the perturbation
(1) only, while the matrix Q(E) reflects the properties
of the unperturbed Hamiltonian H.

Let us consider now a single electron which is
described by the Schrodinger equation with an unper-
turbed Hamiltonian A which includes the interaction
with an external (e.g., magnetic) field. In this case an
important class of perturbations, which can be re-
duced to the form of degenerate pecturbations, i.e.
which can be described by equations such as Eqgs. (1)—
(6), is formed by zero-range limits of finite-range
local potentials, which we call point potentials. A 2D
point potential can be treated as an attractive zero-
range potential with a single bound state with a fixed
eigenenergy —E; . There are several ways to intro-

duce such a potential. The first one is based on the
idea [12] of regarding a point potential as a delta-
function with an infinitely small amplitude. More
precisely, the Fourier image of a point potential must
be equal to some constant within a circle centered at
the origin, and zero otherwise. The corresponding
limiting procedure (the constant tends to zero and the
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radius tends to infinity, keeping the scattering data
fixed) should then be used. The second approach [5]
- is based on the Krein theory of self-adjoint exten-
sions [13 ]. Finally, a point potential can be described
~ also with the help of a direct zero-range limit in coor-
dinate space {14}, The resulting 2D point potential
represents a certain generalized function which is less
singular than the 2D Dirac delta function. The char-
acter of this singularity is attributable to the logarith-
mic singularity of the 2D Green’s function in coor-
dinate representation with coinciding arguments. A
detailed exposition of a general theory and numerous
applications of point potentials in all three dimensions
can be found in Refs. 4 and 5.

The main equations of degenerate perturbations
theory, (2)—(4), and (6), remain valid for the case of
an electron moving in a field of a point potential.
However, some minor modifications must be made
(see details, e.g., in Ref. 15). First, instead of the set
of states |v j) we must now use the set of states IrJ.)

localized at the points {rj}, where the point potentials

are placed. We can therefore write the scattered wave
[Eq. (2) ] with the eigenenergy E as follows:

¥() = X 061 E), ®
]

where G(r, r'; E) = (r|G(E)|r') is the Green’s func-
tion of the unperturbed Hamiltonian in coordinate
representation. Second, the scattering amplitude in
this case is -

T,(% =lim [Gy(r,r's = Ey) = G, s )| =

r,r' -»'rl.
—_ g . _ _ (8 .
=Gy’ (rj, ;3 — Ep) G (t;, ;3 E). 9

- Here G{f, r'; E) is the Green’s function of the free
Hamiltonian H, = —A (A is the 2D Laplace opera-
tor), Ebj is the binding energy of the point potential
placed at the point I, and finally G’eg(rj ;5 E) de-

notes the regular part of the Green’s function. The
scattering amplitude (9), together with an obvious

equality
Gij(E) = G'“"?(rl- 1155 E) 10

(in fact, only the diagonal elements are needed in the
regularization procedure), defines the matrices A(E) in
Eq. (4), and Q(E) in Eq. (7). The latter matrix Q in this
case is called the Krein matrix [6,7,13]. The diagonal
matrix A has the elements 6ij(;{)"'5(rj +T;; —E,). Equa-
tion (6) for the perturbed Green’s: function has the
form
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Gr, T E)y=G(r,r'; E) +
4 36E BATYGE, B, dD
: [4) .

Thus, Egs. (3), (4), and (8)~(11) give a complete
description of the electron spectral properties in a

" system with point potentials and an external field.
. The central role in such a description is played by the

matrix A(E): the zeros of its determinant are the
eigenenergies E, of the perturbed Hamiltonian

H + V, its eigenvectors {r] /(En)}’ which correspond to

the zero eigenvalue (3), determine the wave functions
(8) with eigenenergies lying outside the spectrum of
the unperturbed Hamiltonian H, and finally the in-
verse matrix (A)~! determines the Green’s function
(11) of the perturbed system H + V.

3. Combination of point potentials and magnetic
field .

The motioh of electron with charge —e and mass
M in a 2D system, subject to a perpendicular
magnetic field B = (0, 0, —B), is described by the

Schrodinger equation

—(V + 2mipA)p(r) = Ey(r). (12)

We use the set of units, where # = 2M = 1 and all the
lengths are measured in some scale d. In such units all
quantities are dimensionless. In Eq. (12) A isavector
potential and ¢ is dimensionless flux

@
P =73, ® = Bd® (13)

(@, = hc/e are the normal flux quanta). In what fol-
lows we choose the Landau gauge of a vector potential

A=(y,0,0).

The spectrum of the system consists of a set of the
Landau levels [8,9]

E, = (n+%)EL, n=0,1,.., (4

' where E; = 4nyp is the distance between Landau

levels. The normalized eigenfunctions are the Landau
functions

Ln,k(xg y) - (2n+ 1”3/2’!!1)—1/2 X

2
o a—ikx=12(y/ 1~k

x e~ V2O gy - Ry, AS)
n=0,1,.., —o<k<ow,

(I = (2np)~1/2is dimensionless magnetic length, and

23



S. Gredeskul, Y. Avishai, and M. Ya. Azbel’

H, is the Hermite polynomial [16 ]). Another possible
set of eigenfunctions consists of the states Ln_ m(x/ ' M

which coincide with the gauge transformed states
with a fixed angular momentum m in the symmetric
gauge. For a fixed number n of the Landau level the
angular momentum m is an integer and satisfies the
inequality — « < m =< n.The Green’s function in coor-
dinate representation is

(16)
where

g E)=FE =W, 06, &= wr’(.l .,

Here the gamma I' and Whittaker W functions [16]
are used and a is a new energy parameter

1, E
a=—5+%.
2 E; |
The scattering amplitude of a point potential in a
magnetic field in accordance with Egs. (9) and (16) is

1 1 E;
T/‘( =- '4‘,;(1/)(—“) +In Fb] ’ (18)

where y(~—a) is the digamma function [16 ]. This ex-
pression, which was obtained with the help of each
one of the three approaches mentioned above
{14,15,17-201, describes now an electron spectrum
in a magnetic field and in a field of a single point
potential. A point potential scatters only s-states [21].
Therefore, the unperturbed wave functions
Ln' m(x » ¥), which correspond in the symmetric gauge

to the states with a fixed nonzero angular momentum
m, vanish at the origin and therefore are not modified

y
5
4

[

—1 L 1 1 A V.
0 5 10 15 20 25 30
X

Fig. 1. The s-levels shifted by a single point potential in a magnetic
field in the scale y = E/E; = a+ 1/2 for the positive energies;

y= E/Eb for the negative energies; x = EL/Eb . Thus, y=—1

corresponds to a bound state without a magnetic field and
y=n+ 1/2 ,n 2 0 corresponds to the nth Landau level.
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by a point potential. They correspond to the Landau
eigenenergies EnL which are zeros of the scattering

amplitude (i.e., poles of the digamma function in
Eq. (18)). New eigenenergies E, , which correspond

to the scattered s-states, are determined by the poles
of the scattering amplitude, Eq. (18). Because of the
attractive character of a point potential, the values E,,

are shifted down with respect to the Landau levels.
Each perturbed s-wave function y (r) with eigenener-

gy E, coincide with the unperturbed Green’s function

' G(r, 0; E,) (16) and therefore has a logarithmic sin-

gularity at the origin. The magnetic field dependence
of the lowest five shifted eigenenergies is shown [15]
in Fig. 1.

Such a picture of the spectrum perturbed by a single
point potential, is valid in the ultimate zero-range
limit only. The finiteness of the potential radius,
p # 0, leads to an additional shift of the eigenenergy
E, and to an additional splitting of the Landau level

E,; [22]. For acylindrically symmetric potential the

states can be classified with respect to the angular
momentum m, which they would have in the sym-
metric gauge. The corresponding shifted eigenener-
gies En’ m 40 not depend on the sign of the momentum

m,

= E, = Eyp® (0/D2™ /|10 0®Ep| .

en,m

and therefore the eigenenergies E, with |m| s n,

remain twofold degenerated [23 ]. Note that the finite
radius of the potential leads not only to the energy
shift, but also modifies the eigenfunctions with
m = 0, so that their intermediate asymptotic relations

contain terms proportional to r~ '™/,
21m!
im . "m ,
1/}m(r)z"m + Imi p<r,
. r

with r,, « p/| In (02Ep) | 2'™' (Ref. 24).

The main qualitative features of the electron spect-
rum in a magnetic field and in a field of a set of point
potentials can be established solely with the help of
the fact that the radius of a point potential equals
zero. Indeed, consider an electron moving in a field of
a set of zero-range potentials which are placed at the
points {rj} and let d be the averaged distance between

scatterers (in standard dimensional variables). If the
electron wave function vanishes at a point where a
scatterer is placed, the electron does not «feel» this
scatterer. Therefore, if one can construct a linear com-
bination y(r) of Landau functions (15) with a fixed
Landau level number n, which vanishes at all points

Fizika Nizkikh Temperatur, 1997, v. 23, No 1
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{rj}, then this combination will be an exact ei-

genfunction of an electron in the presence of this set of
point potentials with the eigenenergy E,; [Eq. (14) ],
Refs. 22, 25.

To determine whether such a combination exists,
recall that the number of states per scatterer per Lan-

dau level for a given density of scatterers equals ex-

actly the dimensionless flux ¢ [Eq. (13)]. On the
other hand, we have exactly one condition ¢(r) =0
per scatterer per Landau level which the wave func-
tion must satisfy. If the magnetic field B is sufficiently
strong, ¢ > 1, then the condition w(rj) =0 can be

satisfied at all points {rj}. This means that only one

eigenstate per single scatterer is shifted from each
Landau level. The other ¢ — 1 states remain on the
Landau level (22, 25 1. In a small enough field, ¢ <1,
all of the states are shifted from the Landau level.
Thus the electron spectrum is naturally divided
into two components. The first component consists of
~ the eigenvalues lying outside the Landau levels and is
described by the Lifshits equations (3). This compo-
nent exists in an arbitrary magnetic field. In dis-
ordered systems the corresponding eigenstates are
localized. (In a recent paper [26 ] this statement was
rigorously proved for a model reduced to the lowest
Landau level). The number of these states per point
potential per Landau level equals unity for a strong
field, ¢ > 1, and equals ¢ in the oppositecase ¢ < 1. In
the periodic case for the rational flux ¢ = Q,/Q per

unit cell with area d2, these states are Bloch type. In
complete accordance with the group theory predic-
tions, [27,28] they form min{Q1 , Q} dispersive sub-
bands below each Landau level with the number of
states per point potential equal 07! per subband
[17,29,30 ). Each of these subbands in turn is Q-fold
degenerate. :

The second component consists of the Landau
levels themselves. This component exists only in a
sufficiently strong magnetic field ¢ > 1. The states
that realize this component are linear combinations of
the Landau functions with a fixed number of levels,
which vanish at all points where the point potentials
are located. For a spatially uniform (on the average)
set of point potentials these states could always be
chosen to be delocalized. Indeed, if these states are
chosen to be localized, then their localization centers
are uniformly distributed. On the other hand, since
their eigenenergies are the same, we can rearrange
them to be delocalized states [22]. The density of
these states is

Pong® =P -1 X 8E-E,D. (19
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4. Bloch states outside the Landau levels

Let us now consider a set of identical pdint poten-
tials with binding energy E, and assume that the posi-

tions r form (for simplicity) a square lattice with a
unit lattice constant. Thus, = (m o 1 j) with integers
m;n; This system represents a particular case of a

2D periodic system in a magnetic field. In an irration-
al magnetic field ¢ the spectrum of the system is of the
devil-staircase type {31], while for a rational field
¢ = Q,/Q the spectrum is of a Bloch-type [27,28,31].

In this case two components T(l 0) and T(o o of the
magnetic translation operator {27 ]

(To)(r) = e ¢ A®yr 4+ R)

(A is the vector potential) commute with one another
and with the perturbed Hamiltonian H + V. There-
fore, the electron wave functions can be choosen as
eigenfunctions of all translation operators Tp with

R=(m,Qn) (m and n are integers), with eigen-
values ¢'98, The quasimomentum vector q = (g,,99

is defined in a rectangle 0<gq, , Qg, < 2 (the mag-
netic Brillouin zone) and the eigenfunctions zpq(r)
bave Bloch-like form

= iqr
o) = () e
with quasi-Bloch amplitudes
ug(r + R) = u(r) e ~2Hra®),

Nevertheless even for rational fluxes the spectrum
has a very complicated fractal structure (in spite of
simple Bloch-like wave functions as solutions) which
is defined by the arithmetical nature of the flux ¢
[31,101.

For a field which corresponds to a rational flux, the
point character of the periodic potential enables one
to study the spectrum of the system in more detail.
The first results were obtained in Refs. 7, 17, 29, and
30. Using the symmetry of the problem, the authors
expanded the Hamiltonian of the system into a direct
integral over possible values of quasi-momenta q and
studied the discrete spectra corresponding to each
sub-Hamiltonian with a fixed q. An exact expression
for the Green’s function of the system was obtained
and analized for an arbitrary rational flux ¢. This
enabled the authors to establish, on the mathematical
level of rigor, the main qualitative properties of the
spectrum, which were mentioned at the end of the last
section.

The next step was carried out in Refs.19, 20, and
32, where the Lifshits equations (3) in a magnetic
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field were obtained and studied. Here the symmetry

-of the equations (3) (after mapping) was used. The
matrix (A), . , Eq. (4), depends only on the dif-
ference m — m’. Therefore, the mapped wave fun-
ctionn, =17, , (2) can be found in the form

myn =€ 1", 20
with § n Satisfying a one-dimensional difference equa-
tion

In (E /E,) K
—_—f =>»F, . 2n
r(_a) 'lo n=Z—°° no»'l n
Here

o Z F(gm,n—no) e Mlaytap(ningl
m=—o

where F(0) = —y(—a)/T(—a), and F(§) for £ = 0 is

defined by Eq. (17) with §, = zp(m? + n?). Equa-

tion (21) is used below in Subsec. 5.3. Further, the

matrix (A)z';l" is invariant with respect to a simul-

Fry

taneous shiftn »n + Q, n’ » n’ + Q. This results in
the final Bloch form of a mapped wave function
Tmn=© & m+q2n)c(n)

with the Q-periodic discrete Bloch amplitudes c(n) =
= c¢(n + Q), which satisfy the equations [19,20,32]

n(E/E) &
o 7)) —”EOSMC(/J), 0<A,u<Q -(12 .

The coefficients in this equation are

-4

Slﬂ = 2 F(Em,NQ+,u—-).) x

Nm=—ow

% g {may+ (NQ+u—-2)gy) + imxINQ+u+410,/Q  (23)

In each energy interval between adjacent Landau
levels equation (22) has, for a fixed q, exactly Q solu-
tions. For a strong field Q, > Q these solutions deter-

mine Q dispersion laws E(q) , which correspond to Q
sets of coefficients nﬁ,‘zn(q) ,i=0,..,Q—1. These

coefficients, together with Eq.(2), determine Q dis-
persive subbands, which accumulate exactly one state
per scatterer per Landau level. Some of the dispersion
surfaces are demonstrated in Fig.2 [33].

. For a weak magnetic field Q; <Q Eq.(22) can be

reduced to a finite set of Q; equation [34], which
determine Q, dispersive subbands E(q),
i=0,..,Q, — 1. The other Q — Q, nontrivial solu-

26

Fig. 2. The dispersion relations ay(q), i = 1,2,3 of the spectrum for

flux ¢ = 5/3 describing three subbands which are situated between
the first two Landau levels.

tions 7 (q),i=Q,,..,Q— 1 of Eq. (22), when
substituted into Eq.(2), lead to the wave functions
1/;(’3(1') which are identically equal to zero [35]. All
these results are in complete agreement with the
qualitative picture of the spectrum described in the
previous section.
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Equation (22) is very complicated even for a nu-
merical solution because, as was mentioned above, it

is not a standard eigenvalue equation: the energy pa-

rameter a appears on both sides of this equation in a
nonlinear way. Therefore, let us first discuss dif-
ferent approximate methods of the solution. The dis-
persive bands are the result of spreading of a single
scatterer levels discussed in the last section. In the
limiting cases of a very strong or very weak scatterer,
when the parameter |In (E;/E,)| is large, these

levels are close to the initial Landau levels. In this .

case one can substitute E = E,; on the right side of
Eq. (22) and linearize the left side of this equation
with respect to the difference E — E,; . Such a proce-
dure significantly simplifies the solution of Eg. (22),
reducing it to a standart eigenvalue problem. In
Ref. 36, where this approximate sheme was proposed,

the linearized version of Eq. (22) was solved numeri--

cally for the energy region lying between the zeroth
and the fourth Landau levels and for rational fluxes
with denominators Q@ < 9. All the corresponding dis-
persion relations were obtained and the energy—flux
diagram was constructed. Calculations in a weak
magnetic field confirmed the existence of Q, disper-

sive subbands. Numerical results obtained in Ref. 36
indicated that for some rational values of the mag-
netic field dispersive subbands touch the parent Lan-
dau level at some special points q. The condition for
touching the nth Landau level is ¢ < n+ 1. The
touching of a given Landau level is evidently related
to the symmetry nature of the problem and is not
related to the strength of the point potential. Note
also that the closer is the energy to the Landau level,

the more exact is the approximation applied, so we -

maintain that numerical results of Ref. 36 concerning

this touching are exact. These statements are also -

used below in subsec. 5.3.

Another approximation can be applied in the strong
field limit. Consider Eq.(21) near the nth Landau
lIevel. If the Larmor radius is larger than the lattice
constant, i.e.,

Te>n, . 24
then, because of an exponential decrease of the Whit-
taker function [16], one should account only for the
nearest neighbors in this equation. Neglecting cou-

pling with non-nearest neighbors, we obtain the well-
known Harper equation [37]

Eper + 8y + 2, c08 2mnp + q) =¢f,, (25)

where
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Fig. 3. The energy-flux diagram between the first two Landau
levels, 0sa<1, for the rational fluxes 0<¢<3 with
denominators up to 9: 0 < p < 2, where the exact equations are used
(a); 2<¢ <3, where the strong-field approximation (the Harper
equation) is used; only diagonal values of the quasi-wave vector
q=xat(1/Q, 1),0< <1, are accounted for (5).

___ Va_ y¥(-a) +In(E//E) «=mp
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T Winrad® 1D o6
and the single-valued branches of the gamma- and
digamma- functions, which correspond to the vicinity
of the nth Landau level, are chosen.

It is interesting to note that Harper equation ap-
peared for the first time in the context of electron
theory of metals in the opposite limiting case. For a
weak magnetic field one can start from the dispersion
law E(p) of the system without a magnetic field, and
use the Peierls substitution, which replaces the quasi-
momentum p by the operator [ (A/i)V — (e/c)A]
{38 ]. Then the strong-coupling approximation imme-
diately leads to the Harper equation [39 ].

Substituting into Eq. (25) §, = c(n, q) exp (ing,)
with the Q-periodic functions c¢(n), we obtain in the
general case Q = 3 (the cases Q = 1,2 are trivial) the
following difference second-order equation:

€
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exp (iQg,) ¢ (n +1,q) +exp(—iQg,)c(n—1,q) +'
+2¢ (n, q) cos (2rnp + ) = ec (n, q)-

Thus, in the «e» scale the dispersion laws £,(q) and
the eigenvectors c¢,(n , q) corresponding to the spect-

ral region (24) are universal (within the accuracy of
the approximation) in the sense that they do not
depend either on the Landau level number or on the

integer part of the dimensionless flux ¢ {40]. The

~ integer part of the flux and the concrete position of
the eigenenergy between Landau levels enter when
one restores the dispersion function EJ(q) from

Eq. (26) in the natural energy scale.
~ Detailed numerical calculations carried out in Refs. 33
and 40 show that the results of this strong-field ap-
. proximation are very close to those obtained from the
exact equations (22) for all possible values of q except
those corresponding to the touching of the Landau
level. This is quite natural since touching is an exact
one, which cannot be captured by such an approxima-

tion. On the contrary, the approximation discussed in

the previous paragraph, becomes exact in the nearest

. neighborhood of the Landau level. The numerical re-
sults obtained with the help of the latter approxima-

" tion completely coincide in these neighborhoods with
the exact ones. In turn, such an approximation fails
-far away from the Landau levels. Therefore, to obtain
correct results one has to use different approxima-
tions in different regions of the (E , ¢) plane. The part
of the energy-flux diagram lying between the zeroth
and the first Landau levels is shown in Fig. 3.

5. Disordered set of point potentials

. We now move on and discuss systems containing a
disordered set of point potentials. This disorder can
be realized with random positions or strengths of
point potentials. Below we will discuss some features
of the electron spectrum in such systems: disorder,

~independent extended states (subsec. 5.1), pecu-’

liarities of the DOS (subsec. 5.2), localization pro-

perties of a 2D system with 1D disorder (subsec. 3.3).

J.1.Extended states on the Landau levels

As was mentioned at the end of the previous
section, our goal here is to construct a linear
combination of Landau functions (15) with a fixed
level number n, which vanish on a given set of points
(where the point potentials are located). We begin by
studying the states on the lowest Landau level E;

An arbitrary linear combination of Landau functions
L, , has the form

28 -

o

Yo(r) = f L, (0 (k)dk . @n

—

Evidently, this integral in equation (27). can be
written as [17,41,42]

Yo%, 3) = exp(=y*/2P)F(2) , (28)

where z = x + iy. The function Fy(z) is defined by

o

Fy(2) = f exp (—ikz — K}/ 2)fy(k)dk .

-0

If this integral converges, then it defines an entire
function [43 ] of the complex variable z = x + iy. Each
entire function is characterized by its order and type.
If the modulus of an entire function grows at infinity
as exp (r]z|"), then this function is of order r and of
type © (see exact definition in Ref. 43). We do not, in
fact, need the Fourier coefficients fo(k), since any

entire function Fy(z) which, when substituted into
Eq.(27), makes y(x, ) vanish on the sites of the

impurities will do. Therefore it is sufficient to
construct an entire function F(z), which vanishes at

all points Z where the point potentials are located. To
this end, let us introduce the Weierstrass product that
pertains to the complex sequence {zj} [17,41,42]. For
a constant density of impurities, the sequence of
complex points {zj is of genus 2 (i.e., the sum of the’
inverse squares 1/ |z j| 2 converges), and hence (assu-

ming there is no scatterer at the origin) the Weierstrass
product

2
w(z) =[] (1-%) exp (—-Z—+ —2—2) (29)
j ( z/> Z] 22]
is well defined and defines an entire function of order
r = 2. If the distribution of point potentials satisfies
some uniformity condition (Lindelof criterion [43]),
then W(z) is also of finite type 7. To control the rate of
growth of y,(x , y) on the real axis, we multiply W(z)
2

by an exponent ¢ with s>7. We thus obtain an
entire function

R .
Fyz) = ¢ % W(2) 30)

on the order of 2 and of type less equal than 7 + s
which falls off with [x| as a Gaussian. Following
Eq. (28), it can be easily verified that if the magnetic
field is strong enough, i.e.,
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% >s+71,
the function y(x, y) also will fall off as a Gaussian
"along the imaginary axis. This implies the Gaussian
falloff of the wave function at infinity. Hence y(x, y)
[Eq.(28) ] with F(z) [Eq.(30) ]is an acceptable wave

function.
To proceed further, we shall consider the simplest

site disorder case in which the point potentials with

random strengths are located at the sites of a square
lattice with constant 1. In this case the Weierstrass
product W(z) in Eq. (30) must be replaced by the
Weierstrass o-function

o(z) = zW(2),
where the points z in Eq. (29) are all the sites of a

square lattice (except the origin). Substituting in-
stead of the Weierstrass o-function its expression in
terms of the Jacobi 6, -function [16 }and using the fact

that the type 7 of the o-function equals /2 [43 ], we
obtain [17,41,42] :

Yo(r) = exp (/)6 (nz2) . a1

Further study shows that if the magnetic field is
strong enough ¢ = 1, then this function represents an
exact wave function with eigenenergy E ;. In the case

¢ = 1, this wave function is delocalized in both direc-
tions, but it decreases with |y| if ¢ > 1. The wave
function (31) is regular (despite the singular nature
of the point potential in its limiting form) and is inde-
pendent of the strength of the disorder. The lattice
symmetry and gauge invariance allow one to con-
struct more general wave functions which are delocal-
ized in both directions for an arbitrary field which
satisfy the condition ¢ = 1 [44]. The simplest ex-
ample is given by the formula

‘I’glq)(x, y) = 2 exp (qu - ’flzz) Yo, y=7Y).
Y 32)
This is a quasi-Bloch wave function with respect to y,
and an extended function of x. (By the term quasi-
Bloch we mean that it has an x-dependent wave num-
ber equal to ¢ — x/2, in which ¢ is a Bloch-type wave
number with —r < ¢ < 7.
This approach can be generalized to an arbitrary
index n of the Landau level. In general, the integral in
Eq. (27) can be written as follows [44 |:
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’

2
¥,(x,3) = exp (— fz—] {H,, [-‘f - u%] F,,(z)}

z=x+iy

where in the expansion of the differential operator

H, B - z‘lg—z] :
y is assumed to be a constant (independent of z).
Unfortunately, here it is not so simple to construct an
appropriate analog of the wave function (31) or (32),
because of an indirect relation between the point
potential positions and the zeros of the entire function
F,(2). For example, it is sufficient to choose F,(z) in

the last equation as

F,(2) = [Fo(z)]

The resulting function ¥,(x, ) again vanishes at all

n+1

points z; , but it represents a true wave function for

essentially higher fields. For the site disorder case
(the square lattice considered above), the function
¥,(x, y) does not grow at infinity when ¢ 2 n +1

(Ref. 44), while the true wave functions exist in a
weaker field ¢ = 1.

5.2, Density of states

The condensation of states on the Landau levels, in
a strong field ¢ > 1, which was predicted earlier [25],
implies that the most singular part of the DOS has the
form (19) (recall that we fixed a finite-dimensional
average distance d between point potentials). In the
periodic case of a (square) lattice = (m o 1 j) of

identical point potentials this result was rigorously
obtained in Ref.29. However, the states on the Lan-
dau levels are sensitive to the positions of the point
potentials, not to their strength. Therefore, Eq. (19)
is also valid for any site disorder model {45 ]. For the
position disorder models with uniformly distributed
zero-range scatterers, the prediction (19) was con-~
firmed in Ref. 46 for the lowest Landau level and in
Ref. 47 for the higher Landau levels. Note that in the
two papers [46,47 | the projection on the correspond-
ing Landau level was applied. This enables one to use
not the point potential, but the conventional 2D Dirac
delta function as a model of zero-range scatterer.

Let us consider the DOS between Landau levels,
which was studied for different types of site-disorder
models (square lattice of point potentials). Consider
first the so-called Maryland model, which was pro-
posed for a 1D case [48 ] and then generalized to the
multidimensional case [49,50 ]. In the point potential
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version of this model [51 ] the random binding energy
Eb/. of the point potential placed at the site T is

Ebj = E, tan (nprj - w) .

Here the constant vector p is chosen in such a way,

that pr; is not a rational number for any lattice vector
r and a random phase w is uniformly distributed over
the interval (0, 27). For a fixed realization (i.e., for a

fixed phase w) this model is described by an almost -

periodic Hamiltonian, in which the values of the bind-
ing energies could be very large. If pr; is «sufficiently

irrational», i.e., if it cannot be well approximated by a
rational number for any j, then all intervals between
the Landau level are densely filled by nondegenerate
localized states, which are sums of scattered waves
(2) with amplitudes #; which satisfy some kind of

Lifshits equation [51].
The next two site-disorder models [45] deal with
the case in which the binding energy is

Ey; = E exp (4ntj) .

Further details depend on the statistics of the random
exponents ¢, .

The Lloyd model. All 4 are mdependent random
quantities with the same Lorentz distribution

6
P w2+ 6%

Here the expression for the average DOS is ob-
tained in a closed form [45]. Its analysis shows that
the DOS is an analytic function of energy and differs
from zero for all energies lying between Landau le-
vels. In the limiting cases of very small concentration
of point potentials (very strong magnetic field) the
DOS between Landau levels is proportional to the
concentration of point potentials (the inverse mag-
netic field). (In the latter case the relative position of
the energy with respect to the neighboring Landau
levels must be fixed).

Gaussian distribution. All t ; are independent ran-

dom quantities with the same Gaussmn distribution
p() = (2nw) Y2 exp (-2/20) . (33

Here the asymptotic expression for the DOS in the
same limiting cases as in the previous paragraph was
obtained. The resulting DOS has sharp peaks near
the levels E, which are shifted from the Landau levels

=3

nearest neighborhood of the levels £ these peaks are

in the presence of a single point potential. In the

Gaussian, but far from E, they become asymmetric

(due to the asymmetric position of £, with respect to
the Landau level E_

shows that for higher Landau levels such a form of
peaks is valid also in the case of correlated, identically
distributed exponents tj [Eq. 33 1.

All these results concern the case of true point po-
tential. But we have already mentioned that a single
scatterer with a finite radius splits the Landau levels.
Disorder leads to the spreading of these sublevels. If
the concentration of scatterers is small and magnetic
field is strong enough ¢ = 1, then the sublevels which
are most remote from the parent Landau level are
spread into the resolved impurity subbands [23}.
Each of these subbands accommodates one state (if
—m >n) or two states (if {m| < n) per scatteter (re-

). More detailed investigation

~ call that n is the number of the Landau level, and m is

an angular momentum). Such an oscillating fine
structure of the DOS should manifest itself in the
oscillations in the low-temperature specific heat, in
the magnetic susceptibility, and perhaps in the trans-
port properties when the flux ¢ changes by 1 or 2
(Ref. 23).

5. 3. Electron localization in a 1D disordered system

Let us now consider a site-disorder model where
the binding energies are identical along the x direc-
tion and are random in the y direction, i.e.,

Ebj = Ebn ’ {]} =

We assume that the random binding energy E,  takes

(m, n).

two possible values: E; with the probability 1 — c and
E, with the probability c. In what follows we will be

interested in the case of weak disorder so that these
two binding energies almost coincide. Due to the pre-
sence of disorder and with the specific gauge, we can
use the representation (20) for the scattering coeffi-
cients, which reduced the initial 2D system to a pure-
ly 1D disordered model, which conserves some fea-
tures of the initial 2D problem: it depends explicitly
on ¢, and on the magnetic field.

Consider first the unperturbed ordered System with
identical binding energies E, b = Ep - Fix some rational

flux ¢ = Q,/Q and Landau level number, and choose

some dispersive subband (.e., some concrete segment
on the energy-flux diagram). Each value of energy from
this subband corresponds to some specific line in the
rectangle 0 < ¢, , Qg, < 2 on the g-plane. In turn, each

point of this rectangle corresponds to the eigenstate with
quasi-momentum q. Now switch on a weak disorder.
The disorder shifts and smears the subband boundaries
and, because of the 1.D nature of the problem, causes all
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states to be localized states (in the y direction). The
boundaries which do not coincide with some of the Lan-
dau levels are the fluctuation boundaries [52}: they
depend on the possible strengths of the point potentials.
The states in the vicinities of these boundaries are
strongly localized. The states lying deeply in the sub-
band are weakly localized. They can be approximately
classified by a quasi-momentum q and by the localiza-
tion length, £(q), £g << 1. The edges which coincide
with the Landau levels, are the stable boundaries: they
do not depend on the possible strengths of point poten-

tials. The localization length near such a boupdary '

diverges ) o
§(E) = (E"L ~-E)™
with a critical exponent v.

These statements are now substantiated within a
quantitative description. In the strong field limit,

when the Larmor radius is of the order of or less than -

the lattice constant, each of the Green’s functions
that enters in the representation (8) essentially dif-
fers from zero only when the point r is close to the
corresponding site (m, n). Therefore

1) the localization properties of the wave function
{8) coincide with the localization properties of the set
of scattering coefficients {7] mn} [Eq. 200 1,

and

2) the scattering coefficients § n satisfy the random

Harper equation
Epay T2, cos 2unp +q))+§,_, =€, +vz,8, .

Here ¢ is defined by Eg. (26), where In (E;/E}) is

replaced by its average value. The random variable
z, takes values —c with the probability 1 — ¢, and 1

— ¢ with' the probability ¢. The intensity v of the
effective «random potential» vz, is

o Vap  In(E/E)
~ Wij240000)  T(-a)

In the weak disorder limit, | In (E,/E,)| << 1, each

solution of the ordered Harper equation (which sa-
tisfies a fixed initial condition) is slightly modified
because of the appearance of a slowly increasing mul-
tiplier. The corresponding eigenfunctions are slowly
attenunated Bloch solutions. The pertinent inverse lo-
calization length El._l(q) (measured in units of d™1)

coincides with the doubled Lyapunov exponent [52].
In the weak scattering approximation it was calcu-
lated exactly [40]:
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Q_.
- q
§l@=5210 —c)[l L 2 ))
p=0
-1
+e|l+ k9
vz(l - c)2 ’
‘ {(p+1,
Z(p,q)=4Im : I:E%-(—])i) exp (lqz):’

The weak scattering regime corresponds to a very
large localization length. We define the condition of
the weak scattering as

min Z(p, Q> N>>1. 34

This inequality determines a domain inside the
square 0<gq, , Qg, <2, such that for each q in this

domain, the localization length (measured in the lat-
tice constant) £,(q) will be larger than N. The dis-

persion relation ¢,(q) maps this domain onto an ener-

gy interval on the ¢ axis and, after inversion using
Eq. (26), onto a set of intervals on the a axis. Each of
these intervals corresponds to a fixed value of the
rational flux and a fixed Landau level (G.e., it is lo-
cated below this level but above the previous one).
The set of all these intervals vs. flux ¢ forms a Hof-
stadter-type butterfly for the localization length. The
points of this diagram correspond to those eigenstates
which can be classified as slowly attenuated Bloch
states. A part of this butterfly is shown in Fig. 4. Note
that some subbands, which are present in Fig. 3, are
completely absent in Fig. 4. This means that all states

0.93

0.92} , ¥
0.91_' ;“,[.'Hn... can |

0.90 v

089 - i 1 — i

Fig. 4. The energy-flux diagram for the delocalized (with the
chosen accuracy) states between the first two Landau levels
0<a =< 1. The rational fluxes 2 <p < 3 with denominators up to 9
are used. Some subbands, which are shown in Fig. 3b, are absent
here: the correspouding states are localized.
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of these subbands do not satisfy the weak scattering
condition (34), i.e., they are localized.

Let us now consider the localization of states near
the stable boundaries. Different types of touching
scenarios (possible rational fluxes and possible points
in the q rectangle) were analyzed in Ref. 36. It was
shown [19] that in the case of short, correlated 1D
disorder the localization length diverges with the cri-
tical exponent v = 1. Exact expressions for the lo-
calization length near the Landau levels, which were
obtained for the model considered in this subsection,
confirm this result [40 ]. In particular, for the touch-
ing of the first Landau level for ¢ = 2 the localization
length has the form . '

((In (E,/EY)*

£ 2 R ‘F = const,
(1 — a)e(1 = ¢) In“(E,/E,)

and diverges as a—~> 1 (the energy tends to E;;)

and when the disorder vanishes (c—>0 1, or
E,-E >0). -

6. Mesoscopic systems with a point potential

The electron dynamics in the presence of a single
short-range impurity in a magnetic field is related toa
number of physical problems (magnetotransport phe-
nomena in bulk semiconductors, the quantum Hall
effect, the conductance of a microconstriction, tun-
neling through a quantum dot, etc.). Because of the

short-range character of the impurity, it is natural to

model it by a point potential. Such a simplification
often enables one either to obtain an exact solution of
the problem, or at least to obtain a solution in a closed
form.

- 6.1. Point potential model of a quantum a’bt

Let us first discuss the problem of electron trans-

mission through a quantum dot. On the basis of the

model proposed and studied in Ref. §3 the dot itself is
described by a 2D Hamiltonian H., which accounts for

a magnetic field (12) and a confinement potential
V,= Ezrz/ 4, P=x+ y2, with some characteristic
confinement energy E, . One-dimensional channel is
described by a 1D free Hamiltonian H, = —d*/dz*.

The unperturbed Hamiltonian of the noninteracting
system dot-channel is a direct sum H, @ H,:

_ H, 0
0 H,
The unperturbed wave function is a two-component

vector

32

¥o(r)
W(r, 2) = [ w?(z) ) :

The perturbation V located at the origin describes the
zero-range interaction between the dot and the channel

T8 B

B TI®
Here T,(E) is the 2D point potential scattering am /p
litude (18), where E, is replaced by (E2 + E2)
and T|(E) is the 1D point potential scattering amp-
litude. The 1D point potential, however, is the usual

_repulsive Dirac delta function k;3(z) , ky >0 (repul-

sion models the potential barriers that separate the
real quantum dot from the leads, which are modelled
here by the channel). Therefore, in accordance with
the general rule (9), the scattering amplitude T, (E) is

T(E) 2VE ’

The constant 8 describes mixing between the dot and
the channel. The case 8 = 0 corresponds to two inde-
pendent subsystems — the dot, which contains the
2D point potential, and the channel with the 1D point
potential. The nonzero value of the parameter 8 pro-
vides a mixing of the two subsystems and thus the dot
actually influences the electron transmission along
the channel.

The transmission coefficient T'(E), which is cal-
culat’ed by a standard method, has the form

1 - 1
TE) = " ani - FryE)

At energies Eflli“ satisfying the resonant condition
ky l= ,82T2(E) the channel is closed: the transmis-

sion vanishes. On the other hand, at energies ED™X,

which coincide with the poles of the scaﬁering amp-
litnde T,(E), the transmission is perfect T(E) = 1.

Note that these energies are simply Landau levels in
an effective magnetic field which is shifted by the 2D
point potential. In this effective field the interlevel
distance s not E; but (Ei + E%)l/z. The channel con-
ductance calculated by the Landauer formula has
sharp peaks at the energies ETAX,

A similar idea was used for studying the electron
spectrum in a periodic array of quantum dots subject
to a magnetic field [54 ]. Consider a lattice of points
R. Let Hy, be the potential of the dot located at the

point R [i.e., with the confinement potential
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V(r — R)]. The array of dots is described by the
Hamiltonian #/ = H,, + U. Here the unperturbed Ha-
miltonian Hy = @ Hp is the direct sum Qf the single-
dot Hamiltonians Hy, over all sites of the lattice {R}.

This means that the unperturbed wave function
W,(r) is the vector column

Wo(r) = {¥r],

and each one of its components yp(r) satisfies the
Schrodinger equation with the Hamiltonian Hy . The
mixing of the states in the different dots is realized by
adding the perturbation U which in coordinate repre-
sentation has the form

us

We = gl — R (r —R).

Here the matrix ¢ has the lattice symmetry
IR+R,R'+R, ~ RR"’
oR'*Rg R

which contains only nondiagonal elements, and u(7)
is a localized function.

The perturbation U in this model is not a dege-
nerate perturbation. But like the degenerate per-
turbation (1), which acts in the subspace formed by
the set of states { |v ;> }, the perturbation U acts in the

subspace formed by the set of states {|ug)}. The
spectrum of a single dot is rather rarified En’m =
=(n+1/QE, +(m+ 1/2)E,  with
n, m = 0. As a result, the set of the perturbed eigen-
states W(r) with eigenenergies lying outside the initial
spectrum is sufficiently rich and can be found from
the set of Lifshits equations (2)—(4). The index j must
be replaced by R,

re= [ ut - Rpgar,

integers

4

R.R’ stanfs for Gl.j and

1 . N -
FR_(E = f u (r = R)Gp(r,r') u(r' — R)drd:r .

These formulas are valid for an arbitrary localized
function u(r). A further simplification can be made by
using the point potential as «(r). In this case and for a
rational flux per plaque an explicit equation for the
Bloech-type spectrum can be obtained [54].

An explicit spectrum of the model can be obtained
because of its internal simplicity, which is at-
tributable to the use of degenerate-like perturbation,
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on the one hand, and to the construction of the unper-
turbed Hamiltonian as a direct product, on the other.
Due to the latter fact, the interaction between dif-
ferent dots is described independently from the dy-
namics of a single dot. In a sense, the model con-
sidered is an ordered analog of the famous Anderson
model [55 ], while the case of the point poteatial lat-
tice, which is considered in Sec. 4, is an ordered ana-
log of the much more complicated Lifshits model
[56,57].

6.2. Point scatterer in a microconstriction

Here we consider clectron scattcring by a single
point potential in a magnetic field and some addi-
tional field. We start from the case of the crossed
magnetic and electric fields. The modification of the
spectrum of the system due to the presence of an
impurity is defined by the poles of the scattering amp-
litude T(E) [Eq. (9) ], where G(r, r'; E) now stands
for the Green’s function in the presence of the two
fields. As a result, in contrast with the case of zero
clectric field, where exactly one bound state exists
below each Landau level (see Fig. 1), there are now n
novel, nondegenerate, quasi-bound states with
energies close to the nth Landau level [58 ).

The next group of problems is related to electron
transmission through a saddle-point potential

2 . .
V(x,y)=—i—4+y2 35
[here x is the asymmetry parameter ] in the presence
of a short-range impurity and magnetic field. Without
impurity and a magnetic field the electron wave fun-
ctions are saddle-point potential waveguide modes, .}

‘pé.n(x’ = (Dn()’)E(_En , * 5{2’—) .

Here @, (y) is a harmonic oscillator wave function,

which corresponds to the y-dependent part of the poten-
tial [Eq. (35) ) and energy E, = 2n + 1. The x-de-
pendent factor is the Weber-function [16] E(—¢, £),
and ¢, = «%(E — 2n — 1)/2. The mode WE (%)
describes the initial wave which comes from the left
(x = — ) and which contains the reflected and tran-
sitted waves with the corresponding transmission
coefficient T, = (1 + exp (—Z.’.ﬂen))'l (this result was
initially obtained in the WKB approximation in
Ref. 59) and reflectivity R, = (1 + exp(2re,))~".

The energy E, is the threshold for mode n. When
E<E

opposite case this mode is mainly transmitted. The
crossover from reflection to transmission turns out to

o the mode n is mainly reflected, while in the
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bein the energy band |E - E, | < 2c~2. The saddle-

point potential (35) models a ballistic microjunction,
to which the two-terminal conductance in terms of the
mode transmission coefficients is given by [60]

Gy = Zor(en) .

The presence of a strong point potential, which is
located in the central section of the constriction (i.e.,
near the origin), modifies the spectrum. Exactly one
bound state appears below the threshold E, of each

transverse quantization mode. The bound state with
the energy far from the threshold decays mostly into
the continuous spectra of the above-barrier modes
(mode mixing). In this case the point potential cor-
rection to the conductance is due to the resonant ref-
lection of the above-barrier modes, which have a
downward dip AG = —1 on the plot of G vs. the Fermi
energy E. The bound state close to threshold decays
mostly into the continuous spectrum of the threshold
mode (tunneling). Here the point potential correction
to the conductance is due to resonant transmission of
the threshold mode which is seen as a resonant tun-
neling peak [61], AG = +1.

Let us consider the electron scattering by an iso-
lated point potential in a magnetic field. In the limit-
ing case of a narrow constriction @ = 1 an explicit
expression for the transmission coefficient as a func-
tion of the point potential position and magnetic field
could be obtained [62]. Its analysis shows that the
transmission coefficient has a sharp peak (the Breit-
Wigner resonance) as a function of energy, and that it
oscillates as a function of the point potential position.
[62]. One more aspect of electron transmission
through a symmetric [k = 1] saddle-point potential
in a magnetic field is related to the levitation of delo-
calized states in the quantum Hall effect regime. In
the network model of the quantum Hall effect the
delocalization of states results from the tunneling of
an electron through the saddle points of a smooth
random potential, which are connected by equipo-
tential lines [63 ). The mixing of Landau levels cha-
nges the transmission coefficient of a saddle point, on
the average, in such a way that it becomes smaller
than 1/2 for the energy at the Landau level {64 ]. This
means that to achieve the 1/2 average transmittivity,
the energy should be shifted upwards, which is equi-
valent to levitation. However, in a smooth potential
the Landau level mixing is generally weak since it is
associated with a large momentum transfer. Short-
range potentials are much more effective in this res-
pect. The average transmission through a saddle po-
int in a strong magnetic field in the presence of a

random short-range scatterer was studied in Ref. 65.
It was shown that a small portion of the short-range -
random impurities located in the vicinity of the saddle
points reduce the transmission at a given energy even
if the mixing of the Landau levels by a smooth poten-
tial is disregarded. The resulting upward shift of the
energy position of the delocalized state increases with
decreasing magnetic field as B™4 [65].

Conclusions

In summary, we presented a brief review of the
results concerning the electron dynamics in a mag-
netic field and in a field of a point or a short-range
potential. We should emphasize that the possibilities
contained in the point-potential model for the physics
of 2D systems in a magnetic field are not exhausted
yet. This is a unique model which makes it possible to
obtain exact results starting from first principles. In
Sec. 4 we presented the results of a calculation of the
electron spectrum and wave functions using solely the
zero-range property of the scattering potential. It is
very intriguing to obtain some transport characteris-
tics, e.g., the Hall conductivity or ac conductivity of
the 2D periodic system of point potentials. Unexpect-
ed application of point potentials is attributable to the
superconductivity. The results of Subsec. 5.1 make it
possible construct explicitly an Abrikosov trial func-
tion for an arbitrary position of the vortices in type-II
superconductors (this idea was communicated to us
by the late Arkadii Aronov). Investigation in this di-
rection is now in progress.

We shall conclude this article with some non-aca-
demic words. We believe that the best way to honor
the memory of an outstanding scientist is to show that
his ideas are alive, that they are at work, and that
they are being developed. We attempted to demon-
strate this point on a single subject of local pertur-
bations which has been proposed by Ilya Mikhailo-
vich back in 1947. The fact that the topics related to
this subject, such as electron localization in a mag-
netic field, the quantum Hall effect, the physics of
quantum dots, and others, are at the forefront of con-
temporary solid state physics speaks for itself. All the
authors, two of whom (M. Ya. Azbel’ and S. A. Gre-
deskul) are privileged to be former pupils of Ilya Mik-
hailovich Lifshits, would like to express their grati-
tude and to dedicate this article with love and respect,
to the memory of this brilliant scientist and person.

This work was supported, in part, by grant from
Israel Science Foundation, by Raymond and Beverly
Sackler Faculty of Exact Sciences, and by J. and
R. Meyerhoff Chair for Solid State Physics and Ther-
modynamics.
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