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A phenomenon of compression of a transport current J by an external ac magnetic field in hard superconductors
being in the critical state is studied both theoretically and experimentally. This phenomenon occurs in a forceless
configuration when the ac field and the transport current are parallel. The collapse takes place owing to forcing out the
transport current by shielding currents flowing inside a surface region of a sample. Using the Hall probe we have
directly observed such stratification of the currents with different orientations. The transport current tube contracts to
the sample axis as the ac amplitude increases and occupies the whole sample core at some threshold amplitude Hy . As

a result, the superconductor goes to the resistive state. A dependence of H, on I is analyzed both theoretically and

experimentally. It is shown, that the collapse in superconducting rings is accompanied by complex relaxation proces-
ses. The mechanism of decay of the circular current in rings under the acticn of an ac signal is investigated in detail.
An application of the collapse to test the homogeneity of the critical current capability of superconductors is discussed.

1. Introduction

The study of the electrodynamics of hard super-
conductors is the focus of attention for many research
groups. Electromagnetic properties of these materials
in magnetic fields exceeding the lower critical field
H_ are well described by the critical state mo-

del {1,2]. This model was proposed by Bean to calcu-
. late static hysteresis magnetization curves of hard su-
perconductors. According to this model, the distribu-
tion of the magnetic induction B in a sample buik
should be determined by the following equation:

L E
rotB = —C—JC(B)—E . (¢))

Here j_ is the critical current density depending on

the mdgnetic induction B; E is the electric field; ¢ is
the velocity of light. The vectors B, E and the quantity
J are averaged over a spatial scale, which exceeds the

London penetration depth A. According to the critical
state model, the current density j is everywhere di-
rected along the electric field E and its absolute value
is j, . Without electric field, the current j is parallel to

the last direction of E just before it disappeared. The
current density j is equal to zero inside a sample bulk
where the electric field never penetrated.

The critical state model deals with a single phe-
nomenological function j(B) that is defined by the

pinning of the Abrikosov vortices. Therefore, it des-
cribes adequately the electrodynamic properties of
hard superconductors in a low-frequency range up to
several kHz [3] only, where such processes as flux

creep, flux flow, gquasiparticle absorption, etc. (see,
for example, Ref. 4, and references cited therein) do
not play an essential role.

The interest in the critical state model increased
after the discovery of high-T, superconductivity.

Dersch and Blatter [5] generalized this model to ap-
ply it to Josephson HTS systems placed in an external
magnetic field lower than the first critical field # o of

grains. The form of their equation differs from Eq. (1)
in the additional factor x4 on the right-hand side. The
effective magnetic permeability x4 is connected with

- intergranular currents in ceramics. It has been the

critical state model which formed the basis of the
contactless method for study of critical current ca-
pability in HTS samples [6,7 ].

The simple consideration shows Eq. (1) to be es-
sentially nonlinear and this nonlinearity has analo-
gues in neither conducting media. Therefore, its phy-
sical consequences call for special theoretical inves-
tigations. The present paper is devoted to a study of
an unusual nonlinear electromagnetic phenomenon
that results directly from the critical state model and
occurs in hard superconductors.

The critical state model is usually used for the ana-
lysis of a one-component situation, when the current
density is directed along a single coordinate line in-
side the whole sample bulk. For example, a radial
distribution of the transport current density in a cy-
lindrical sample was studied in Ref. 5 (the current
density was directed everywherc along the sample
axis). A nonlinear-response of a superconducting cy-
linder to an external ac field was investigated in
Refs. 8-10 (the induced current density contained an
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azimuth component only). A more complex situation,
when the currents with the different directions
coexist, is considered in the present paper. Such-a
situation is realized in a superconducting cylinder
with the transport current / placed in the external ac
magnetic field H parallel to the cylinder axis. The
action of the ac field turns out to cause the pheno-
menon that we shall call the collapse of the transport
current. This effect consists in the following.

In the absence of an ac field the transport current,
whose value is less than the critical one, is known to
flow in a surface region of the sample, i.e., it occupies
a surface tube. The thickness of this tube depends on
the value of 1. This picture is schematically shown in
Fig. 1,a. If the ac field has been switched on, the
azimuth shielding ac current exists near the sample
surface. The transport current turns out to vanish
inside the space where the ac field penetrates, and the
transport current tube is displaced into a deeper re-
gion of the superconductor. In other words, both the
tube and its core, which is free of the current, are
compressed by the ac field (see Fig. 1,b). As the ac
field amplitude increases, the diameter of the core
decreases and vanishes at some threshold amplitude
H, (see Fig. 1,¢). Upon further increase in the ac

amplitude, the superconductor goes over to the resis-
tive state. It should be particularly emphasized that
the collapse of the transport current described above
occurs in a forceless configuration, when the ac mag-
netic field is parallel to the vector of the transport
current density. At first sight, it would seem that the
ac magnetic field cannot essentially affect the spatial
distribution of the longitudinal current. Nevertheless,
a simple analysis of Eq. (1) leads to the prediction of
this phenomenon. The preliminary reports concern-
ing the collapse of the transport current were publish-
ed in brief [Refs. 11-13].

The origin of the collapse is elucidated in Sec. 2.
The dependence of the threshold amplitude A, on the

value of the transport current / in the designated cur-
rent regime is analyzed theoretically therein. The ex-
perimental study of the collapse in HTS cylinders and
the dependence H (1) is presented in Sec. 3. The di-

Fig. 1. Schematic picture of current distribution in cylindrical hard
superconductor at various amplitudes of the external ac magnetic
field: Hy, = 0 (@), 0<H <H, (b); H = Hy o .
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rect observation of the stratification of the screening
and transport currents using the Hall probe is des-
cribed in the same section. Then, the study of the
collapse of a circular current and accompanying re-
laxation processes in a superconducting ring without
an external current source is carried out experimen-
tally (Sec. 4) and theoretically (Sec. §). Finally, the
application of this phenomenon to test the
homogeneity of the critical current capability of su-
perconducting samples along their length is discussed
in Sec. 6.

2. Collapse of the transport current in
a cylindrical sample

Let us consider a cylindrical sample of a hard su-
percondiictor, the designated nondissipative trans-
port current / is flowing along its axis. We are inter-
ested here in the case when the value of 7 is less than
the critical current / e Therefore, this current flows in

the cylinder surface region (with a thickness specified
by the value of /) and has the critical density j,. The

limiting value I, of the current [ corresponds to a
situation in which the current density j is equal to Je

over the entire cross section of the sample. The pic-
ture of the current flow in the sample at /< / . is shown

schematically in Fig. 1,a. Let the sample be placed in
the external ac magnetic field H(?),

H(t) = H,, cos (w?) . )

This field is directed along the cylinder axis z. This
means that we deal with the forceless configuration:
the external magnetic field is parallel to the transport
current.

The external magnetic field H(¢) induces a lon-
gitudinal ac magnetic induction B(r, {) and an azi-
muth electric field E ¢(r, 1) inside the sample bulk.

They are connected by the Faraday law:

rot E (r, t)=-%@%—’l. 3

The field E Y,(r, ?) leads to the appearance of the cur-
rent j ' shielding the field H(?). It is extremely im-

portant that only the p-component of the electric field
is present in the sample. The field E, equals zero as

long as the transport current density nowhere ex-
ceeds j, . Therefore, according to critical state equa- .
tion (1), the azimuth current j A exists alone wherever
the ac magnetic field has penetrated and the field E "
is present. This implies that the transport current
flowing in this area in the absence of H(f) is displaced
into deeper layers of the superconductor (see

Fig. 1,b). The compression of the transport current
occurs until the amplitude #, of the external field
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reaches the threshold value H, at which the current
density j, at the sample axis becomes nonzero
(Fig. 1,00. At H m > H, the transport current density
exceeds the critical value j_and the sample goes to the

resistive state. The arising longitudinal electrical field
E, results in the transport current flowing through the

whole cross section of the sample.
Using the critical state model one can calculate the
dependence of the threshold field A, on the transport

current value I, It is suitable to rewrite Eq. (1) in the
cylindrical coordinates (r, ¢, z). This equation has
the following form in the region r <r, where the ac

magnetic field B, do=s not penetrate and only the dc
magnetic field B ' of the transport current exists:

B, 4

_ ‘
B+ —-=— J{B,) - @

! ——
¢ r

Here the prime denotes the derivative with respect to
the radial coordinatc r. The function B 'P(r) should
satisfy the following boundary condition at the point
r=ry;

0°

B,(rg) = rlo’c- : %)

If the amplitude H, of the external magnetic field is

equal to the threshold value H,, Eq. (4) is valid inside

the whole interval of r running from zeroup tor;, . In

this case we should use the boundary condition for
B W(r) atr=20

B ¢(O) =0. (6)

Outside this region, atry <r <R (R is the radius of

the cylinder), where the transport current does not
exist (j, = 0), the azimuth component B w(r) of the

magnetic field decreases in inverse proportion to r:

21 . :
B‘P(r)=r_c’ rg<r<R. a

Along with the azimuth component B 'p(r), the longi-
tudinal ac component B_ of the magnetic field is also
present in this region. Its spatial distribution at the
moment ¢ = 0 is described by the following equation:

4

' (2 2\ 1/2
B, = e (Bz + Qul/rc) ) 8)

combined with the boundary conditions
B(R)y=H,, B(ry))=0. C)]

Set (4)—(9) of equations and boundary conditions
gives the unambiguous connection between the thre-
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shold amplitude H, and the value of the transport

current /.
One cannot solve this system analytically in the
general case for an arbitrary function j (B). Asymp-

totical expressions for A (/) can be derived at smail
and large values of the current [:
‘ 1/2

4n I .
Hp_—c_(”_fc(a)—J Je (Hp) [<<l,

2
U1, [-1.<<1,.

(10

The values Hp and I represent the amplitude of the
external field A m > At which the ac signal reaches the

sample axis at / = 0, and the critical transport cur-
rent, respectively. Both of them are the functionals of
J(B). The amplitude H » is defined by the equation

p
f£&=4_”k, an
C .
0

whereas the critical current I is determined by the
following expression:

R
I.=2 fjcB‘p(r)r dr . a2
0

The function Bw(r) in Eq. (12) should be found from

Eq. (4) combined with boundary conditions (5) and
(6) with ry = R.

To obtain the dependence H (/) in the whole range of
the transport current change (0</</_, Hp >H,>0)
one should specify a particular form of j (B). Below we
use the following relation:

Jo

i(B) = —m———— .
Ie(B) 1+ (B/B")2

(13)

This relation adequately describes j(B) for HTS

ceramic samples [6,7 ) which represent a suitable
object for the experimental study of the described
phenomenon, The parameter B* is the characteris-
tic scale of j (B) decrease and jj is the critical cur-

rent density at B = 0. Set (4)—(9) can not be sol- '
ved analytically. However, we note that, by using
new dimensionless variables

h=Ht/Hp , i=1/lc , b¢=B'P/Hp 14

bz=Bz/Hp ,E=r/R , §0=r0/R
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onc can transform this system to the form containing
the single parameter «, which specifies the sensitivity
of the investigated effect to the magnetic field de-
pendence of the critical current density:

An iR 15
cB

x =

The transformed system was resolved by numerical
methods for different values of a. The result of A(i)
calculations is presented in Fig. 2 for o = 100. We call
attention that the curve in Fig. 2 has points of inflec-
tion where d%h/di®? = 0. The appearance of such
points is stipulated by a competition of two circum-
stances affecting the form of the curve (). The first
circumstance consists in the sensitivity of the critical
current density to the magnetic field, and the second
one is connected to the nonlinear decrease (quadratic
at /<<[) in the transport current flowing area with

the increase in H, . Owing to the second (geomet-
rical) factor alone (at j (B) = const) the relation A(i)
takes the universal form: ’

h=(1-02. (16

In this situation the second derivative d2h/di? is posi-
tive everywhere. If we take into account the depend-
ence j (B) but not the geometrical factor (for example,

if we are interesting in the collapse of the transport
current in a slab), we shall obtain the curve k(i) with
the curvature of an alternating sign. In a cylindrical
geometry the existence of points, where d?h/di?
equals zero, depends on the value of the parameter a.
In our model (13) these points appear on the curve

08 |

06 |-

02 r

1 i L 1

0 0.2 0.4 0.6 08 1.0
i

Fig. 2. Dependence of the dimensionless critical current ;i = 1/J con
the threshold amplitude h = H/H p - A solid line is the result of

numerical calculations at @ = 100, closed circles present the data of
our experiment. The criterion for definition of 7, was equal to

0.1 4V/cm.
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h(i) at o = 18.The calculations show that the plot (i)
is'insensitive practically to the value of a ata = 50.

3. Observation of the transport current cbllapse in
cylindrical samples

The experimental research of the transport current
collapse in HTS ceramic cylinders was carried out by
two methods.

1. The first method consists in the measurement of
the threshold amplitude H, and in the study of its

dependence on the value of the transport current /.
The experiments were conducted on cylindrical
samples of yttrium HTS ceramics of about 0.52 cm
across and 4-5 cm in length, cooled to liquid nitrogen
temperature. The values of the critical current 1 . at

H, = 0 and the penetration field H p at I =0 were
I.=20 A and H, = 33.5 Oe, respectively. The sam-

ple was placed inside a long solenoid which induced
ac field (2). We measured the ac amplitude H, ,at

which the voltage drop appeared, for each designated
value of the current I. The appearance of the voltage
drop testified that the amplitude had reached the
threshold value, H, = H, . Points in Fig. 2 represent

the results of our determination of the dimensionless
amplitude h = H /H » as a function of the dimension-

less transport current i = I/1 ¢ - These results were

practically insensitive to the value of ac frequency
within a wide range from 10 up to 10* Hz. The calcu-
lated data are presented in this figure by a solid line.
The experimental points are seen to be located rather
close to the theoretical curve. ,
We would like to pay attention that there exists one
more mechanism of the sample transition to the resis-
tive state under the action of the external magnetic
field. As mentioned above, the critical current density
in HTS ceramics is sensitive to the magnetic field.
Therefore, for any transport current there exists such
a value of the external magnetic field, at which j (B)

becomes less than the transport current density, and
the sample goes over to the resistive state. Such a
mechanism may be realized in a superconductor pla-
ced in a static magnetic field H, . In this case the

transport current occupies the whole sample cross
section as the sample transiting to the resistive state.
If the transition to the resistive state is stipulated by
the ac field, the transport current, owing to the col-
lapse, flows through the central area only where the
external field does not penetrate. Therefore, the de-
pendence of the critical current on the external field
I (H,) under the static conditions differs from the

dependence I(#,) in the ac field. To demonstrate this

difference the experiment was performed not only in
the ac field (2) but also under the static conditions.

®usmka HU3kux Temnepatyp, 1995, 1.21, Ne 4
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Fig.- 3. Dependence of the critical current I. on the dc magnetic
field Hy . Points are results of the experiment.

The dependence  (H) obtained in the wide range
of the dc magnetic field Hy is shown in Fig. 3. The

comparison of the results in Figs. 2 and 3 shows that
the main distinction between curves I (H) and I(H )

is observed at small currents. Actually, the flow of the
undissipative transport current is impossible at
H,>H = 50 QOe, while at the static conditions there

exists the finite undissipative transport current in the
field Hy>H s Its value decreases monotonously with

the increase in Ho .

2. In the experiment described above, we registered
the final stage of the collapse, when the sample went
over to the resistive state due to the compression of
the transport current. However, in this experiment it
was impossible to analyze the current density dis-
tribution inside the sample and to confirm the
predicted phenomenon of the stratification of the
transport and azimuthal currents when collapsing. To
confirt this fact we executed the direct observation of
the collapse in cylindrical HTS samples using the
miniature Hall gauge.

We drilled an opening of 0.8 mm in diameter per-
pendicular to the axis of a cylindrical sample 10 mm
in diameter, The Hall gauge was placed into this
opening in such a way to allow us to move it with a
micrometric screw. The device permitted us to mea-
sure the spatial distribution of the azimuth compo-
nents of the dc magnetic field B p associated with the

transport current. The experiment was performed at a

temperature of 77 K over the frequency range 30—

1000 Hz and the designated transport current of 10 A.
The results of B so(r) measurements at various

amplitudes H, are indicated in Fig. 4. In the absence
of the external ac magnetic field (curve /) and at the
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Fig 4. Radial distribution of the intrinsic magnetic field of the tran-
sport current J = 10 A at different amplitudes of ac magnetic field
H,,,0e:0();10.2 (2); 15 (3); 20 (4); 25 (5); 3000 (6).

small amplitude A - (curve 2), the maximum value of
the azimuth field B » is reached near the sample sur-

face (r = R). At the same time, this field is close to
zero within the wide region near the cylinder axis.

- This means the transport current flows in the surface

layer of the superconductor. The distribution B¢(r)
qualitatively changes at reasonably strong ac fields

" (curves 4 and 5). The distinct maximum appears on

the curves and iis position displaces deep inside the
sample as H, increases. In the strong external ac

ficld H, =25 Oe (curve 5) the magnetic induction
B ” becomes nonzero at r = 0. Just under these condi-

tions the voltage drop arises along the sample (this
drop was registered on potential contacts). This sug-
gests that at the amplitude H,, =H, = 25 Oe the den-

sity of the collapsed current reaches critical value and
the sample goes over to the resistive state. Starting
from this value of H,, the maximum of the function

B 'p(r) degenerates (curve 6), i.e., the distribution of

the current becomes more and more uniform with the
increase in H me

The described results directly prove the phenome-
non of transport current collapse in the external ac
magnetic field. Actually, the penetration of ac field
into the sample bulk causes the azimuth shielding
current of the critical density to flow near the surface.
The transport current is accordingly displaced from
this region. The existence of the maximum on the
curve B ‘p(r) implies that the tube containing the trans-

port current and having the initial external radius
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close to the sample radius is compressed (about twice
at #, =20 Oe) by the external ac field. The distribu-

tion of the ac magnetic induction B (r) near the sur-

face, measured by the same Hall gauge revolved on
90 °, correlates well with the prediction of the critical
state model. The position of the maximum of B ‘P(r)

coincides with the border scparating the transport
current from the azimuth one. Mixing the azimuth
and axial currents occurs if the flow of the transport
current becomes dissipative.

4. Collapse of the circular current in HTS
ceramic rings. Experiment

In the previous sections we studied the collapse of
the transport current, when the value of I is kept
constant by the external source. Hence, the transport
current did not disappear at any value of the ac
amplitude. The final stage of the collapse consisted in
the transition of the sample into the resistive state.

It is interesting to consider the collapse develop-
ment in a physical situation that differs in principal —
without source of the transport current. In this case
the compression of a current should be accompanied
by irreversible dissipative processes whose role is not
obvious beforehand. To analyze this situation we
used superconducting rings as subjects of inquiry. In
this section we shall, at first, discuss the results of our
experiments and give their theoretical interpretation
in the next section.

The typical sizes of rings prepared from yttrium
ceramics were: a=~0.4 cm, R=0.06 cm, R<<a
(Fig. 5). The circular current was induced by switch-
ing off an external dc magnetic field. For this purpose
a long solenoid was placed coaxially inside the ring.
The eleciric current flowing through the solenoid was
switched on, when the ring temperature was above
T .. After cooling the ring down to the liquid nitrogen
temperature this current was switched off. As a result,
the circular current arose in the ring. Its value is
specified by the condition of the conservation of the
magnetic flux through the ring. It is necessary to

C

remark that under such an excitation method the in-
duced current has a non-uniform distribution over the
cross section of the torus. The circular current of the
critical density j, occupies the surface region of the

sample (the shaded region in Fig. 5). Outside this
region j = 0. The size of the shaded region is obvious-
ly determined by the full circular current /.

The ac magnetic field (2) was generated along the
ring by the coil C (Fig. 5). The collapse of the circular

current with the increase in the ac amplitude H,, was

studied by measuring the static magnetic moment M
of a ring vs. H, . Obviously, the value of M for the

thin ring with R << a is proportional to the circular
current I:

M=ndl/c . an

The record of the dependence M(H, ) under the

conditions, when the maximum allowable circular un-
dissipative current / = /_has been previously induced

in the ring, is presented by curve / in Fig. 6. Owing to
the collapse, the circular current disappears from the
region where the ac magnetic field penetrates. Since
the whole cross section of the ring is occupied initially
by the circular current with the extreme allowable
density j, , the part of this current which was forced

out by the ac field should completely dissipate. Our
experiment shows that such a process lasts for a
rather extended time intervai of about several hun-
dred seconds. It is remarkable that the curve M(H,)

is identical to the plot of the inverse function I(H ) in
Fig. 2. This result reflects the fact that under the dis-

M. arb. un.

5 10 15 20
Hen { Hop

Fig. 6. Dependences of the magnetic moment M of a ring on the di-
mensionless amplitude H m/H p of the ac magnetic field. Curve /
corresponds to an initial value of the circular current I =7 o » Cur-
ves 2—1 were obtained at initial currents 7 < ]c ,w/2x = 100 Hz.
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cussed conditions the current distribution at any va-
lue of H, is similar to the picture presented in Fig. 1,¢

for the case Hm = Ht .

1f the circular current 7 previously induced in the ring
is less than its critical value 7, the magnetic moment of

the ring decreases with the increase in the ac amplitude
H,, as it is shown in Fig. 6 (curves 2—4). The magnetic

moment of the ring is practically unchanged at low amp-
litudes H,, . When the curve M(H ) reaches curve /, the

m
magnetic moment starts to decrease noticeably. The cur-
ves M(H ) pass together with curve / independently of

the initial value of the circular current at this stage. These
facts permit us to propose the following picture of the
collapse of the circular current. At the beginning, the
circular current changes the region of its flowing, displac-
ing itself to the axial line of the ring under the influence of
the external ac field. The current value is practically un-
changed at this stage of the ac amplitude increase. Just at
this stage we observe a plateau on the plots M(H, ) (see

curves 2—4). After the aircular current occupies the whole
core of the sample [at A m = Hy 1) ], the second stage of

the collapse starts. At this stage the strong dissipation of a
current energy arises because the whole core of the torus
is filled with the current. It is clear that only the
beginning of the second stage, when the plot M(H, )

reaches curve / in Fig. 6, depends on the initial value
of the circular current 7.

Thus, the process of the compression of the circular
current in the ring with increase in the ac amplitude is
divided into two stages. At the first stage [at
H, < H(I)]the circular current is displaced into deep

layers of the sample under the influence of the ac
field. The interaction between the current and the ac
field leads to the strong dissipation of I at the second
stage, when H, = H (I). We should note that some

dissipation of the current also occurs at the first stage
of the collapse. It is completely obvicus that the dis-
placement of the circular current into the deep layers
of the superconductor is accompanied by the ap-
pearance of the longitudinal (directed along the axial
line of the ring) electrical field E, . Accordingly, the
Joule losses arise

Q=E=jE,. (18)

The folloWing section is devoted to the analysis of a
" role of the dissipative processes at each of two stages
of the collapse.

5. Collapse of the circular.current in HTS
ceramic rings. Theory

1. To describe the first stage of the collapse of the
circular current we propose the following simple theo-
retical model. We accept the moment of switching on
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the ac field as the time origin (¢ = 0). The bulk of the
ring is naturally divided into three parts at this mo-
ment. The first part represents the surface closed 1u-
be where the ac signal penetrates and where a fraction
1,(0) of the circular current is flowing. The other frac-

tion 1,(0) = 1(0) — 1,(0) of the circular current oc-
cupies the second region. Since the total circular cur-

- rent 1(0)< [ . » the sample core (the third region) is

free of any current. In other words, the amplitude
H, <H/I) at the first stage of the collapsc. As time

passes, the circular current /() flowing through re-

gion 1 should disappear owing to the collapse. A part
of this current is dissipated. The other part of /, is

displaced deep inside the sample bulk. Therefore, re-
gion 2 expands at the expensc of the reduction of
region 3. As a result, the current 1,(¢) = I(¢) — 1|(?) in

region 2 increases.

The process of the circular current displacement
unaer the action of the ac field accompanied by its
partial dissipation may be described by the following
set of equations:

L, dI L., dl
WaE (1) + 5 — + —L—2
c” dt

2 odt

’

(19)
L,dl, L, di B
- + T o= 0
¢ dt ¢ dt
Here L, and L, are the self-inductions of regions !
and 2, respectively, L, = L,, is the mutual induction
between regions 1 and 2:

L =L,=L,=2raln(a/R) ; " 0

E_ is the longitudinal (directed along the axial line of the

torus) electric field existing in region 1 only. It arises 4
owing to the penetration of ac magnetic field (2).
The field E, can be evaluated as follows. According

to critical state Eq.(1), the current density j is
j=JE/E. @2h
Since 1,(0) « Jj. » we obtain from Eq. (21) the fol-
lowing relation:
I,(t) = 1,(0)E,(1,)/E . 22)

Except for the desired component E, , the vector E
contains an azimuthal component in region 1 as well:

E, = H, wR/c . 23)
Therefore, the absolute value of E in Eq. (22) equals
2
E= [(Hme/c)2 + Ef(ll)] V2 e
Using Egs.(22) and (24) we find |
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H, R 1,
T T o -

Thus, the displacement of the circular current from
region 1 into region 2 is described by the set of
Egs. (19) and (25). A physical picture of this process
is following. Under the influence of the external ac
ficld an effective resistance 2taE (/,)/1, arises in re-

25

2\1/2
1)

gion 1. It results in the reduction of the current /; .

Owing to the mutual induction {see the second equa-
tion in (19) ] the current /, increases because region 2

expands. Using Eqs. (19) and (25) we obtain the fol-
lowing equation for the current I, ():

2
H,wR Iy 1 Ly i’__

+= L
20 - 2727 27 L) ar

26

Since the induction coefficients L.,L,, and L,,are

equal to 2va In (a/R) with the accuracy to small terms
of the order of 2R In (a/ R), the effective induction of
region 1 can be evaluated as follows:
L, - L%/L,~ 2R 1n (a/R) . Q@n
Equation (26) has the exact solution. However, itis
very cumbersome and we do not present it here, but
formulate some important conclusions following from
this solution.
The current /| turns out to be damped in the char-

acteristic time T,
1,(0) In (a/R)

H, wac

(28)

We note that the ratio /,(0)/H,, is of the order of

Rc [see Eq. (1) ). Therefore, the decay time v appears
10 be much shorter than the period Zn/w of the ac
ficld:

RM <2/w . 29

The decrease in 1,(f) is described by the exponential
lawatr>1t:

1,() = 1,(0) exp (—t/7) . 30

At ¢ <71 the damping of 7, () runs cven faster.

The circular current energy Q dissipated during the
relaxation time v can be cvaluated as

,wR
- X
-

H
Q< 2na)(nR)ET < (2ra)(nR?) je—
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Rln(a/R 87t3R52 )
X (@/R) e In(a/Ry . (3D

wa

This energy is a/R >> 1 times less than the total ener-
gy F of the circular current /(0) at the initial time
moment 7 = 0,

27t

F= Llll/L ”R 21[1 (a/R)2Q(a/R)>>Q .
C

32)

Hence, the main fraction of the current disappearing
in region 1 passes into region 2 and only the small
part of the total energy is dissipated during the first
stage of the collapse.

The formulated above features of the first stage of
the collapse in rings agree with our experimental
results.

2. To describe the second stage of the collapse we
accept the time moment when the wave amplitude
H, has been set to H, > H,11(0)] as the time origin

t = 0. At this moment, in contrast to the first stage,
sample region 3 is absent because the sample core is
completely filled with the circular current. As before,
the smface region where the ac signal penetrates is
said to be region i, and the other part of the sample is
termed as region 2. The current /; flowing through

region | should disappear and iis energy will be com-
pletely dissipated with time. Since the current density
is equal to the critical value j_ over whole region 2, this

relaxation process will come to the end when the
equality H, = H (1) is established. The dynamics of
currents /, (1) and /,(7) variations can be described by
a set of equations similar to Eq. (19):
L, dl] Ly, di,
2raE (1)) + — 2 — 4 —==0,
¢ dt ¢t dt
33
Lydl, Ly dl,
WaE () + ——>+ —5—
¢ dit ¢ dt
The electric ficld E,(/)) in rcgion 1 is given by pre-
ceding formula (25). Since the current density j = J,
at the initial time moment ¢ = Q over whole region 2,
the displacement of the current /7 from region 1 into
region 2 results at first in the increase in the current
12 in region 2, i.c., in the supercritical current A7, ,

AL = 1,(1) — 1,(0)>0 . 34
As a result, the resistive state anises, and, contrary to
the first stage of the collapse, the electric field E.(7,)
appears. This ficld plays the principai role in the re-

laxation process during the sccond stage of the col-
lapsc. The connection of the ficld E;Uz) with the cur-
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rent AI2 can be written in a form consistent with the

generally used 7—V characteristic for hard supercon-
ductors:

E,(I,) = AAIL} . 35)

Here A and y > 1 are phenomenological constants.
Owing to the fact that all four induction coefficients
. in Egs. (33) coincide with an accuracy to the small
parameter R/a, it is possible to draw an important
conclusion with respect to process of supercritical cur-
rent arising in region 2. During an initial period, whi-
le the field E (I;) remains higher than E (I,), the
derivatives dI,/dt and dI,/dt are equal to each other

in absolute value with a relative accuracy of R/a<< 1
and have opposite signs. As a result, the essential
redistribution of the currents between regions 1 and 2
occurs in a short time of order 7 [see Eq. (28) ]. The
current /; decreases by some value AJ ~ 1,(0) while

the current I, increases by the same value. Thus, the
total current is practically unchanged:

=10+ LE=I0), tst. (6

As a result of the current redistribution, the fields
E,(1,) and E (I,) are equalized:

E(L) = E(L) . 37

Beginning from the moment of establishment of
equality (37), the total current / starts to decline. The
. current I} decreases from 1,(0) — Al down to zero

and the current 7, fall from 7,(0) + Af down to its
initial value ,(0). Equality (37) remains valid during

this relaxation process.

Let us substitute Eqs. (25) and (35) into Eq. (35)
and then differentiate it with respect to time. Using
the obtained relation, we can exclude the derivative
dI 1/ dt from the second equation of the set (33). Ta-

king Eq. (35) into account, we obtain a following
equation for the supercritical current Al,(¥):

-1
dAL 2 2
02 A Ay Acy foy-1|
7 +mﬁ(a/R)Az2 [1+ 3 A =0.
' (38)

One can easy solve Eq. (38) combined with the initial
condition Al, = Al at t27. Since the answer has a

cumbersome form, we present only some of its
asymptotics here. Contrary to the first stage of the
collapse, the relaxation of the circular current can not
be characterized by a unique time scale at the second
stage.

In the beginning, the current A/, is damped in a

linear fashion:

Duanka HU3kux Temnepartyp, 1995, 1. 21, Ne 4

— t
Mz—AI(l—;T), T<<t<<r ,  (39)

7 = (477217 4 05907 In(a/R) . (40)

The rate of the current relaxation is seen to increase -

within the temporal interval 7 << £<<7, as the ac fre-

quency increases.
As time passes, the law of the A/,(f) decrease

change:s

ALl = Al /07D | p <<, @D
12=A_1c'2A11_7 In (a/R) . (42)

According to Eq. (42), the relaxation rate is inde-
pendent of the ac frequency at t>>7, .

It is important to notice, that the current I, (?) re-
laxes considerably faster than I,(¢). This conclusion
follows directly from Egs. (25),(35), and (37).
Therefore, the relaxation of the total current I(f) is
defined mainly by the decay of the current I,(?). Since
I() = 1,(0) + AI(?), the analysis of the behavior of
the supercritical current Al,(¢) carried out above ac-
tually concerns the total current I(f) as well. Thus, it
might be assumed that the equality H,, = H [1,(0)] is
set up as a result of the relaxation process.

The suggested picture of the second stage of the
collapse correlates well with our experimental results.
The dependences of the magnetic moment of the su-

perconducting ring on time, kept from the moment of
ac field switching on, are presented in Fig. 7. The

M, arb. un.

1 ] ]
0 20 40 60 80

t.s

Fig. 7. Relaxation of the magnetic moment of a ring under the action
of the external ac magnetic field with H, <H p at various

frequencies w/ 2z, Hz: 20 (1), 200 (2),.2000 (3).
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induced circular curient equal to J, was adjusted at

t=10. Curves /-3 correspond to three different ac
frequencies. It turns out that the relaxation time is
very long (about hundreds seconds) in all cases. This
time decreases with the increase in the frequency.

However, the relaxation rate is independent of the .

frequency at > 50 s.

6. Summary and Application

Hard superconductors in the critical state exhibit
the specific nonlinear electrodynamic properties. The
main nonlinearity is related to the characteristic ma-
terial equation of these media. Unlike ordinary con-
ducting media, where the electric field determines
both a value of the current density and its direction,
hard superconductors are exemplified by the current
density whose value is independent of E. According-
ly, critical state equation (1) contains the factor
" jE/E on the right-hand side. This equation, which

might appear to be simple at first glance, leads to
interesting unusual consequences. One of them, na-
mely, the collapse of the transport current under the
action of the external ac field in the forceless con-
figuration is studied in the present paper.

The discussed phenomenon is typical for any hard

superconductor being in the critical state. However,

HTS ceramics, owing to the relatively low critical cur-
rent density, are the most convenient objects for ex-
perimentall research on the collapse and on any other
physical consequences of the nonlmeanty of the criti~
cal state equation.

The collapse of the transport current is of interest
not only to fundamental physics but to some possible
applications as well. For example, this phenomenon
can be used (and is used by us) to test the homo-
geneity of melt-processed samples. These samples
are characterized by the high critical current density,
up to 10°~10% A/cm?2. However, an induced current
in a melt-processing prepared ring is sometimes dam-
ped very quickly. The reason is connected with the
inhomogeneity of the critical current capability in dif-
ferent parts of the ring. A bad part can be identified
with the effect of the circular current compression
under the action of an ac magnetic field. Using the
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experimental geometry described above (see Fig. 5)

-one can investigate the influence of ac field applied

with the coil C to different parts of the ring on mag-
netic moment of the circular current. If the bad part of
the ring is located inside the coil, the maguoetic mo-
ment falls off even at low ac amplitude. Otherwise,
when the coil C irradiates the ring parts with the high
current capability, the magnetic moment remains to

" be constant over wide intervals of ac amplitude chan~

ge. It is certainly possible to test the homogeneity of
cylindrical samples in similar fashion.
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