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Broken symmetry phase transition in solid HD:
a manifestation of quantum orientational melting
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Theoretical study of the broken symmetry phase (BSP) transition line in solid HD reveals that its
anomalous features provide evidence for quantum orientational melting. The observations of unusual
reentrant behavior is a consequence of the symmetry properties of the system, namely, the fact that in
HD all rotational states and transitions between them are allowed, in contrast to the behavior of the
homonuclear isotopes H, and D, . The systematic underestimation of the transition pressure charac-

teristic of all theories of the BSP transition can be removed if crystal-field effects are taken into account.

PACS: 67.80.—s, 62.50.+p, 31.70.Ks

1. Introduction

The large isotopic family of hydrogens (H, ,
HD, D, , HT, DT, T,) presents a unique possibility
for studying the diversity of quantum isotopic ef-
fects [1]. The differences in properties of the iso-
topic substances cannot be, as a rule, related solely
to the de Boer quantum parameter, and symmetry-
related nuclear-spin effects turn out to be far more
essential. Due to symmetry requirements, hydrogen
and deuterium have two species: para-H, and ortho-
D, correspond to the even rotational quantum num-
ber J, whereas ortho-H, and para-D,, correspond to
odd J states. In the case of HD molecules, the
nuclei are distinguishable and the molecules do not
possess a center of inversion. As a result, the HD
molecules do not have ortho—para species and all
angular momentum states J =0,1,2,... and transi-
tions between all of them are allowed.

To a very good approximation, the electron den-
sity distributions in the H, and HD molecules are

the same. But in the HD molecule the center-of-
charge does not coincide with the center-of-mass.
Since the molecule rotates around its center-of-mass
but the intermolecular interactions are related to
the center-of-charge, rotations of the molecules are
accompanied by translational displacements of the
center-of-mass. Thus, the rotation and translation of
the molecule are coupled dynamically. As a result of
such off-center rotation, an additional Heisenberg-
like term appears in the anisotropic part of the
intermolecular potential, as first has been shown by
van Kranendonk [2]. Evidence for differences in
properties of asymmetric and symmetric hydrogens,
which are a consequence of the coupling of the
rotation and translation of the molecule in the
condensed state, has been reported since the six-
ties [3]. A large negative deviation of the ¢/a ratio
from the ideal hep value of V8,3 found by Prokhva-
tilov et al. [4] for HD at zero pressure by x-ray
diffraction was attributed by the authors to features
of the intermolecular interaction of HD molecules.
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Subsequent calculations by Strzhemechny [5] sup-
port this conclusion.

But the most striking differences between the
homonuclear hydrogens (H2 and D2) and HD are
evident by properties of the solids under very high
pressures. At low pressure, the free rotor quantum
numbers JM remain good quantum numbers for
molecules in solid H, and D, , and at low tempera-
tures only lowest states / =0 in the even J species
are occupied. Since the J = 0 state has a spherically
symmetric spatial distribution, there is no orienta-
tional order in p-H, and 0-D, at low pressures down
to T =0 K. The intermolecular interaction admixes
the higher rotational states into the ground state
wave function, but this admixture is too small to
produce the ordering at zero pressure. With increas-
ing pressure, the anisotropic intermolecular interac-
tion increases, and admixtures of higher rotational
states into the ground state wave function become
more appreciable, eventually resulting in the transi-
tion into a phase characterized by orientational
order. This transition has been called the broken
symmetry phase (BSP) transition. This transition
was foretold by Raich and Etters in 1972 [6] and
found experimentally by Silvera and Wijngaarden
in 1981 in 0-D, [7] and then by Lorenzana, Silvera
and Goettel in 1989 in p-H, [8]. Moshary, Chen
and Silvera [9] experimentally studied the BSP
transition in HD and reported evidence for a non-
monotonic phase line (i.e., a P-T minimum and thus
reentrant behavior) that contrasted markedly with
that found for p-H, and o-D,, .

The BSP transition in HD was found at
68.3 GPa and 3 K, which gave by extrapolating the
temperature dependence a transition pressure P, at
T =0Kof P,=69.0 (+2) GPa. The minimum po-
int was located at P,, =53 GPa and T, = 30 K or
in reduced units at 7, /B = 1 /2 (B is the rotational
constant). The disordered phase is reentrant, that
is, for fixed pressure in the range between P, and
P, as temperature is increased, the solid goes from
a disordered to an ordered and then to a disordered
phase once again. The slope of the orientational
melting curve dP /dT is negative at temperatures
less than T, and positive at T>T,. At T =65 K
(T/B = 1) the transition pressure becomes equal to
P,. Above this temperature, the studied portion of
the transition curve is approximately linear with
temperature.

The peculiar features of HD responsible for the
remarkable behavior of its BSP transition line and
the nature of the transition itself are thus of obvious
interest. Two different mechanisms have been pro-
posed in the literature. One of them, called quan-
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tum orientational melting [10,11], was studied for
the model system of all-J quantum rotors before the
phase transition in HD was found experimentally.
A different approach to the problem was proposed
by Strzhemechny [5]. According to the latter mo-
del, the mechanism of the pressure-driven orienta-
tional ordering in solid HD is completely different
from that in H, and D,, and is related to the
creation of a single delocalized J = 1 state that is a
direct analog of the zero-point vacancy waves in
quantum crystals. Thus, this mechanism is directly
tied with the Heisenberg-like term in the intermo-
lecular potential that is specific to HD and its
off-center rotation.

The BSP transition has attracted considerable
interest from both experiment and theory for many
years (see, for example, [1,12-14] and references
therein). The main efforts in theory have been made
either to calculate the transition pressure at zero
temperature [15-20] or to predict the lattice struc-
ture for the BS phase [21-26]. After the BSP tran-
sition was found experimentally, it became clear
that the critical densities determined in the first
theoretical studies [6,15,16] were considerably un-
derestimated relative to experiment. In more recent
work, several basic assumptions and simplifications
of these early treatments have been subjected to
careful analysis, and attempts were made to go
beyond the most questionable approximations. One
of the most significant approximations is the mean
field (MF) approximation. The effect of correla-
tions neglected in the MF approximation was taken
into account (in different ways) by Lagendijk and
Silvera [ 18] and by Sprik and Klein [19], the effect
of translation-rotation coupling was studied by
Janssen and van der Avoird [20], and the conse-
quences of different forms of the intermolecular
potential were tested by Aviram et al. [17]. Though
a number of important results emerged from these
studies, only small changes were found in the pre-
dicted transition pressure. It was suggested [20]
that many-body effects are responsible for the sys-
tematic underestimation of the transition pressure.
In the present paper, we propose a new approach to
this problem. It is shown that the main discrepancy
between theory and experiment can be removed
even in the MF approximation if crystal field ef-
fects are taken into account.

Another problem that has been intensively stud-
ied in the context of the BSP transition is the
question of the structure of the BS phase. In early
theoretical studies [6,15,17,18], the structure as-
sumed to be Pa3 a-nitrogen structure. The crystal
structure of the high-temperature phase to 120 GPa
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(phase I) was found to be hcp [21], but the struc-
ture of the BS is still unknown. Recent theoretical
search for the lowest-energy structure of the BS
phase based on the local density approxima-
tion [22-24] and ab initio molecular dynamics
simulations [25, 26] suggest a four-molecular or-
thorhombic structure of Pca2; symmetry. On the
other hand, recent spectroscopic data do not rule
out Pa3, at least for p-H, [27].

In the present paper the phase diagram of solid
HD has been calculated. We show that quantum
orientational melting can readily account for the
unusual features of the BSP transition in this sys-
tem. The behavior of the phase transition line in
solid HD as compared with H, and D, is a conse-
quence of the symmetry properties of the system,
namely of the fact that in HD transitions between
all the rotational states are allowed in contrast to
H, and D, .

2. Basic equations

In the MF approximation, the Hamiltonian of
the system of linear rotors interacting via qua-
siquadrupolar forces can be written in the following
form [28]:

= BL?> - (Ugn + UY, + Un>/2, (1)

where L is the operator of angular momentum; U,

and U, are molecular and crystal field constants; B

is the rotational constant; n =V4m/5 <Y, > is the

order parameter; and <. . .> denotes thermody-

namic averaging with the Hamiltonian [Eq. (1)].
The MF constant

_ apys _ap o
U, = z Z Vi Op Ofr 2)
ff' apyd

where Vv is the interaction matrix, defined by the
parameters of the intermolecular potential and by
the lattice parameters; Q?B = QGQB -5 60(5 . f
numbers the lattice sites; Q is a unit vector along
the equilibrium orientation of the molecule in the
site f.

While the molecular field is generated by the
coupling terms in the intermolecular interaction
potential, the crystal-field term [2]

4
Uy =- ?n > B(RpY(Qp) 3
5

originates from single-molecular terms in the inter-
molecular potential. Here B(Rj) is the radial func-
tion characterizing the anisotropic pair poten-
tial [2]; Rs is the radius-vector of the nearest
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neighbors, Qs =R/ R5, and & are indices of the
nearest neighbors.

The orientational state of the system is deter-
mined by values and signs of the molecular and
crystal constants, and can be described by positive
and negative order parameters. In the case of a-N,
and the low-temperature phase of o-H, , U, > 0 and
U, =0 (more precisely, the second-degree term is
zero, but higher-degree terms do exist); for 3-O, ,
Uy<0 and U, >|U | and the order parameter is
positive. For y-O, , both molecular and crystal field
constants are negative, a negative order parameter
describes precession of disc-like molecules. The
states with the negative order parameter can be
treated as the orientational analog of the easy-
plane-type ordering in magnets.

As shown in Ref. 28, even very small crystal
fields can substantially change the behavior of the
system. For positive U,, the main difference with
the case of U, =0 lies in the fact that the orienta-
tional phase transitions, instead of separating orien-
tationally ordered and disordered states having gen-
erally speaking different symmetry, separate more
and less ordered states of the same symmetry. Thus,
these phase transitions are of the order-order type.

The most characteristic feature of the system at
negative values of the crystal field (compared with
that at U, = 0) is that states with a negative order
parameter can exist as thermodynamically stable
states of the system along with the states having a
positive order parameter. The phase transitions oc-
curring in the system at negative crystal fields are
the transitions between two different ordered
states, the easy-axis orientational states with the
positive order parameter and the easy-plane orienta-
tional states with n <0.

In principle, the crystal-field term can be de-
duced from Eq. (3). It is proportional to a product
of such quantities as & =c/a - V8/3 , the devia-
tion of c¢/a from the ideal hcp value; &, =
=b/a — V3, the deviation of b/a from the ideal hcp
value in the case of the monoclinic distortion, and
P,(cos B)) = ¥ C05290 — 1,2, where 6, is the polar
angle of the central molecule respective the c-axis.
None of these quantities are known to sufficient
accuracy either from experiment or theory. That is
why the reduced crystal field will be treated in the
present study as a parameter of theory.

3. Results and discussion

To find the phase diagram of the system of rotors
described by the Hamiltonian [Eq. (1)], we used
the same computational scheme as in Refs. 10,11.
First, the energy spectrum of the linear rotors in the
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field VY,, was calculated, where V=
=—(Upn +U,;). We used the basis of spherical
functions Y, in which the kinetic energy operator
L? is diagonal. The basis set was restricted to [ =7,
which, within the studied range of V, ensures
sufficient accuracy of calculations for lower levels
of the system. Making use of the spectrum obtained,
we have calculated the free energy F as a function
of the order parameter and of the temperature at
given values of the molecular field and crystal field
constants U, and U,. Then we found the tempera-
ture dependence of the order parameter from the
condition that the free energy of the system is a
minimum (dF/dn =0). Data on the variation of
the order parameter with temperature and molecu-
lar field constant U, allow to receive the phase
transition line for the given value of the crystal
field constant in the coordinates U-T. The locus of
equation dn/dT = oo for different U, is the curve of
absolute instability of the orientationally ordered
phase. The locus of equation F(n,) = F(n =0) for
different U, is the curve of the thermodynamically
equilibrium transitions (r]tr is the value of the order
parameter for which the free energy of the ordered
phase becomes equal to the free energy of the
disordered phase).

Using van Kranendonk’s analytical repre-
sentation [1,2] of the short-range valence potential
of Ree and Bender [29], we have calculated the
molecular field constant U, as a function of relative
compression R,/R, where R, and R are the nearest
neighbor distances at zero pressure and pressure P,
respectively. It was assumed that the BS phase in
solid HD has the same supposedly lowest energy
structure Pca2, as was predicted for solid H, [22-
26]. Finally, to map the BSP transition line into
P-T space, we must use the pressure-volume equa-
tion of state. Although no P-V experimental data
have been reported for solid HD at these pressures,
isotopic differences (at least between H, and D,) in
the megabar range are very small. Thus, we use the
recent x-ray pressure-volume equation of state for
H, and D, measured by Loubeyre et al. [21] (Vinet
functional form).

As expected, the phase transition pressure calcu-
lated under the assumption of zero crystal field
underestimates the experimental value by a factor
of four. As shown in our study of the model system
given by the Hamiltonian [(Eq. (1)] [28], negative
values for the crystal field shift the phase transition
line upward to higher pressures. Figure 1,a, shows
a set of theoretical curves that give the best agree-
ment with the experimental data from Ref. 9. These
curves correspond to reduced crystal fields U, /U,
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c
ceeds in reproducing the distinguishing feature of
the HD phase transition line, i. e. , the nonmono-
tonicity of the curve and a correct position of the
minimum. The steeper temperature dependence
characteristic of the experimental data is principally
due to the effect of orientational correlations, and
in part to the Heisenberg-like term in the HD-HD
intermolecular potential omitted in this study.

In the present paper we consider the crystal field
as a parameter in the theory, and thus the question
exists as to the value and the sign of this parameter
required to gain agreement between theory and
experiment. As follows from the analysis of Eq. (3),
the negative sign of the crystal field is definite, and
the values given above correspond to the value of

; =¢/a—-V8/3, the deviation of c/a from the
ideal hcp value, which was found in the recent
x-ray high-pressure study [21]. A detailed analysis
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r
e we would like to point out that the deformation
of the lattice that gives rise to the negative crystal
field as a response of the lattice to the applied
pressure is in accord with the general Le-Chatelier-
Braun principle.

As one can see, the BSP transition line in solid
HD is similar to the P-T melting curve of 3He
(Fig. 1,b). It is established that the presence of the
minimum in the 3He melting curve stems from the
fact that the entropy of the solid phase exceeds the
entropy of the liquid at low temperatures, where
the thermal properties of the condensed phases are
dominated by spin properties. Liquid 3He obeys
Fermi statistics, with the entropy proportional to
the temperature. On the other hand, the entropy of
solid 3He is that of weakly interacting spin 1,2
nuclei; that is, the entropy of solid 3He is inde-
pendent of temperature and equals to RIn2 (Fig.
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2,a). In this temperature region, the entropy contri-
bution to the free energy is an additional factor that
stabilizes the solid phase.

A similar situation occurs in the case of the
system of rotors. The molecular field gives a dou-
blet-shape ground state of the system; this provides
an extra contribution to the entropy of the ordered
phase, which is equal to RIn2. As a result, in the
low-temperature region the entropy of the orienta-
tionally ordered phase is larger than that of the
disordered phase (Fig. 2,b). Similar to the case of
3He, this is an additional factor that stabilizes the
ordered phase. Above the point of intersection, the
situation becomes «normal» and the entropy factor
stabilizes the disordered phase.

4. Conclusions

The broken symmetry phase transition line in
solid HD has been shown to be an example of
quantum orientational melting. The unusual behav-
ior of the phase transition line (i.e., its P-T mini-
mum) is a consequence of the symmetry properties
of the system, namely, the fact that in HD all
rotational states and transitions between them are
allowed, in contrast to homonuclear isotopes H,
and D,. The systematic underestimation of the tran-
sition pressure characteristic of all theories of the
BSP transition can be removed if crystal-field ef-
fects are taken into account. It was suggested that
the effect of orientational correlations, and specifi-
cally for HD, the Heisenberg-like term in the inter-
molecular potential, should be taken into account to
obtain quantitative agreement between theory and
experiment.
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