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A theoretic analysis of magnon-induced damping I' of quasiparticle states in the normal phase of

doped copper-oxide high-T materials is developed, based on a microscopic model which accounts for the

specific 2D structure of their electron and magnon spectra. Among the obtained energy and temperature

dependences of I in different regimes, the most peculiar is the anomalously early onset of linear

temperature dependence I' 0 T with a doping-independent coefficient.

PACS: 72.10.Di, 74.20.Mn, 74.25.Fy

1. Introduction

The studies of coexistence and interplay between
magnetic and electric properties of layered copper
oxides are one of the most immediate problems in
high-T superconductivity (HTSC). The general
scenario for development of phase states in these
systems with their doping was already established
from the very early experimental data [1]. The
initial compounds are AFM-ordered Mott insulators
with sufficiently high Neel temperature T, , but
this long-range magnetic order is very rapidly lost
under small doping ¢, as evidenced by a sharp drop
of T, with ¢ (until the AFM phase gets absorbed by
the low temperature spin-glass and futher spin-li-
quid phases); this process is followed by the insula-
tor-metal transition. However, the metallic phase of
HTSC compounds cannot be considered as ordinary
paramagnetic one in the usual sense, since it still
preserves the short-range AFM order which is
clearly revealed in its either static and dynamic
properties (see, e.g., Refs. 2—=6 and also the reviews
[7,8]). It should be stressed that, in copper-oxide
materials, unlike common magnetic metals, there
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are two different kinds of fermions responsible for
the conducting and magnetic properties. The con-
ductivity is mainly determined by the charge carri-
ers (holes, either mobile or localized) from the
doping, whereas the strong magnetic correlations
are mainly produced by the localized «core» spins.
Also, these two kinds of particles are spatially
separated: the carriers predominantly occupy the
oxygen sites, and the core spins are those at copper
sites. Notably, the destroying of long-range mag-
netic order in cuprate CuO, layers preceedes the
appearance of metallic conductivity in them; hence,
at low concentration ¢ of dopants, the HTSC com-
pounds are still typical doped semiconductors with
shallow acceptor levels and hopping type of conduc-
tivity (in particular, for the lanthanum system this
is true at ¢ < 5%, while the acceptor binding energy
is g, = 35 meV [9,10]). It follows from the aforesaid
that the proper theoretic description of the break-
down of magnetic order and of the insulator-metal
transition in HTSC (at least, for small ¢) perhaps
cannot be based on commonly used translationally-
invariant models. (The very number of such models,
including different magnetic mechanisms of pairing,
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is too long to be counted, many of them are dis-
cussed in the reviews, Refs. 11-15.)

At the same time, attempts have been made
[16,17] (see also Refs. 18,19) to consider these
problems, starting from the primordial importance
of disordered (impurity) character of weakly doped
HTSC compounds. Initially, mainly due to the
change of the oxygen component, the acceptor le-
vels with localized holes on them appear in AFM-
ordered cuprate planes (this localization is greatly
facilitated by the striking 2D character of HTSC
electronic properties). At low ¢, these «impurity»
holes give rise to a disordered spin subsystem on
which the regular spin excitations (magnons) are
scattered and hence damped. As a result, the long-
range magnetic order gets destroyed and there ap-
pears such a minimum value &, of wavevector that
the magnons with k < k_. cannot exist because of
strong damping. At lower concentrations this value
is estimated as k. ~ ca™!, but at higher concentra-
tions (metallic ones including (see Ref. 20)) it is
changed for &, ~ V_c7cf A, where Ag is the
Bloch domain wall width and ¢, is the concentra-
tion where the decaying T(c) meets the freezing
temperature of spin-glass transition. Hence the ma-
terial can be considered magnetically disordered at
distances » > k;fin =& .., Where & is the mag-
netic correlation length. This finite length is deter-
mined by the doping rather than by the tempera-
ture. Nevertheless, magnons with &>k . = still
exist and the magnetic order at distances r < Emag is
preserved (at least, at time scale < Emag/ v, , where
v, is the magnon velocity).

When the concentration grows up to ¢ > ¢,
where ¢, = €,/W is the characteristic concentration
for insulator-metal transition (W is the whole con-
duction bandwidth), the Fermi level of free (hole)
carriers is formed, manifesting the onset of metallic
conductivity. It was shown that, within the scope of
Lifshitz’s impurity model, which is appropriate for
HTSC materials, the 2D systems are in fact more
favorable (at small ¢) for this transition than the
3D ones [17].

However, the two above mentioned problems
were treated in Refs. 16—18 independently: the
destroying of magnetic order was calculated with
neglect of the band of free carriers (the indirect
interaction between localized hole spins was only
considered as mediated by the spin-wave band). On
the other hand, the localized core spins were ig-
nored as possible scatterers for electronic excita-
tions in calculating the characteristic concentration
¢y - Undoubtedly, a more conclusive description of
HTSC compounds should take both factors into
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account simultaneously: scattering of free carriers
on localized spins and indirect interaction between
localized spins via the conduction band (in real
cuprates, the valence band). This determines the
purpose of the present work, to study the influence
of magnetic order in cuprate layers on electronic
processes at metallization.

The consideration below is restricted to only
effects by magnon (Bloch-like) excitations with
k>k_ .. ,leaving mostly aside the low-energy spin
excitations which arenot described by the wavevec-
tor (spin fluctuation states). In other words, we
consider the presence of magnon excitations in addi-
tion to the delocalized charge carriers, although the
long-range magnetic order is absent. The main re-
sults of this analysis are the energy and temperature
dependences for the magnon-controlled inverse life-
time I of electronic quasiparticles near the Fermi
level, specific for 2D system. In particular, a linear
temperature dependence '(T) is found to be concen-
tration independent and to begin from lower tem-
peratures than follows from the known estimates in
literature. This behavior can contribute consider-
ably to the broadly discussed linear temperature
resistivity in the normal phase of high-T', mate-
rials.

2. Hamiltonian and Green functions

We choose the basic model which joins in a
simple way the models previously used for descrip-
tion of the magnetic [16] and electronic [17] parts
of the HTSC system (bearing in mind for instance
the compound La,CuO,4):

H=H,+H +H

s—el ?
Ae (k=K'
_ + _ BRe i(k-k’ +
Hy=Y gagsa,-y 5 ¢CPa g,
k.o pkK,o

=3 Qaby by . (1)
q.7

_ +
Hs—el - z %’1((1)%1;101(_%1 - ak,iak—q,TE(bqi - btq1) +

k,q,j
+ + +
+Y,(Q) %’k,T"k—q,l tag G q, E(bq2 + b-q2) E

Here N is the number of elementary cells in the
lattice, @y ; and bq]. are respectively the Fermi and
Bose operators for electronic and magnon exci-
tations. They are labelled by two-dimensional wa-
vevectors k and ¢, with o =1, ! related to the
carrier spin states and j=1, 2 to FM-like and
AFM-like magnon branches, and characterized by
the isotropic dispersion laws in the long wavelength

Fizika Nizkikh Temperatur, 1998, v. 24, No 7



Effect of electron-magnon coupling on the electronic spectrum of weakly doped high-T  compounds

region: g_= 7’k?,/2m and sz.(q) = Qéj + %02q°. The
effective mass m, the magnon velocity o, and the
spin-wave gaps ng can be expressed in terms of
microscopic interaction parameters:

m = 212 /ta?, v,=Ja/h,

Qg1 = sz V2JAT,, Qg2 =szV2JN, . (2)

For illustrative purposes, we shall use through-
out this paper the parameter values for La,CuO, :
the oxygen-oxygen hopping matrix element ¢ =
= 0.6 eV, the AFM exchange constant J = 0.1 eV,
the rhombic anisotropy AJ; = 107 meV, the tetra-
gonal anisotropy AJ, = 807 meV, the Cu?* spin
s =1/2, the in-plane coordination nuomber 2 =4, and
magnetic lattice parameter @ = 5.4 A. This gives m
of the order of the free electron mass, the band-
width W=mt=2eV, Qg1 =1 meV, ng = 2.5 meV,
and o = 107 c¢m/s (note that the latter value is
comparable to typical values of the Fermi velocity
v, in the metallic phase of HTSC compounds).
Finally, Ae> 0 in (1) is the shift of the local
oxygen level from its initial position because of
Coulomb field of the doped ions (see Ref. 17).

The spin-electron coupling H,_, is derived from
the standard Shubin-Vonsovsky model, using the
specifics of spin structure for La,CuO, [16], then
the coupling parameters are

1,/2
oo’ (3)
V](Q) J E’WB )

where J' is the exchange parameter between the
core spin and a carrier spin at the nearest neighbor
oxygen site (it is supposed to be of the order of or
even greater than J). Thus, formally this interac-
tion is quite similar to the common electron-phonon
coupling in metals, which was studied in detail by
Yu. Kagan and co-workers (see, for example,
Ref. 21). However, as will be seen below, the
model under consideration possesses certain speci-
fics, due to the 2D dispersion of either electron and
magnon bands and to the absence of the usual
adiabatic relation between the corresponding veloci-
ties. Of course, one can also derive the electron-
electron coupling (d-wave superconducting) from
H_,, but the analysis below will be restricted only
to normal phases.

In addition to the above discussed translation-
ally-invariant terms, the Hamiltonian, Eq. (1), na-
mely, its H, part, also contains the perturbation
from dopants on oxygen sites p, distributed chaoti-
cally with concentration ¢ (the minus sign before
Ag accounts explicitly for attraction of carriers to
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charged dopants resulting in hole conductivity). In
this study we focus mainly on the effects in elec-
tronic spectrum, so that impurity perturbations
(such as, e.g., modification of the parameters J and
J' near impurity sites, due to the evident shifts of
the on-site electronic levels) are not included in H|
and H__ . The corresponding effects can be ac-
counted for implicitly by restricting the sums in the
magnon wavevector to ¢ > k_. and adding instead
certain sums over (chaotic) spin fluctuation excita-
tions. But to begin with such a so complicated
problem, we shall at this first stage simply ignore
the disorder effects in spin spectrum, and, only after
obtaining the physical results, they will be checked
with respect to the effects of spin disorder.

As usual, we shall infer the single-particle elec-
tronic properties from the Fourier-transformed two-
time Green’s functions (GF)

[29)

g1 () = Wiy o | ay ;=i | O Qo (1), a JOdt
0

(4)

where {.,.} is the anticommutator and L[l..0 the
quantum-statistical average. Their poles in the com-
plex energy plane determine the energy spectrum
and damping of quasiparticles.

A necessary pre-requisite for studying the impu-
rity effects is a detailed knowledge of dynamics for
the «background» uniform system (often this pre-
sents an independent problem in complex systems
such as HTSC compounds). Hence, as a first step,
we omit the impurity term even in H, . Then the
equations of motion for GF, Eq. (4), to the lowest
order in spin-electron coupling, readily yield the
result:

-1
g, (€) = % & T I_Ik(s)g )
My (€) = (5)

@ U= fk—q| * Mg flk-q * Mg
I oN () B oM (1) I
Dk lk—q| 7 k  “k-q| s

where fi =lexp [(g, — €p)/T] + 1)t and
ng; = {exp [Qj(q)/T] - 1)1 are the Fermi and Bose
occupation numbers, and € is the Fermi energy of
the free holes; this coincides with the well-known
expressions, e.g., from Ref. 22. Below we consider
in detail how the properties of electron and magnon
spectra, specific for our system, are reflected in the
behavior of this otherwise comprehensively studied
self-energy term [, (€). Firstly we consider the

=Y vi@
z
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broadening of electronic states close to the very
Fermi level at zero temperature, due to inelastic
electron-electron scattering with creation of mag-
nons. Then we pass to the damping of electronic
states on the Fermi level itself at finite tempera-
tures, including processes with thermal magnons.

3. Damping near the Fermi level at 7 = 0

As long as we neglect the impurity perturbation
Ag, but consider some finite doping level ¢, a
well-defined Fermi level €, =cW /2 exists in the
2D electronic spectrum [17,18]. The broadening I'y
of quasiparticle levels close to € is given by I, =
=1Im My (g,). However, bearing in mind that, in
fact, the metallic state in HTSC compounds onsets
well after the breakdown of long-range magnetic
order, we should not consider quasiparticle energies
closer to € than to the lower boundary energy of
magnons, Q . . Since the latter value exceeds both
spin-wave gaps Q . [16], we can take the magnon
dispersion law in the relevant region to be identical
for the two branches and linear: Q(q=Q g = Tiog.
Moreover, we extend this law to the whole magnon
band, forgetting for a moment the long-wave limi-
tation (we shall recall it at the end of this Section).
Then, using Eq. (5) at T=0, and taking into
account the 2D character of spin-wave spectrum, we
arrive at:

qmax 21
r = rOaJ'qqu' do [8(2k cos § — g + 2k x
0 0

x O, — & —hog) +

+0(2k cos ¢ — g —2k) B(g, — €~ Fivg)], (6)

where ' = 4re) /W, k,=PBk;, and B=o,/vp .
The Fermi velocity depends directly on the doping
level ¢: v, =0, Vc, where v, =V1/2 a(t/h), and,
with our choice of parameters, v, = 7007 cm /s.
Then vy is close to v, (the ratio B is close to unity)
for ¢ being a few percent (this is in striking contrast
with the usual situation for electron-phonon cou-
pling in conventional metals where the sound velo-
city is about three orders of magnitude lower than
v}.). After elementary integration, Eq. (6) yields an
analytic result:

O
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0 k k.- g, 00
+ ks Caresin ?S — arcsin — 3 kDDx
O og
x O(k - k) 6(k -k, +q,) , (N

where q, = (g, - €;,)/(2B%v,;). The B6-functions in
Eq. (7) determine that I, drops to zero below
certain threshold quasimomentum value, namely:
for k < (8k§ + k%:)V2 -2k if <1, and for k < ki if
B> 1. Close to the Fermi surface (at B < 1) we
obtain a quadratic dependence of ', =T(g) on the
quasiparticle energy € =g, — € :

_ o Ue DZ
A ip——— T (®)
ak, VTR 070

which is characteristic of 2D dispersion, unlike the
usual € law in 3D systems [22]. Note that, since
the relation aky = V21, this function increases with
decreasing concentration. In no way does the pre-
sence of the enhancement factor (1 = B2)~1/2 in the
latter formula mean divergence of I'(€) in the «rela-
tivistic» limit B — 1 (reached when the concentra-
tion decreases down to ¢ - ¢, =21/ / W)2): in this
case the quadratic law, Eq. (8), is simply changed
for a £3/2 law: F(ec) = 0.6(J' /J)2W~1/2¢3/2 With
the parameter values adopted in Sec. 2, we come to
the conclusion (at least, when T = 0 ) that the usual
Fermi-liquid condition I'(g)/€ <1 is well assured
for the considered magnon-induced damping in a
rather broad vicinity of the Fermi surface at all
relevant concentrations ¢ > ¢ .

To conclude this Section, we estimate the region
of validity of Egs. (7), (8) with respect to the
above mentioned neglection of spin fluctuation sta-
tes. In fact, the integration over ¢ in Eq. (6) is only
legal for g > k_. (see Sec. 1), hence the result, Eq.
(
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se if g, < 2k . . Then, with the estimate
kmin ~c(J'/T )2a' for a minimum magnon wavevec-
tor at T =0 [16] the formula, Eq. (8), is found to
fail only within a narrow fluctuation region:
le| < g~ cJ'?/J. At the boundary of this region, we
have  the  Fermi-liquid  ratio F(s )/€

~V1e/2 J'*/WJ3, which is considerably smal{er
than unity. At least, the simplest assertion on the
behavior of ' within the fluctuation region is ob-
tained by changing the «magnon density of states»
factor ¢ in Eq. (6) by a constant value ~ k_. ~at
qg<k which gives I'(€) ~ F(ef) at [g] < £, when

min

xdx

I

it is impossible to speak about undamped quasipar-
ticles.

4. Damping of Fermi states at finite
temperatures

Using explicitly the &-function relations in the
occupation numbers f . and ng; in Im My (g,) at
€ = & , the temperature dependent broadening at
the very Fermi level can be obtained from Eq. (5)
in the simple form:

1+
9

[ o(T) = 2 jak,,

+J' xdx
o sinh@Jakpx/T) Vi = @ +x)? = sinh (2Jakpx/T) VI = (B - x)?

EI

This expression exhibits a crossover from quadratic
function of temperature:

r ol
rn=— " 0,0 (10)
2ak, V1 -p* 07 O

at low temperatures: T << 2Jaky (which decreases
as a function of ¢ alike [(€), Eq.(8)), to linear
function of temperature at T >> 2Jak; = ZQj(kF)
which, remarkably, is concentration independent:

rszrOT;T. (1)

Such a crossover is rather clear, if we notice that
the thermal magnon wavevector g, = T /fiv exceeds
the diameter 2k, of the Fermi circle just at
T > 2]ak,. , but the independence of Eq. (11) on
k. is another characteristic feature of 2D disper-
sion, also in striking contrast with 3D systems. The
crossover temperature found from comparison of the
values, Eqs. (10), (11), is T,_, = 2Jak, V1 - B? /T
In fact, this crossover, as seen from direct numeric
calculations, using Eq. (9) and the parameter va-
lues chosen in Sec. 2 (Fig. 1), occurs even earlier,
at about 0.6T,_, , which is essentially lower than
the commonly considered value T',_, ~J [23].

Taking into mind the estimate, in the end of the
previous section, for the fluctuation limit (g)
of the broadening close to the Fermi level, it fo{—
lows that this constant limit can be reached for
Ix(T), with lowering temperature, at some value
Tf~ Ve v/ nr,_, . which is yet much lower than
the crossover temperature value.
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