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Spin relaxation measurements in solid 3He in the temperature region where exchange dominates the
behaviour are reviewed and re-analysed. A model is adopt=d which conflates the complex exchange
modulation of the dipolar interaction into a single correlation time. This may be regarded as introducing
an effective pairwise exchange Hamiltonian. Within the confines of this model new procedures are
proposed for obtaining mathematical expressions for the dipolar autocorrelation function and the
spectral density functions which determine the relaxation times. By the appropriate treatment of
short-time and long-time asymptotic behaviour, together with a method for taking into account the
mid-range behaviour, it is possible to fit the experimental data extremely well. The very success of this
procedure seems surprising in the light of muitiple spin exchange in solid 3He. 1t is an indication that
the dominant exchange processes all scale with density in a similar way. This is supported by path
integral Monte Carlo calculations. Some consequences and implications of this are discussed.

PACS: 67.80.Jd

1. Introduction

Although Thouless [1] pointed out the impor-
tance of multiple spin exchange in solid 3He quite
some time ago, it was really only with the discovery
of the low temperature spin-ordered phases that its
real significance was appreciated [2]. Certainly,
thermal capacity and magnetization measurements
in the paramagnetic phase exhibited some devia-
tions, but the existence of the uudd phase was
simply incompatible with pairwise Heisenberg ex-
change. In retrospect it is surprising that the pair-
wise exchange model was found to be so successful
in the explanation of the higher temperature NMR
behaviour of solid 3He. It is this question which,
ultimately, is addressed in the present paper.

Traditionally NMR has proved a particularly
fruitful tool for the study of exchange in solid 3He.
The use of NMR provides a fairly direct probe of
spin behaviour through the measurement of spin
susceptibility, spin relaxation times and spin diffu-
sion. In the temperature range around 1 K the spin
relaxation is determined solely by internuclear ex-
change. Here the temperature is high enough for the
exchange <bath» to be tightly coupled to the lat-
tice, while it is low enough for there to be negli-

gible thermally excited vacancies. Historically this
was seen in spin relaxation times which were found
to be independent of temperature, but which varied
rapidly with density [3].

2. Spin relaxation — the formalism

Spin relaxation in solid 3He in the vicinity of 1 K
is caused by the exchange modulation of the inter-
nuclear dipolar interaction. The relaxation times
T, and T, for this system are given by

'717 = J (@) + 4,00 , (1)

1 3

5 A
T;"'ilo(o) +5 Jy(@) + J(2w) (1b)

where the spectral density functions J,(w) are the
Fourier transform of the corresponding dipolar cor-
relation functions G, (t):

Tr {D,()D,(0))
Gm(t) = —W-(I?}— ¥}

and D, are the components of the dipolar Hamil-
tonian -

* Present address: National Centre for Scientific Research «Demokritos», Athens, Greece.

© Brian Cowan and Mihail Fardis, 1997



Exchange and spin relaxation in solid 3He
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The spin part of the interaction is contained in the
second order spin tensor operators T7:
=rV-31[

z7°2?
=\N3/2 (B, + I B} =~T i)

=\B2L I, = (T

where the index m denotes the total spin flip
induced.

The exchange interaction originates in the large
zero-point motion of the 3He atoms which results in
the movement of atoms among the lattice sites. The
crucial point for multiple spin exchange is that the
hard cores of the atoms can favour the coherent
exchange of more than two particles (1]. However,
since 3He is a spin 1,/2 Fermion, an equivalent
description of this bodily motion is possible in terms
of a spin exchange Hamiltonian. This may be writ-
ten as

Hx == 2 (_1)n-ln Pg 3

where n labels the number of particles in each cycle,
J, is the exchange frequency for that n particle
exchange and Pg is the generator of that permuta-
tion of n spins.

In the bce phase the dominant 2-, 3-, and 4-spin
exchange frequencies are of similar order of magni-
tude (~ 107 Hz). However since exchange of an odd
number of particles is ferromagnetic while exchange
of an even number is antiferromagnetic, the resul-
tant exchange can be small; a consequence of inex-
act cancellation the ferromagnetic and the antiferro-
magnetic tendencies. Thus we have a frustrated
system and there is no a priori reason to expect the
observed behaviour to be ferromagnetic or antiferro-
magnetic. Indeed different properties of such a
system can exhibit different characteristics. This is
particularly striking in two-dimensional solid SHe
films, to be discussed for comparison in Sec. 11.

The lattice structure of the bec solid means that
next-nearest-neighbour exchanges should also be
considered. This, together with the variety of mul-
tiple spin exchange cycles leads to a complex dy-
namical system, although there is a simplification
which follows since three spin exchanges can be
expressed as a superposition of pairwise exchanges.
Notwithstanding these complexities, we shall start
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by considering a simplified and idealized model.
The plan of this paper is to study, initially, in detail
the consequuences of the pairwise Heisenberg ex-
change Hamiltonian. It will seen that this mode! is
found to be quite consistent with spin relaxation
measurements! Having done we will then attempt
to explain the reasons for this apparent success in
the light of the current understanding of multiple
spin exchange. So for the present the cxchange
Hamiltonian to be considered is

nn
Hx =-2J Z [111 (4)

i<j

where i and j label the spin sites and the sum is
taken over nearest neighbours.

We now have a well-defined problem for solu-
tion. Given the expression for the exchange Hamil-
tonian the time evolution of the dipolar components

is given by
iH t iH t
D, (t) = exp 7 JDm exp (— 7 ]

which, from Eq. (2), gives the dipolar autocorrela-
tion function. Fourier transformation then gives the
spectral density functions and from Eq. (1) the
relaxation times may be found. Unfortunately, as is
common in systems of this complexity, the problem
does not have an analytic solution. Thus resort must
be made to approximate methods. In the following
sections we will review the traditional approaches
to this, before describing an improved treatment in
Sec. 7.

3. Moment expansions

At short times the dipolar autocorrelation func-
tion may be expanded in powers of time as

G(t)——{M2 12-Mt+ } )

The coefficients expressed in this way correspond to
the conventional moments of the absorption li-
neshape. The important point about such an expan-
sion, as first noted by Waller [4], is that such
moments can be calculated exactly without requir-
ing a complete solution of the problem. Admittedly,
evaluation of higher-order moments becomes in-
creasingly difficult, but by diligent application
and/or with the aid of a computer meaningful
results may be obtained. For our system the second
and fourth moments have been evaluated. The sec-
ond moment is
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9C yin?
M, =—
2720 &5

where a is the lattice spacing and C is a constant

which depends on the crystal lattice:
€ =12.25 for bec lattice,

C = 14.45 for hcp lattice.
And the fourth moments are evaluated to be

M, =22.8M, J* for bec lattice,

M, =42.0M, J? for hcp lattice.

Note that, as expected, the second moment is inde-
pendent of motion, here parameterized by J, while
the- fourth moment is strongly dependent on J.
Armed with very little else, the conventional ap-
proach at this point is to choose an appropriate
functional form for G(f) which is consistent with
these values of M, and M, .

4. Traditional treatment

Experimentally it is observed, from T, measure-

ments on solid 3He, that the spectral density func-
tion J(w) is reasonably approximated by a Gaussian
in the hcp phase and by a decaying exponential in
the bcc phase. Thus the hep correlation function
G(t) should be approximately Gaussian, while that
for the bce phase should have a Lorentzian profile.
In the conventional treatment of exchange induced
relaxation in solid 3He the calculated M 5 and M,
are fitted to these functions. Taking the Fourier
transform then yields expressions for the spectral
density functions from which the relaxation times
may by found as a function of J:

bee : hep
MZ 1 M2 M4
t) = — = — -
O oM, 907 e""( 77, ‘2}
But since M, is known in terms of M, and J then

Git) = M,
EIETRIRT
And taking the Fourier transform yields

0.31M, o 0.05M, o2
= - . W) = -
J@=—7 exp[ 3.38]) J@== exP[ Eu_z}

Gty = %—3 exp (—-21]21!2) .

from which méy be found the relaxation times as a
function of the exchange frequency J and the Lar-
mor frequency .
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These spectral density functions make definite
predictions about the frequency dependence of the
relaxation times, in particular that of T,. And in
practice these are not quite consistent with the
extensive experimental data available. Since these
expressions have a single frequency parameter J and
the coefficient of /J is fixed by the short time
expansion, while the functional form of the high
frequency behaviour might be correct it is not
possible to ensure precise numerical agreement as
there is no free parameter with which to scale the
frequency. This casts doubt on the values of J
inferred from these analyses. A previous attempt at
improving these functional expressions has been
made by Guyer et al. [5].

The problem is one of obtaining a plausible ap-
proximation to the spectral function on the basis of
limited information. Put another way this means
making the best possible use of all information
available. Thus far we have used knowledge of the
short-time behaviour of the autocorrelation func-
tion. In the next section we will see that informa-
tion is available about its long-time behaviour. And
in Sec. 6 we will see that something may even be
said about intermediate behaviour as well. All in-
formation will be drawn together in Sec. 7 where
<«improved» expressions for the spectral den-
sity /correlation function will be obtained.

5. Spin diffusion

The flip-flop nature of the exchange interaction
means that any excess magnetization in part of the
specimen will gradually become distributed uni-
formly. This diffusive process is very much slower
than that found in fluids, but it may still be
observed by the technique of spin echoes in a field
gradient [6]. ‘ '

Since J is the rate at which the |Tl) spin configu-
ration changes to the [Tl) configuration, a simple

‘counting argument implies that the order of magni-

tude of the diffusion coefficient for the magnetiza-
tion will be = Ja®. Once again, exact calculation of
this relation, to find the numerical coefficient is
impossible. However a moment method of approxi-
mation [7] may be used, and it is actually possible
to place bounds on the value of the coefficient [8].
The best estimates are found for the two lattices, to
be )

D =0.655J& for bee lattice,

' D =0.860 J@2 for hep lattice.
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These relations are well-supported by spin echo
measurements {9—-11].

Now diffusion is a hydrodynamic process whose
validity is limited to the long wavelength, long
time limit. At shorter times and distances the pre-
cise details of the atomic motion become important.
So far as spin relaxation in solid 3He is concerned,
this has the implication that both the long-time
behaviour of G(t) and the small-frequency behav-
iour of J(w) are determined by the spin diffu-
sion [12). Thus one has the asymptotic expansion

Lin kRPN ()

G - sz D32

where o is the spin density. This diffusive hydrody-
namic behaviour has its corresponding effect in the
frequency domain. There one has :
ZYQ

J@) = J(0) 30 55T © ™
In both these expressions D may be eliminated in
favour of J. From Eq. (7) the behaviour of J(w) at
short frequencies provides another means of measur-
ing the spin diffusion coefficient [12]. This allows
the observation of smaller values of D, which may
be further extended through T,, measurements.
Observe that J(o) is not analytic at the origin. This
is in contrast to the exponential and Gaussian
functions discussed in the previous section.

In Sec. 3 we obtained an expression for the short-
time behaviour of the dipolar autocorrelation func-
tion G(f). In this section we have obtained an
expression for its long-time behaviour. Any approxi-
mation function should satisfy both these condi-
tions.

6. Universality and the T1 minimum

It is well-known that a minimum in T, occurs as
the correlation time of the motion varies at a given
Larmor frequency. And the frequency at which the
minimum is observed gives an order of magnitude
estimate for the motion speed. The minimum in T,
is related to the behaviour of the spectral density
function in its middle range. In this section we shall
formalize these ideas [13]. This will allow us to
augment the long- and short-time behaviour of
G(t) with further information which any approxi-
mation function should respect.

Within the framework of the Heisenberg pairwise
exchange model there is a single microscopic time

~ J~! which characterizes the microscopic dynami-
cal behaviour of the spins. From this a number of
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general inferences may be made about the relaxa-
tion in such cases. This may be seen in the following
way. Let us write the autocorrelation function G(t)
as the product of its initial value G(0) and a
normalized shape function g:

G(t) = G(O)g(t/ ) .

The shape function g(t/7) is unity at ¢ = 0 and its
dimensionless argument ¢/t indicates that 1 is the
characteristic time of this system; it is the natural
time unit in terms of which the dynamical behav-
iour of the system scales. Note that for simplicity
we are considering a rotationally invariant system
so that G(£) need not be encumbered by a spin-flip
subscript.

The spectral density function J(w) is found from
the Fourier transform of G(t):

Jw) = J' G(0)g(t/1) exp (iwt) dt

~—o0

which, on changing variables of integration through
x = t/1, may be written

J(w)

where j(z) is the Fourier transform of the shape
function g(x).

For simplicity let us start with the simplified
expression for T,

= G(0)tj(w7)

1
7.-"=J(0))

where the double frequency term has been ne-
glected. It is a straightforward matter to show that
this does not detract from the validity of our gen-
eral conclusions [13], by subsuming the double fre-
quency term into a composite J(w) function. The
simplified expression for T is now

1 .
T, = GO)tj(wr) .

If we divide this expression by T or multiply it by
o then the resulting expressions 1,/(T ;1) and ©/T,
both depend on @ and 1 only through the product
ot

;‘— = G(0) j(wr) , (8)
1
Tﬂ = G(0) o j(w) . (9)
1
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This means that T, measured at fixed T, by varying
®, and T, measured at fixed o, by varying 1 will
both be, for a given system, universal functions of
@t [14]). Thus data plotted in these ways will fall
on single curves. This will be seen in Sec. 8. For the
present, our concern is to discuss the T'; minimum.

Generally (except in very unusual circumstances
where j(0) diverges) j(z) starts from j(0) and in-
itially it is a slowly decreasing function of its
argument, as in Eq. (7). The product zj(z) starts
from zero when z is zero, initially growing linearly.
However for large 2z the decay of j(z) will outweigh
the linear growth of the z prefactor and the product
will decrease. So somewhere in between, when z is
of the order of unity, at z = 2’ say, there z;(z) must
have a maximum.

Looking at the expression for T, as a function of
7 (at fixed frequency), Eq. (9), we see that the
existence of a maximum in zf(2) tells us that there
will necessarily be a minimum in T as the charac-
teristic time is varied. The <positions of the T
minimum is given by @yt =2’ or

T in=z'/m0'.

Thus when a minimum is observed, to within a
constant of the order of unity, the characteristic
time of the motion may be estimated by the Larmor
period. The value of T{ at the minimum may be
written, from Eq. (9) as

1 _GOZi)
TR Wy

or, since G(0) = M, /3, and denoting the number
Z’j(z’) by K1

T Pin = 31<-—-.
M

2

We see that at the minimum the value of T, is
proportional to the Larmor frequency. The number
K depends on the shape of the autocorrelation
function or the spectral density function. Thus, for
example, for a Gaussian correlation function
K = 0.657, while for an exponential K =1. The
value of K for a given system may be found from
observations of T, minima over a range of frequen-
cies. This information, also, may be used in the
approximation of the spectral density and autocor-
relation functions.

7. Approximating G(t) and J(w)

We now consider specifically the bcc phase of
solid 3He, and we proceed to the construction of an

602
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Fig. 1. T, minima at different Larmor frequencies for bcc 3He:
o - Rlchardson, Hunt, and Meyer (1965), @ — Richards,

Hatton, and Giffard (1965), ® — Reich (1963), ¢ — Chapel-
lier, Bassou, Devoret, Delrieu, and Sullivan (1985).

approximate spectral density function which is con-
sistent with (i) the short-time microscopic moment
expansion of G(t), (ii) the spin diffusion in the
hydrodynamic limit, and (iii) the K value charac-
terizing the mid-range region of the T; minima. In
order to find the value of K we have collected
together T; minimum observations which we have
plotted against Larmor frequency in Fig. 1. The T
data have been divided by the square of the molar
volume to remove the small dependence on M,
which is also present when the characteristic time is
varied by changing the density. The straight line
through the data is given by

T“““(m ms) 58261 20.)0 y.
m 826-107¢ — (m MHz

This «fit» to the data takes account of the larger
experimental error in the data point at 50 MHz.

The functional form adopted to approxxmate
G(t) is given by

Ge) _ % %
Go) 1+ b212t7)4 (1 + 622t

where the parameters q, , a, , by , b, are chosen to
satisfy the above-mentioned criteria. The second
term of this expression gives the correct long-time
behaviour, while its Fourier transform leads to the
corresponding short-frequency form. The expression
for the spectral density approximation function can
be written in analytic form as

Fizika Nizkikh Temperatur, 1997, v. 23, Nos. 5/6
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2

J@) _ F f(o)
G(O)-%b,.l{[zrf]*’s(,JJ+15[,J]+15}x
. . \/4
xexP[ ) 2 T .-( W(WJ KV{EQJ

(10)

while the values for the parameters are

a, =0.840, a)= 0.160,

by = 1.768, b, = 2.736,

I is the gamma function and K is a Bessel function.
We have also inclided a factor £ by which the
lattice sum value of M, is renormalized as a conse-
quence of the zero-point motion averaging the inter-
particle spacing a [15]. We find a value of
& = 0.787; further discussion of this is deferred until
Sec. 9.

The adiabatic part of T, is given in terms of the
zero frequency value of J(w):

which is the quantitative manifestation of the quali-
tative result T3'=M,yt.. In other words
1. =0.270/J; we see that J is a measure of the
charactenstlc time for the exchange, but now with
a precise numerical multiplier.

8. Universal plot of relaxation data

In Fig. 2 we show a plot of all published T,
measurements on SHe in the bec phase presented in
«reduced» form.

We know, in general, from the discussions of
Sec. 6, that for a given system T, /J is a single-val-
ued function of @,/J. Now since the exchange
frequency J is proportional to the frequency at
which the 7, minimum is observed, it follows that
the same universal behaviour will be displayed
when plotting T, divided by the frequency of the
minimum against Larmor frequency divided by the
minimum frequency. This is plotted in Fig. 2,
where the T, values have also been divided by the
square of the molar volume to account for the
variation of M, (and thus G(0)) with density.

The experimental points are seen to fall very well
on a single curve. At higher frequencies there is
some discernible deviation from the universal be-
haviour which we ascribe to differing crystal orien-
tations; the analysis makes the assumption of a
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Fig. 2. Reduced blot of T, data for bec 3He together with
«theoreticals curve: O — Richardson, Hunt, and Meyer

(1965), O — Richards, Hatton, and Giffard (1965), A —
Thomlinson, Kelley, and Richardson (1972), V — Bernier and
Guerrier (1983), 0 — Chapellier, Bassou, Devoret, Delrieu,
and Sullivan (1985), ® — Reich (1963), X — Kirk and Adams
(1972), + — Beal, Giffard, Hatton, Richards, and Richards
(1964).

polycrystalline sample, taking averages over crystal
orientation. In the low-frequency region it is seen
that the data of Richards et al. [3] fall consistently
below the other points. It is believed that this is a
consequence of inaccuracies in the determination of
the molar volume of their crystals.

Having the relaxation data presented in this way
facilitates the testing of proposed <theoretical»
forms for the spectral density function J(w). We
have the proposed function in Eq. (10). For this
function the relation between the exchange fre-
quency and the frequency of the minimum is found
to be @f" = 2.42J. Use of this enables Eq. (10) to
be piotted on the graph of experimental data. The
solid line in Fig. 2 shows this. We conclude that
Eq. (10) does indeed provide a good approximation
to the functional form of the spectral density func-
tion.

The result of all these considerations is that the
exchange frequency can be deduced in a consistent
manner from the measurements made at each molar
volume. And the best fit to our analysis yields

V_(cm3) ¥
J 1408 ——’"—-1 MHz (11)
2n 24 )

where the exponent 1y = 18.3. This compares favour-
ably with the results obtained by other means [16].
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_
min
fo/fo
Fig. 3. Second moment sum rule for bec 3He. (Key as for
Fig. 2).

9. T, sum rules and moment\‘§

Moments were introduced originally in the study
of the transverse relaxation. However since, as we
have seen in Eq. (5), there is a close connection
between the moments and the autocorrelation func-
tion G(¢), and furthermore since the spin lattice
relaxation is related to J(®) which is the Fourier
transform of G(t), it follows that T, and the mo-
ments must be related. We shall investigate such
relationships in this section.

Starting from the expression for the dipolar T ,
Eq. (1a), by a change of variables in the Fouriér
integral for the double frequency term, we can
write

oo

71_ = J {G(t) + 2G(t/2)} exp Giwt) dt .
1

Again we have assumed rotational invariance for
simplicity but the generalization to distinct G,(t)
and G,(t) functions is straightforward. If we now
invert this Fourier integral we obtain

1 [ exp(-iwt)
- j '__T——, do

G(t) + 2G(t/2) =

—o0

and then expansion in powers of time leads to

= G™0) > G0 (Y
o035 000
n=0 n=0

604

(-1 )"m"t"
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Equating powers of time then gives, since for even
n the integral is symmetric,

I 9 o= 1y 1+ ——) ™)
: Ti- 2n—1

which leads to a set of frequency sum rule expres-
sions for T; for increasing n. And the sum rules can
be expressed in terms of moments, using the rela-
tions established in- Eq. (5). In this way, for
n=0, 2, 4, for example, we obtain

o0 L d o0

2 4
'T_ an' »° dw g‘Mv o)dmi_is:EM

in the case of rapid motion.

If one has a set of T, data taken over a range of
Larmor frequencies then the natural inclination is
to interpolate smoothly between the points while
extrapolating in an intelligent way beyond the end
points. Relations such as the sum rules above pro-
vide a test of the validity of such procedures. One
can immediately tell if all the area of J(®) has been
exhausted or if there is some unforeseen behaviour
hiding between or beyond the experimental points.

In the present context the M, sum rule may be
used for a determination of the renormalization
factor € alluded to in Sec. 7. The area under the
«universal» plot of T, data in Fig. 3. gives the
renormalized value for M, and the line shown .

MHz-cm®/ms
g

min_ 2
Va/T,,
N W
o O

2
o) fo

-
(=]

min

Ut/
o

Fig. 4. Fourth moment sum rule for bec He. (Key as for .
Fig. 2.)
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corresponds to our spectral density function of
Eq. (10), with § = 0.787.

Since M, = const-M, J? it follows that M, will
be renormalized by the same factor. The area under
the euniversals plot of T, data in Fig. 4. gives the
renormalized value for M, and the line shown
corresponds to our spectral density function of
Eq. (10), with the chosen & = 0.787. The fit of the
line through the experimental data is not so good in
this case, particularly when f/f 3““ > 1. This plot
enhances the high-frequency discrepancies in T';
what we see here is a magnified version of the
high-frequency deviations of Fig. 2.

10. Multiple-spin exchange

The reality of the situation is that pairwise Heis-
enberg exchange is not adequate to describe the zero
point motion in the bee phase of 3He. This becomes
evident at lower temperatures. Thermal capacity
and magnetic susceptibility may be analyzed on the
basis of pairwise exchange, and theoretical expres-
sions for these properties may be obtained as power
series in inverse temperature. At lower tempera-
tures, where higher order terms become important,
the experimental data are not consistent with the
simple Heisenberd model. And at even lower tem-
peratures there is a phase transition to a complex
antiferromagnetic spin-ordered phase which defi-
nitely requires multiple spin exchange for its expla-
nation.

This being the case it is then paradoxical that the
scaling treatment of relaxation works so well, and
in particular that the data can be «reduceds» so as to
fall 'so well on the universal curve of Fig. 2. The
high quality of this reduced data plot implies that
so far as NMR relaxation is concerned the system
can be understood in terms of a single correlation
time characterizing the motion. And in the context
of the above discussion the system may be regarded,
equivalently, as having an effective pairwise ex-
change interaction. The effective pairwise exchange
frequency will be some functional combination of
the frequency of the various interchange processes.
Matsumoto et al. {17] have calculated the fourth
moment for a restricted subset of two-, three-, and
four-particle exchanges. From this we find the ef-
fective pairwise exchange frequency determining
the NMR relaxation times to be the combination

2 _
jeff""fm- 14"nn*’t"’6‘7‘Irpr+

+61J7 - 54/ K, + 18K2
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where J,, is the pairwise exchange frequency, J, is
the frequency of the three-particle exchange, and
Kp is the four-particle exchange frequency for inter-
changes in a plane.

The reduced data plots incorporate measurements
made over a range of molar volumes, where the
exchange varies over some two orders of magnitude.
The quality of the reduced data plot thc:. indicates
that the interchange frequencies of the ..rious ex-
change cycles all scale with density in a rather
similar manner, as Eq. (11), in fact. Ceperley and
Jacucci have investigated this [18] using path-inte-
gral Monte Carlo calculations. They obtained the
frequencies for a variety of two-, three-, four- and
six-spin exchanges (planar 5-spin exchange has also
been calculated [19]). And they find that the larg-
est exchange frequencies all scale with density in a
similar manner, the exponents being 7, = 19.0,
N, = 19.8, and n, = 17.6. There is, however, no «
priopi reason to expect these dominant exchange
processes to vary with density in the same way:
indeed it is a surprise that they do. One is led to
wonder, with Gross {20], if multiple spin exchange
might be no more than a descriptive construction
rather like the planetary epicycles of Ptolomey, and
that there may be a more elementary physical de-
scription of the atomic motion. Currently there is
no satisfactory first-principles theoretical explana-
tion, but it is likely that virtual vacancy-interstitial
formation is the fundamental process out of which
all exchange cycles are built [19]. The different
trajectories taken by the vacancy before reuniting
with its interstitial would then correspond to differ-
ent multiple-spin exchange cycles, the exponent 1
reflecting the probability of creation of the pair.
The elucidation of this remains one of the unsolved
problems in the theory of solid helium.

11. Solid *He films

Further insights into the nature of exchange in
bulk solid 3He may be found from a consideration
of two-dimensional films of 3He. In submonolayer
films the observed spin relaxation behaviour is simi-
lar to that in three dimensions. The relaxation data
may be analysed [21] in a manner similar to that
described above. Again, the data may be scaled onto
a single curve, implying that here also the various
exchange frequencies scale with density in the same
way. And when expressed as a function of interpar-
ticle spacing the variation in two and three dimen-
sions is similar.

Things are very different, however, when consid-
ering multi-layer films of 3He. Here the main ex-
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perimental tools have been measurements of spin
susceptibility and thermal capacity. Starting with a
submonolayer film, as the adsorbate density in-
creases a 2d triangular close packed solid is formed.
Increasing the density further, at monolayer com-
pletion, there is promotion of atoms to the second
layer. This is initially a fluid, but as the density is
increased the second layer solidifies. The first layer
is paramagnetic and it plays very little part in the
observed spin behaviour; this has been confirmed
both by analysing the 2-component NMR line pro-
files and by replacing the first layer with a mono-
layer of ‘He [22].

When it forms, this second solid layer exhibits
antiferromagnetic exchange. However, when the
density is increased further the third, fluid, layer is
formed and this fluid overlayer has a dramatic effect
on the second layer, changing it from antiferromag-
netic to ferromagnetic. Simultaneous thermal capac-
ity and magnetization measurements have been
made [23], which indicate that the changeover be-
comes manifested in these two properties at differ-
ent densities. A ferromagnetic thermal capacity can
coexist with an antiferromagnetic spin susceptibi-
lity! This can be understood in terms of the differ-
ent combinations of exchange frequencies which
enter into the expresions for thermal capacity and
spin susceptibility. The fluid overlayer shifts the
balance of the different exchange processes. So
unlike the bulk solid, in 2d the various exchange
frequencies can be varied in different ways; here
one has the facility to continuously tune the frus-
trated spin exchange [24,25]. The rich variety of
phenomena in bulk solid 3He is thus likely to be
exceeded dramatically in solid 3He films.
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